Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (3): 131-137    DOI: 10.11868/j.issn.1001-4381.2021.000319
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
新型Al-Zn-Mg-Sc-Er-Zr合金的热变形行为
汤中英1,2, 邢清源1,2, 杨守杰1,2,*(), 丁宁3
1 中国航发北京航空材料研究院,北京 100095
2 北京市先进铝合金材料及应用工程技术研究中心,北京 100095
3 空装驻北京地区第六军事代表室,北京 100095
Hot deformation behavior of a new Al-Zn-Mg-Sc-Er-Zr alloy
Zhongying TANG1,2, Qingyuan XING1,2, Shoujie YANG1,2,*(), Ning DING3
1 AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
2 Beijing Advanced Engineering and Application Research Center of Aluminum Materials, Beijing 100095, China
3 The Sixth Military Representative Office in Beijing, Beijing 100095, China
全文: PDF(21055 KB)   HTML ( 1 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用Gleeble-3800热模拟机研究Al-8.9Zn-1.3Mg-0.1Sc-0.1Er-0.1Zr铝合金的热变形行为,构建温度380~440 ℃、应变速率0.01~10 s-1区间内合金的热加工图,使用X射线衍射(XRD)、选区电子衍射(SAED)与能谱(EDS)对合金中存在的物相进行分析,并使用金相显微镜(OM)和透射电子显微镜(TEM)观察合金热变形后的微观组织。结果表明: 合金的最佳热加工工艺参数区间为:400 ℃ < T < 440 ℃, 0.01 s-1 < < 0.1 s-1。变形后合金的主要相组成为α-Al和Al3(Sc, Er);塑性变形所需的应力随温度的升高和应变速率的降低而减小,主要是由于再结晶的发生和Al3(Sc, Er)粒子钉扎力的减小;低应变速率下,发生动态软化的倾向更大,软化机制由动态回复转变为动态再结晶;绝热剪切带与位错塞积的形成是导致合金失稳的主要原因。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汤中英
邢清源
杨守杰
丁宁
关键词 Al-Zn-Mg-Sc-Er-Zr热变形本构方程热加工图组织演变    
Abstract

The hot deformation behavior of Al-8.9Zn-1.3Mg-0.1Sc-0.1Er-0.1Zr aluminum alloy was studied by Gleeble-3800 thermal simulator. The hot processing map of the alloy in the temperature range of 380-440 ℃ and strain rate range of 0.01-10 s-1 was established.The phase in the alloy was analyzed by XRD, SAED and EDS. The microstructure after hot deformation was observed by OM and TEM. The optimum range of hot working parameters is as follows: 400 ℃ < T < 440 ℃, 0.01 s-1 < < 0.1 s-1. The main phase group of the alloy after deformation is α-Al and Al3(Sc, Er); The results show that the stress required for plastic deformation decreases with the increase of temperature and the decrease of strain rate, which is mainly due to the recrystallization and the decrease of pinning force of Al3 (Sc, Er) particles; the tendency of dynamic softening is greater at low strain rate, and the softening mechanism is changed from dynamic recovery to dynamic recrystallization; the formation of adiabatic shear band and dislocation stacking is the main reason for the instability of the alloy.

Key wordsAl-Zn-Mg-Sc-Er-Zr    hot deformation    constitutive equation    hot processing map    micro-structure evolution
收稿日期: 2021-04-08      出版日期: 2022-03-19
中图分类号:  TG146.21  
通讯作者: 杨守杰     E-mail: 13801325436@163.com
作者简介: 杨守杰(1974—),男,研究员,博士,研究方向为航空铝合金,联系地址:北京市81信箱2分箱(100095),E-mail: 13801325436@163.com
引用本文:   
汤中英, 邢清源, 杨守杰, 丁宁. 新型Al-Zn-Mg-Sc-Er-Zr合金的热变形行为[J]. 材料工程, 2022, 50(3): 131-137.
