Hot deformation behavior of a new Al-Zn-Mg-Sc-Er-Zr alloy
Zhongying TANG1,2, Qingyuan XING1,2, Shoujie YANG1,2,*(), Ning DING3
1 AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China 2 Beijing Advanced Engineering and Application Research Center of Aluminum Materials, Beijing 100095, China 3 The Sixth Military Representative Office in Beijing, Beijing 100095, China
The hot deformation behavior of Al-8.9Zn-1.3Mg-0.1Sc-0.1Er-0.1Zr aluminum alloy was studied by Gleeble-3800 thermal simulator. The hot processing map of the alloy in the temperature range of 380-440 ℃ and strain rate range of 0.01-10 s-1 was established.The phase in the alloy was analyzed by XRD, SAED and EDS. The microstructure after hot deformation was observed by OM and TEM. The optimum range of hot working parameters is as follows: 400 ℃ < T < 440 ℃, 0.01 s-1 < < 0.1 s-1. The main phase group of the alloy after deformation is α-Al and Al3(Sc, Er); The results show that the stress required for plastic deformation decreases with the increase of temperature and the decrease of strain rate, which is mainly due to the recrystallization and the decrease of pinning force of Al3 (Sc, Er) particles; the tendency of dynamic softening is greater at low strain rate, and the softening mechanism is changed from dynamic recovery to dynamic recrystallization; the formation of adiabatic shear band and dislocation stacking is the main reason for the instability of the alloy.
REN J , WANG R , FENG Y , et al. Microstructure evolution and mechanical properties of an ultrahigh strength Al-Zn-Mg-Cu-Zr-Sc (7055) alloy processed by modified powder hot extrusion with post aging[J]. Vacuum, 2019, 161, 434- 442.
doi: 10.1016/j.vacuum.2019.01.013
2
WANG Y , WU X , CAO L , et al. Effect of trace Er on the microstructure and properties of Al-Zn-Mg-Cu-Zr alloys during heat treatments[J]. Materials Science and Engineering: A, 2020, 792, 139807.
doi: 10.1016/j.msea.2020.139807
3
ZHANG J , GAO Y , YANG C , et al. Microalloying Al alloys with Sc: a review[J]. Rare Metals, 2020, 39 (6): 636- 650.
doi: 10.1007/s12598-020-01433-1
NIE Z R , WEN S P , HUANG H , et al. Research progress of Er-containing aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2011, 21 (10): 2361- 2370.
5
ZHANG J , WANG H , YI D , et al. Comparative study of Sc and Er addition on microstructure, mechanical properties, and electrical conductivity of Al-0.2Zr-based alloy cables[J]. Materials Characterization, 2018, 145, 126- 134.
doi: 10.1016/j.matchar.2018.08.037
6
LE F , LI Y , JIANG F , et al. On the role of Sc or Er micro-alloying in the microstructure evolution of Al-Mg alloy sheets during annealing[J]. Materials Characterization, 2019, 157, 109918.
doi: 10.1016/j.matchar.2019.109918
7
LEFEBVRE W , BANOIX F , HALLEM H , et al. Precipitation kinetic of Al3(Sc, Zr) dispersoids in aluminium[J]. Journal of Alloys and Compounds, 2009, 470 (1): 107- 110.
8
LI G , ZHAO N , LIU T , et al. Effect of Sc/Zr ratio on the microstructure and mechanical properties of new type of Al-Zn-Mg-Sc-Zr alloys[J]. Materials Science and Engineering: A, 2014, 617, 219- 227.
doi: 10.1016/j.msea.2014.08.041
9
WANG K , YIN D , ZHAO Y , et al. Microstructural evolution upon heat treatments and its effect on corrosion in Al-Zn-Mg alloys containing Sc and Zr[J]. Journal of Materials Research and Technology, 2020, 9 (3): 5077- 5089.
doi: 10.1016/j.jmrt.2020.03.025
10
LI Z , JIANG H , WANG Y , et al. Effect of minor Sc addition on microstructure and stress corrosion cracking behavior of medium strength Al-Zn-Mg alloy[J]. Journal of Materials Science & Technology, 2018, 34 (7): 1172- 1179.
KE B, YE L Y, ZHANG Z Q. Study on hot deformation behavior and processing maps of 7020 aluminum alloys[C]//Foshan: 2020 China Aluminum Processing Industry Annual Conference, 2020.
12
KE B , YE L Y , TANG J G , et al. Hot deformation behavior and 3D processing maps of AA7020 aluminum alloy[J]. Journal of Alloys and Compounds, 2020, 845, 156113.
doi: 10.1016/j.jallcom.2020.156113
QIU P , WANG J Y , DUAN X G , et al. Study on hot deformation behavior and microstructure evolution mechanism of AA7021 aluminum alloy[J]. Materials Reports, 2020, 34 (8): 8106- 8112.
14
LUO J , LI M Q , MA D W . The deformation behavior and processing maps in the isothermal compression of 7A09 aluminum alloy[J]. Materials Science and Engineering: A, 2012, 532, 548- 557.
doi: 10.1016/j.msea.2011.10.120
15
WU H , WEN S P , HUANG H , et al. Hot deformation behavior and processing map of a new type Al-Zn-Mg-Er-Zr alloy[J]. Journal of Alloys and Compounds, 2016, 685, 869- 880.
doi: 10.1016/j.jallcom.2016.06.254
16
LI D F , ZHANG D Z , LIU S D , et al. Dynamic recrystallization behavior of 7085 aluminum alloy during hot deformation[J]. Transactions of Nonferrous Metals Society of China, 2016, 26 (6): 1491- 1497.
doi: 10.1016/S1003-6326(16)64254-1
XING Q Y , YANG S J , LI X L , et al. Study on the mechanism of Sc and Er element in the Al-Zn-Mg alloy[J]. Foundry, 2019, 68 (2): 144- 151.
18
PRASAD Y V R K , SESHACHARYULU T . Processing maps for hot working of titanium alloys[J]. Materials Science and Engineering: A, 1998, 243 (1): 82- 88.
19
PRASAD Y V R K , GEGEL H L , DORAIVELU S M , et al. Modeling of dynamic material behavior in hot deformation: forging of Ti-6242[J]. Metallurgical Transactions A, 1984, 15 (10): 1883- 1892.
doi: 10.1007/BF02664902
20
ZHANG T , ZHANG S H , LI L , et al. Modified constitutive model and workability of 7055 aluminium alloy in hot plastic compression[J]. Journal of Central South University, 2019, 26 (11): 2930- 2942.
doi: 10.1007/s11771-019-4225-1
ZHAI C H , FENG Z H , CHAI L H , et al. Rheological deformation behavior of X2A66 aluminum-lithium alloy during isothermal compression[J]. Rare Metal Materials and Engineering, 2017, 46 (1): 90- 96.
22
NES E , RYUM N , HUNDERI O , et al. On the Zener drag[J]. Acta Metallurgica, 1985, 33 (1): 11- 22.
doi: 10.1016/0001-6160(85)90214-7
23
JONES M J , HUMPHREYS F J . Interaction of recrystallization and precipitation: the effect of Al3Sc on the recrystallization behaviour of deformed aluminium[J]. Acta Materialia, 2003, 51 (8): 2149- 2159.
doi: 10.1016/S1359-6454(03)00002-8