Zhongying TANG, Qingyuan XING, Shoujie YANG, Ning DING. Hot deformation behavior of a new Al-Zn-Mg-Sc-Er-Zr alloy. Journal of Materials Engineering, 2022, 50(3): 131-137.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000319      或      http://jme.biam.ac.cn/CN/Y2022/V50/I3/131
Fig.1  真应力-真应变曲线
(a)380 ℃; (b)410 ℃; (c)440 ℃
Fig.2  不同应变量下的热加工图
(a)45%;(b)60%;(c)75%
Fig.3  不同应变量下合金的金相组织
(a)未热变形;(b)45%/440 ℃/0.01 s-1;(c)60%/440 ℃/0.01 s-1;(d)75%/440 ℃/0.01 s-1;(e)60%/380 ℃/0.1 s-1;(f)60%/440 ℃/10 s-1
Fig.4  合金热变形后的图像
(a)XRD图谱;(b)选区衍射;(c)SEM图;(d)Al; (e)Zn; (f)Mg; (g)Sc; (h)Er; (i)Zr
Fig.5  不同热变形条件下合金的TEM图
(a)45%/410 ℃/0.1 s-1; (b)45%/410 ℃/1 s-1; (c)45%/410 ℃/10 s-1; (d)45%/380 ℃/0.1 s-1; (e)75%/410 ℃/1 s-1; (f)75%/410 ℃/1 s-1
1 REN J , WANG R , FENG Y , et al. Microstructure evolution and mechanical properties of an ultrahigh strength Al-Zn-Mg-Cu-Zr-Sc (7055) alloy processed by modified powder hot extrusion with post aging[J]. Vacuum, 2019, 161, 434- 442.
doi: 10.1016/j.vacuum.2019.01.013
2 WANG Y , WU X , CAO L , et al. Effect of trace Er on the microstructure and properties of Al-Zn-Mg-Cu-Zr alloys during heat treatments[J]. Materials Science and Engineering: A, 2020, 792, 139807.
doi: 10.1016/j.msea.2020.139807
3 ZHANG J , GAO Y , YANG C , et al. Microalloying Al alloys with Sc: a review[J]. Rare Metals, 2020, 39 (6): 636- 650.
doi: 10.1007/s12598-020-01433-1
4 聂祚仁, 文胜平, 黄晖, 等. 铒微合金化铝合金的研究进展[J]. 中国有色金属学报, 2011, 21 (10): 2361- 2370.
4 NIE Z R , WEN S P , HUANG H , et al. Research progress of Er-containing aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2011, 21 (10): 2361- 2370.
5 ZHANG J , WANG H , YI D , et al. Comparative study of Sc and Er addition on microstructure, mechanical properties, and electrical conductivity of Al-0.2Zr-based alloy cables[J]. Materials Characterization, 2018, 145, 126- 134.
doi: 10.1016/j.matchar.2018.08.037
6 LE F , LI Y , JIANG F , et al. On the role of Sc or Er micro-alloying in the microstructure evolution of Al-Mg alloy sheets during annealing[J]. Materials Characterization, 2019, 157, 109918.
doi: 10.1016/j.matchar.2019.109918
7 LEFEBVRE W , BANOIX F , HALLEM H , et al. Precipitation kinetic of Al3(Sc, Zr) dispersoids in aluminium[J]. Journal of Alloys and Compounds, 2009, 470 (1): 107- 110.
8 LI G , ZHAO N , LIU T , et al. Effect of Sc/Zr ratio on the microstructure and mechanical properties of new type of Al-Zn-Mg-Sc-Zr alloys[J]. Materials Science and Engineering: A, 2014, 617, 219- 227.
doi: 10.1016/j.msea.2014.08.041
9 WANG K , YIN D , ZHAO Y , et al. Microstructural evolution upon heat treatments and its effect on corrosion in Al-Zn-Mg alloys containing Sc and Zr[J]. Journal of Materials Research and Technology, 2020, 9 (3): 5077- 5089.
doi: 10.1016/j.jmrt.2020.03.025
10 LI Z , JIANG H , WANG Y , et al. Effect of minor Sc addition on microstructure and stress corrosion cracking behavior of medium strength Al-Zn-Mg alloy[J]. Journal of Materials Science & Technology, 2018, 34 (7): 1172- 1179.
11 柯彬, 叶凌英, 张昭强. 7020铝合金高温变形行为及其热加工图研究[C]//佛山: 2020年中国铝加工产业年度大会, 2020.
11 KE B, YE L Y, ZHANG Z Q. Study on hot deformation behavior and processing maps of 7020 aluminum alloys[C]//Foshan: 2020 China Aluminum Processing Industry Annual Conference, 2020.
12 KE B , YE L Y , TANG J G , et al. Hot deformation behavior and 3D processing maps of AA7020 aluminum alloy[J]. Journal of Alloys and Compounds, 2020, 845, 156113.
doi: 10.1016/j.jallcom.2020.156113
13 仇鹏, 王家毅, 段晓鸽, 等. AA7021铝合金热变形行为及微观组织演变机理的研究[J]. 材料导报, 2020, 34 (8): 8106- 8112.
13 QIU P , WANG J Y , DUAN X G , et al. Study on hot deformation behavior and microstructure evolution mechanism of AA7021 aluminum alloy[J]. Materials Reports, 2020, 34 (8): 8106- 8112.
14 LUO J , LI M Q , MA D W . The deformation behavior and processing maps in the isothermal compression of 7A09 aluminum alloy[J]. Materials Science and Engineering: A, 2012, 532, 548- 557.
doi: 10.1016/j.msea.2011.10.120
15 WU H , WEN S P , HUANG H , et al. Hot deformation behavior and processing map of a new type Al-Zn-Mg-Er-Zr alloy[J]. Journal of Alloys and Compounds, 2016, 685, 869- 880.
doi: 10.1016/j.jallcom.2016.06.254
16 LI D F , ZHANG D Z , LIU S D , et al. Dynamic recrystallization behavior of 7085 aluminum alloy during hot deformation[J]. Transactions of Nonferrous Metals Society of China, 2016, 26 (6): 1491- 1497.
doi: 10.1016/S1003-6326(16)64254-1
17 邢清源, 杨守杰, 李晓玲, 等. Sc、Er元素在Al-Zn-Mg合金中的作用机理研究[J]. 铸造, 2019, 68 (2): 144- 151.
17 XING Q Y , YANG S J , LI X L , et al. Study on the mechanism of Sc and Er element in the Al-Zn-Mg alloy[J]. Foundry, 2019, 68 (2): 144- 151.
18 PRASAD Y V R K , SESHACHARYULU T . Processing maps for hot working of titanium alloys[J]. Materials Science and Engineering: A, 1998, 243 (1): 82- 88.
19 PRASAD Y V R K , GEGEL H L , DORAIVELU S M , et al. Modeling of dynamic material behavior in hot deformation: forging of Ti-6242[J]. Metallurgical Transactions A, 1984, 15 (10): 1883- 1892.
doi: 10.1007/BF02664902
20 ZHANG T , ZHANG S H , LI L , et al. Modified constitutive model and workability of 7055 aluminium alloy in hot plastic compression[J]. Journal of Central South University, 2019, 26 (11): 2930- 2942.
doi: 10.1007/s11771-019-4225-1
21 翟彩华, 冯朝辉, 柴丽华, 等. X2A66铝锂合金等温压缩时的流变变形行为[J]. 稀有金属材料与工程, 2017, 46 (1): 90- 96.
21 ZHAI C H , FENG Z H , CHAI L H , et al. Rheological deformation behavior of X2A66 aluminum-lithium alloy during isothermal compression[J]. Rare Metal Materials and Engineering, 2017, 46 (1): 90- 96.
22 NES E , RYUM N , HUNDERI O , et al. On the Zener drag[J]. Acta Metallurgica, 1985, 33 (1): 11- 22.
doi: 10.1016/0001-6160(85)90214-7
23 JONES M J , HUMPHREYS F J . Interaction of recrystallization and precipitation: the effect of Al3Sc on the recrystallization behaviour of deformed aluminium[J]. Acta Materialia, 2003, 51 (8): 2149- 2159.
doi: 10.1016/S1359-6454(03)00002-8
[1] 刘石双, 周毅, 李娟, 曹京霞, 蔡建明, 黄旭, 戴圣龙. Ti-22Al-23Nb-1Mo-1Zr合金环锻件组织演变及力学行为[J]. 材料工程, 2022, 50(4): 147-155.
[2] 孙琦迪, 杨蔚涛, 郝庆国, 关肖虎, 章斌, 杨旗. 低周疲劳变形过程中Fe-33Mn-4Si合金钢的微观组织演变[J]. 材料工程, 2022, 50(4): 162-171.
[3] 宋广胜, 牛嘉维, 宋鸿武, 张士宏, 邓思瀛. Zirlo锆合金高温变形行为及本构关系[J]. 材料工程, 2022, 50(3): 138-147.
[4] 乔士宾, 何西扣, 刘敬杰, 赵德利, 刘正东. SA508Gr.4N钢热变形过程微观组织演变及流变应力模型[J]. 材料工程, 2021, 49(3): 67-77.
[5] 杨璐, 曹敏, 曹玲飞, 廖斌, 王正安. 7B04包铝复合板热变形行为及其对组织演变的影响[J]. 材料工程, 2021, 49(3): 78-86.
[6] 张连腾, 陈乐平, 徐勇, 袁源平. Mg-9Al-3Si-0.375Sr-0.78Y合金的热变形行为及本构模型[J]. 材料工程, 2021, 49(2): 88-96.
[7] 支盛兴, 李兴刚, 袁家伟, 李永军, 马鸣龙, 石国梁, 张奎. 挤压态AZ40镁合金热变形行为及热加工图分析[J]. 材料工程, 2021, 49(11): 136-146.
[8] 周亚利, 杨秋月, 张文玮, 刘田文, 何威, 吴珍, 伍铭, 谭元标. 具有层片状α相组织的TB8钛合金热变形行为及本构方程[J]. 材料工程, 2021, 49(1): 75-81.
[9] 李慧中, 杨雷, 王岩, 谭钢, 黄钲钦, 刘敏学. 热挤压态Ni-Co-Cr基粉末高温合金热加工行为[J]. 材料工程, 2020, 48(9): 115-123.
[10] 石磊, 雷力明, 王威, 付鑫, 张广平. 热等静压/热处理工艺对激光选区熔化成形GH4169合金微观组织与拉伸性能的影响[J]. 材料工程, 2020, 48(6): 148-155.
[11] 朱鸿昌, 罗军明, 朱知寿. TB17钛合金β相区动态再结晶行为及转变机理[J]. 材料工程, 2020, 48(2): 108-113.
[12] 孙挺, 闫永明, 何肖飞, 尉文超, 杜玉婧. Cr-Mo-B系机械工程用钢高温流变行为及热加工图[J]. 材料工程, 2019, 47(9): 55-60.
[13] 周强, 程军, 于振涛, 崔文芳. 一种新型近β型Ti-5.5Mo-6V-7Cr-4Al-2Sn-1Fe合金热变形行为[J]. 材料工程, 2019, 47(6): 121-128.
[14] 万鹏, 王克鲁, 鲁世强, 陈虚怀, 周峰. 基于应变补偿和PSO-BP神经网络的Ti-2.7Cu合金本构关系[J]. 材料工程, 2019, 47(4): 113-119.
[15] 王宇, 熊柏青, 李志辉, 温凯, 黄树晖, 李锡武, 张永安. 新型超高强Al-Zn-Mg-Cu合金热压缩变形行为及微观组织特征[J]. 材料工程, 2019, 47(2): 99-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn