Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (5): 78-89    DOI: 10.11868/j.issn.1001-4381.2021.000328
  综述 本期目录 | 过刊浏览 | 高级检索 |
内生非晶复合材料组织与力学性能调控研究进展
翟海民(), 马旭, 袁花妍, 欧梦静, 李文生()
兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室, 兰州 730050
Research progress in control of microstructure and mechanical properties of in-situ bulk metallic glass composites
Haimin ZHAI(), Xu MA, Huayan YUAN, Mengjing OU, Wensheng LI()
State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
全文: PDF(6217 KB)   HTML ( 2 )  
输出: BibTeX | EndNote (RIS)      
摘要 

非晶合金因其独特的短程有序、长程无序原子结构特征, 使其具有了一系列优异的力学、物理、化学等性能, 在先进金属结构材料领域具有巨大的潜在应用价值。但非晶合金在室温承载变形时, 原子团簇发生剪切转变形成的大量自由体积会演化为高度局域化剪切带, 局域化剪切带由于缺乏介质的阻碍会发生失稳扩展, 导致非晶合金极易发生室温脆断, 特别单轴拉伸时基本无塑性。为克服这个缺憾, 研究者们提出将微米级尺寸的晶体相引入非晶来抑制剪切带的失稳扩展, 使得内生第二相增韧非晶复合材料具有了明显的拉伸塑性能力, 因此倍受材料学界的关注。近年来, 研究者们陆续通过成分设计、制备技术、热处理工艺等方法来实现非晶复合材料的塑性变形能力的提升, 使得非晶复合材料有望走向实际的工程应用。本文围绕内生第二相增韧非晶复合材料的微观组织调控这一关键科学问题, 从影响非晶复合材料微观组织结构的因素(合金成分设计、制备工艺参数、微观结构构筑等)到微观组织对其室温力学性能的影响机制两方面的研究成果进行了系统总结, 重点阐述了近10年来内生第二相增韧非晶复合材料领域组织调控及其室温力学性能关联性方面的研究进展, 并且对内生非晶复合材料研究领域目前的存在的问题和挑战进行了展望, 以期为高强高韧内生第二相增韧非晶复合材料的设计与制备提供理论参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
翟海民
马旭
袁花妍
欧梦静
李文生
关键词 非晶复合材料微观组织调控制备技术力学性能剪切带    
Abstract

Metallic glasses (MGs) have a series of excellent mechanical, physical, chemical and other properties due to their unique short-range ordered and long-range disordered atomic structure characteristics, making them have great potential application value in the field of advanced metal structural materials. However, when the bulk metallic glass (BMG) is deformed under room temperature, the large amount of free volume formed by the shear transformation of the atomic clusters will evolve into a highly localized shear bands. The localized shear bands will undergo instability expansion due to the lack of media, which leads to the fact that BMGs are very prone to brittle fracture at room temperature. In particular, there is no plasticity during uniaxial tension. In order to overcome this shortcoming, the researchers proposed to introduce the micron-sized crystal phase into the glass matrix to suppress the instability expansion of the shear band, so that the in-situ dendritic toughened bulk metallic glass composite (BMGC) has obvious tensile plasticity, and the BMGC has attracted much attention from the material science community. In recent years, researchers have successively improved the plastic deformation ability of BMGC through composition design, preparation technology, heat treatment process and other methods, making BMGC be expected to move towards practical engineering applications. This article focuses on the key scientific issue of microstructure control of in-situ second-phase toughened BMGC, from the factors that affect the microstructure of BMGC (alloy composition design, preparation process parameters, microstructure construction, etc.) to the mechanism of the influence of microstructure on its room temperature mechanical properties, the research results were systematically summarized. In particular, the article focuses on the research progress in the field of in-situ second-phase toughened BMGC in the past 10 years in the field of microstructure regulation and the correlation between mechanical properties at room temperature. In addition, the current problems and challenges in the field of in-situ second-phase toughened BMGC were addressed. The prospects are expected to provide a theoretical reference for the design and preparation of high-strength and high-toughness in-situ second-phase toughened BMGC.

Key wordsbulk metallic glass composites    microstructure regulation    preparative technique    mechanical property    shear band
收稿日期: 2021-04-09      出版日期: 2022-05-23
中图分类号:  TG146.4  
基金资助:国家自然科学基金项目(51901092);国家自然科学基金项目(52075234);科技部丝绸之路经济带金属表面工程技术国家国际科技合作基地项目(2017D01003);甘肃省青年科技基金计划(20 JR5RA431);兰州理工大学红柳优秀青年人才支持计划(26/062005);湖南理工学院湖南省电磁装备设计与制造重点实验室开放基金资助课题(DC202001)
通讯作者: 翟海民,李文生     E-mail: hmzhai@lut.edu.cn;liws@lut.edu.cn
作者简介: 李文生(1973—),男,教授,博士,主要从事金属表面防护与延寿技术领域研究及工程化应用工作,联系地址:甘肃省兰州市七里河区兰工坪路287号兰州理工大学材料科学与工程学院(730050),E-mail: liws@lut.edu.cn
翟海民(1988—),男,副研究员,博士,主要从事非晶复合材料及非晶涂层的强韧化机制研究,联系地址:甘肃省兰州市七里河区兰工坪路287号兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室(730050),E-mail: hmzhai@lut.edu.cn
引用本文:   
翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
Haimin ZHAI, Xu MA, Huayan YUAN, Mengjing OU, Wensheng LI. Research progress in control of microstructure and mechanical properties of in-situ bulk metallic glass composites. Journal of Materials Engineering, 2022, 50(5): 78-89.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000328      或      http://jme.biam.ac.cn/CN/Y2022/V50/I5/78
Fig.1  Zr-(Ti+Nb)-(Cu5Ni4Be9)伪三元相图[38]
Fig.2  (Zr75Ti15Nb10)100-y(Be50Cu27.5Ni22.5)y BMGCs随y值变化的组织演变图[41]
(a)y=32, Vd=8%;(b)y=30, Vd=21%;(c)y=29, Vd=25%;(d)y=27;Vd=32%;(e)y=26, Vd=38%;(f)y=20, Vd=55%
Fig.3  梯度DH3 BMGC的拉伸变形行为[23]
(a)拉伸工程应力-应变曲线;(b)梯度BMGC的拉伸断裂形貌;(c)第5层和第6层之间界面处的典型扩大区域
Fig.4  Ti47-xZr25Nb6Cu5Be17Snx (x=0%, 1%, 2%, 3%, 4%) BMGCs的枝晶和非晶杨氏模量随Sn含量变化(a)及不同Sn含量BMGCs拉伸工程应力-应变曲线(b)[31]
1 张舒研, 高洋洋, 张志彬, 等. 高熵非晶合金耐腐蚀性能研究进展[J]. 材料工程, 2021, 49 (1): 44- 54.
1 ZHANG S Y , GAO Y Y , ZHANG Z B , et al. Research progress in corrosion resistance of high-entropy metallic glasses[J]. Journal of Materials Engineering, 2021, 49 (1): 44- 54.
2 刘天豪, 郭胜锋. 铁基块体非晶合金的形成规律与力学性能研究进展[J]. 材料工程, 2020, 48 (11): 46- 57.
doi: 10.11868/j.issn.1001-4381.2020.000389
2 LIU T H , GUO S F . Research progress of glass-formation rule and mechanical properties of Fe-based bulk amorphous alloys[J]. Journal of Materials Engineering, 2020, 48 (11): 46- 57.
doi: 10.11868/j.issn.1001-4381.2020.000389
3 汪卫华. 非晶态物质的本质和特性[J]. 物理学进展, 2013, 33 (5): 177- 351.
3 WANG W H . The nature and properties of amorphous matter[J]. Progress in Physics, 2013, 33 (5): 177- 351.
4 赵燕春, 毛瑞鹏, 袁小鹏, 等. Ti基金属玻璃复合材料的腐蚀行为[J]. 材料工程, 2018, 46 (1): 25- 30.
4 ZHAO Y C , MAO R P , YUAN X P , et al. Corrosion behaviour of Ti-based bulk metallic glass matrix composites[J]. Journal of Materials Engineering, 2018, 46 (1): 25- 30.
5 殷更, 李方伟, 邓磊, 等. 非晶合金冲击韧性研究现状及展望[J]. 中国有色金属学报, 2020, 30 (3): 530- 541.
5 YIN G , LI F W , DENG L , et al. Research status and prospect of impact toughness of bulk metallic glasses[J]. The Chinese Journal of Nonferrous Metals, 2020, 30 (3): 530- 541.
6 LEWANDOSKI J , WANG W H , GREER A L , et al. Intrinsic plasticity or brittleness of metallic glasses[J]. Philosophical Magazine Letters, 2005, 85 (2): 77- 87.
doi: 10.1080/09500830500080474
7 GU B , LIU F . Characterization of structural inhomogeneity in Al88Ce8Co4 metallic glass[J]. Acta Materialia, 2016, 112, 94- 104.
doi: 10.1016/j.actamat.2016.04.009
8 QIAO J W , JIA H L , LIAW P K , et al. Metallic glass matrix composites[J]. Materials Science and Engineering: R, 2016, 100, 1- 69.
9 刘鹏, 李士凯, 张元彬, 等. 非晶增强铝基复合材料的微观结构及腐蚀性能[J]. 材料工程, 2015, 43 (3): 67- 71.
9 LIU P , LI S K , ZHANG Y B , et al. Microstructure and corrosion properties of aluminum matrix composite reinforced with Al-based amorphous[J]. Journal of Materials Engineering, 2015, 43 (3): 67- 71.
10 马云飞, 龚攀, 李方伟, 等. 钨增强块体非晶复合材料的研究进展[J]. 稀有金属材料与工程, 2020, 49 (4): 1445- 1456.
10 MA Y F , GONG P , LI F W , et al. Research progress on the tungsten reinforced bulk metallic glass matrix composites[J]. Rare Metal Materials and Engineering, 2020, 49 (4): 1445- 1456.
11 HAYS C C , KIM C P , JOHNSON W L , et al. Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions[J]. Physical Review Letters, 2000, 84, 2901- 2904.
doi: 10.1103/PhysRevLett.84.2901
12 HOFMANN D C , SUH J Y , WIEST A , et al. Designing metallic glass matrix composites with high toughness and tensile ductility[J]. Nature, 2008, 451, 1085- 1089.
doi: 10.1038/nature06598
13 HOFMANN D C , SUH J Y , WIEST A , et al. Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility[J]. Proceedings of the National Academy of Sciences, 2008, 105, 20136- 20140.
doi: 10.1073/pnas.0809000106
14 刘兴发, 陈艳, 戴兰宏. 内生晶体非晶合金复合材料变形场演化与剪切带行为[J]. 中国科学: 物理学力学天文学, 2020, 50, 067006.
14 LIU X F , CHEN Y , DAI L H . Deformation field evolution and shear banding of an in-situ crystal reinforced amorphous alloy composite (in Chinese)[J]. Sci Sin-Phys Mech Astron, 2020, 50, 067006.
15 QIAO J W , WANG S , ZHANG Y , et al. Large plasticity and tensile necking of Zr-based bulk-metallic-glass-matrix composites synthesized by the Bridgman solidification[J]. Applied Physics Letters, 2009, 94 (15): 151905.
doi: 10.1063/1.3118587
16 赵燕春, 毛瑞鹏, 许丛郁, 等. Ti基非晶复合材料的强韧化机理[J]. 稀有金属材料与工程, 2019, 48 (6): 1841- 1846.
16 ZHAO Y C , MAO R P , XU C Y , et al. Strengthening and toughening mechanism of Ti-based metallic glass composites[J]. Rare Metal Materials and Engineering, 2019, 48 (6): 1841- 1846.
17 王昊杰, 刘滢, 逄淑杰, 等. 高强度Ti-Cu-Fe-Si-Nb树枝晶-超细晶复合材料的结构与力学性能[J]. 稀有金属, 2019, 43 (1): 25- 31.
17 WANG H J , LIU Y , PANG S J , et al. Microstructure and mechanical properties of Ti-Cu-Fe-Si-Nb dendrite-ultrafine grained composites with high strength[J]. Rare Metals, 2019, 43 (1): 25- 31.
18 郭振玺, 王永胜, 隋曼龄, 等. 钛基非晶复合材料的微观结构及变形机制研究[J]. 稀有金属材料与工程, 2017, 46 (9): 2558- 2564.
18 GUO Z X , WANG Y S , SUI M L , et al. Microstructure and deformation mechanism of titanium-based metallic glass matrix composites[J]. Rare Metal Materials and Engineering, 2017, 46 (9): 2558- 2564.
19 WANG Y S , HAO G J , ZHANG Y , et al. Fabrication and mechanical characterization of Ti-based metallic glass matrix composites by the Bridgman solidification[J]. Metallurgical and Materials Transactions A, 2014, 45, 2357- 2362.
20 CHENG J L , CHEN G , XU F , et al. Correlation of the microstructure and mechanical properties of Zr-based in-situ bulk metallic glass matrix composites[J]. Intermetallics, 2010, 18 (12): 2425- 2430.
doi: 10.1016/j.intermet.2010.08.040
21 CHEN G , CHENG J L , LIU C T . Large-sized Zr-based bulk-metallic-glass composite with enhanced tensile properties[J]. Intermetallics, 2012, 18, 25- 33.
22 曲丽丹, 韩斌慧, 吕云卓, 等. 激光3D打印非晶合金晶化体积分数的理论预测[J]. 材料工程, 2020, 48 (7): 133- 138.
22 QU L D , HAN B H , LYU Y Z , et al. Theoretical prediction of crystallization volume fraction for laser 3D printing of metallic glasses[J]. Journal of Materials Engineering, 2020, 48 (7): 133- 138.
23 LU Y Z , SU S , ZHANG S B , et al. Controllable additive manufacturing of gradient bulk metallic glass composite with high strength and tensile ductility[J]. Acta Materialia, 2021, 206, 116632.
doi: 10.1016/j.actamat.2021.116632
24 GAO X H , LIN X , YAN Q D , et al. Effect of Cu content on microstructure and mechanical properties of in-situ phases reinforced Ti/Zr-based bulk metallic glass matrix composite by selective laser melting (SLM)[J]. Journal of Materials Science & Technology, 2021, 67, 174- 185.
25 章媛洁, 张金良, 张磊, 等. 3D打印非晶合金材料工艺及性能的研究进展[J]. 材料工程, 2018, 46 (7): 12- 18.
25 ZHANG Y J , ZHANG J L , ZHANG L , et al. Research progress on 3D printed metallic glasses materials, processing and property[J]. Journal of Materials Engineering, 2018, 46 (7): 12- 18.
26 OH Y S , KIM C P , LEE S , et al. Microstructure and tensile properties of high-strength high-ductility Ti-based amorphous matrix composites containing ductile dendrites[J]. Acta Materialia, 2011, 59 (19): 7277- 7286.
doi: 10.1016/j.actamat.2011.08.006
27 JEON C , KIM C P , JOO S H , et al. High tensile ductility of Ti-based amorphous matrix composites modified from conventional Ti-6Al-4V titanium alloy[J]. Acta Materialia, 2013, 61 (8): 3012- 3026.
doi: 10.1016/j.actamat.2013.01.061
28 ZHANG L , ZHU Z W , FU H M , et al. Improving plasticity and work-hardening capability of β-type bulk metallic glass composites by destabilizing β phases[J]. Materials Science and Engineering: A, 2017, 689, 404- 410.
doi: 10.1016/j.msea.2017.02.070
29 ZHANG L , NARAYAN R L , SUN B A , et al. Cooperative shear in bulk metallic glass composites containing metastable β-Ti dendrites[J]. Physical Review Letters, 2020, 125 (5): 055501.
doi: 10.1103/PhysRevLett.125.055501
30 FAN J , QIAO J W , WANG Z H , et al. Twinning-induced plasticity (TWIP) and work hardening in Ti-based metallic glass matrix composites[J]. Scientific Reports, 2017, 7, 1877.
doi: 10.1038/s41598-017-02100-9
31 ZHAI H M , WANG H F , LIU F . A strategy for designing bulk metallic glass composites with excellent work-hardening and large tensile ductility[J]. Journal of Alloys and Compounds, 2016, 685, 322- 330.
doi: 10.1016/j.jallcom.2016.05.290
32 DAVIDSON M , ROBERTS S , CASTRO G , et al. Investigating amorphous metal composite architectures as spacecraft shielding[J]. Advanced Engineering Materials, 2013, 15, 27- 33.
doi: 10.1002/adem.201200313
33 刘军, 杨湘杰. 非晶复合材料的半固态加工技术[J]. 精密成形工程, 2020, 12 (3): 1- 11.
33 LIU J , YANG X J . Semi-solid processing technology of amorphous composites[J]. Journal of Netshape Forming Engineering, 2020, 12 (3): 1- 11.
34 HOFMANN D C , KOZACHKOV H , KHALIFA H E , et al. Semi-solid induction forging of metallic glass matrix composites[J]. JOM, 2009, 61 (12): 11- 17.
doi: 10.1007/s11837-009-0172-x
35 NARAYAN R L , SINGH P S , HOFMANN D C , et al. On the microstructure-tensile property correlations in bulk metallic glass matrix composites with crystalline dendrites[J]. Acta Materialia, 2012, 60 (13/14): 5089- 5100.
36 HOFMANN D C , ROBERTS S N , KOZACHKOV H . Infrared thermal processing history of a Ti-based bulk metallic glass matrix composite manufactured via semi-solid forging[J]. Acta Materialia, 2015, 95, 192- 200.
doi: 10.1016/j.actamat.2015.05.029
37 赵燕春, 袁小鹏, 寇生中, 等. 半固态处理对Ti基非晶复合材料的组织和力学性能影响[J]. 功能材料, 2015, 46 (3): 03069- 03072.
37 ZHAO Y C , YUAN X P , KOU S Z , et al. Effect of semi-solid heat-treatment on microstructure and mechanical properties of Ti-based bulk amorphous composites[J]. Journal of Functional Materials, 2015, 46 (3): 03069- 03072.
38 SZUECS F , KIM C P , JOHNSON W L . Mechanical properties of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass composite[J]. Acta Materialia, 2001, 49 (9): 1507- 1513.
doi: 10.1016/S1359-6454(01)00068-4
39 ZHANG L , LI W Q , ZHU Z W , et al. Distribution of Be in a Ti-based bulk metallic glass composite containing β-Ti[J]. Journal of Materials Science & Technology, 2017, 33 (7): 708- 711.
40 GUO Z X , WANG Y S , ZHU L J , et al. Beryllium-distribution in metallic glass matrix composite containing beryllium[J]. Transactions of Nonferrous Metals Society of China, 2017, 27 (1): 110- 116.
doi: 10.1016/S1003-6326(17)60012-8
41 LIU X F , CHEN Y , JIANG M Q , et al. Tuning plasticity of in-situ dendrite metallic glass composites via the dendrite-volume-fraction-dependent shear banding[J]. Materials Science and Engineering: A, 2017, 680, 121- 129.
doi: 10.1016/j.msea.2016.10.085
42 QIAO J W , ZHANG Y , CHEN G L . Fabrication and mechanical characterization of a series of plastic Zr-based bulk metallic glass matrix composites[J]. Materials & Design, 2009, 30 (10): 3966- 3971.
43 ZHAI H M , XU Y H , ZHANG F , et al. Effect of transition metal elements (Cu, Ni, Co and Fe) on the mechanical properties of Ti-based bulk metallic glass composites[J]. Journal of Alloys and Compounds, 2017, 694, 1- 9.
doi: 10.1016/j.jallcom.2016.09.280
44 MA D Q , LI J , ZHANG Y F , et al. Effect of compositional tailoring on the glass-forming ability and mechanical properties of TiZr-based bulk metallic glass matrix composites[J]. Materials Science & Engineering A, 2014, 612, 310- 315.
45 ZHANG L , NARAYAN R L , FU H M , et al. Tuning the microstructure and metastability of β-Ti for simultaneous enhancement of strength and ductility of Ti-based bulk metallic glass composites[J]. Acta Materialia, 2019, 168, 24- 36.
doi: 10.1016/j.actamat.2019.02.002
46 ZHANG L , ZHANG H F , LI W Q , et al. β-type Ti-based bulk metallic glass composites with tailored structural metastability[J]. Journal of Alloys and Compounds, 2017, 708, 972- 981.
doi: 10.1016/j.jallcom.2017.03.074
47 KOLODZIEJSKA J , KOZACHLOV H , KRANJC K , et al. Towards an understanding of tensile deformation in Ti-based bulk metallic glass matrix composites with BCC dendrites[J]. Scientific Reports, 2016, 6, 22563.
doi: 10.1038/srep22563
48 ZHAI H M , WANG H F , LIU F . Effects of Sn addition on mechanical properties of Ti-based bulk metallic glass composites[J]. Materials & Design, 2016, 110, 782- 789.
49 QIAO J W , ZHANG Y . Effect of Nb content on the microstructures and mechanical properties of Zr-Ti-Cu-Be-Nb glass-forming alloys[J]. Intermetallics, 2011, 19 (2): 149- 153.
doi: 10.1016/j.intermet.2010.08.025
50 MA X Z , MA D Q , XU H , et al. Enhancing the compressive and tensile properties of Ti-based glassy matrix composites with Nb addition[J]. Journal of Non-Crystalline Solids, 2017, 463, 56- 63.
doi: 10.1016/j.jnoncrysol.2017.02.025
51 LI J S , BAI J , WANG J , et al. Deformation behavior of a Ti-based bulk metallic glass composite with excellent cryogenic mechanical properties[J]. Materials & Design, 2014, 53, 737- 740.
52 MA D Q , JIAO W T , ZHANG Y F , et al. Strong work-hardening behavior induced by the solid solution strengthening of dendrites in TiZr-based bulk metallic glass matrix composites[J]. Journal of Alloys and Compounds, 2015, 624, 9- 16.
doi: 10.1016/j.jallcom.2014.11.099
53 CHENG J L , CHEN G , LIU C T , et al. Innovative approach to the design of low-cost Zr-based BMG composites with good glass formation[J]. Scientific Reports, 2013, 3, 2097.
doi: 10.1038/srep02097
54 LI L Y , KOU H C , WANG J , et al. Enhanced mechanical properties of Ti-based metallic glass composites prepared under medium vacuum system[J]. Journal of Non-Crystalline Solids, 2015, 413, 15- 19.
doi: 10.1016/j.jnoncrysol.2015.01.013
55 JEON C , KANG M J , KIM C P , et al. Quasi-static and dynamic compressive deformation behaviors in Zr-based amorphous alloys containing ductile dendrites[J]. Materials Science and Engineering: A, 2013, 579, 77- 85.
doi: 10.1016/j.msea.2013.04.086
56 QIAO J W , ZHANG Y , LIAW P K . Tailoring microstructures and mechanical properties of Zr-based bulk metallic glass matrix composites by the Bridgman solidification[J]. Advanced Engineering Materials, 2008, 10, 1039- 1042.
doi: 10.1002/adem.200800149
57 QIAO J W , ZHANG J T , JIANG F , et al. Development of plastic Ti-based bulk-metallic-glass-matrix composites by controlling the microstructures[J]. Materials Science and Engineering A, 2010, 527 (29/30): 7752- 7756.
58 SUN G Y , CHEN G , CHEN G L . Comparison of microstructures and properties of Zr-based bulk metallic glass composites with dendritic and spherical bcc phase precipitates[J]. Intermetallics, 2007, 15 (5/6): 632- 634.
59 MAO J , ZHANG H F , FU H M , et al. The effects of casting temperature on the glass formation of Zr-based metallic glasses[J]. Advanced Engineering Materials, 2009, 11, 986- 991.
60 SHA P F , ZHU Z W , FU H M , et al. Effects of casting temperature on the microstructure and mechanical properties of the TiZr-based bulk metallic glass matrix composite[J]. Materials Science and Engineering: A, 2014, 589, 182- 188.
doi: 10.1016/j.msea.2013.09.078
61 LEE M L , LI Y , SCHUH C A . Effect of a controlled volume fraction of dendritic phases on tensile and compressive ductility in La-based metallic glass matrix composites[J]. Acta Materialia, 2004, 52 (14): 4121- 4131.
doi: 10.1016/j.actamat.2004.05.025
62 PAULY S , LIU G , WANG G , et al. Modeling deformation behavior of Cu-Zr-Al bulk metallic glass matrix composites[J]. Applied Physics Letters, 2009, 95 (10): 101906.
doi: 10.1063/1.3222973
63 SHETE M K , SINGH I , NARASIMHAN R , et al. Effect of strain hardening and volume fraction of crystalline phase on strength and ductility of bulk metallic glass composites[J]. Scripta Materialia, 2016, 124, 51- 55.
doi: 10.1016/j.scriptamat.2016.06.020
64 JIANG Y P , QIU K . Computational micromechanics analysis of toughening mechanisms of particle-reinforced bulk metallic glass composites[J]. Materials & Design, 2015, 65, 410- 416.
65 SHETE M K , DUTTA T , SINGH I , et al. Tensile stress-strain response of metallic glass matrix composites reinforced with crystalline dendrites: role of dendrite morphology[J]. Intermetallics, 2017, 83, 70- 82.
doi: 10.1016/j.intermet.2016.12.006
66 ZHOU H F , QU S X , YANG W . An atomistic investigation of structural evolution in metallic glass matrix composites[J]. International Journal of Plasticity, 2013, 44, 147- 160.
doi: 10.1016/j.ijplas.2013.01.002
67 邱昆, 姜云鹏, 史雪萍, 等. 新型颗粒增强金属玻璃复合材料的拉伸增韧机制[J]. 复合材料学报, 2018, 35 (1): 124- 131.
67 QIU K , JIANG Y P , SHI X P , et al. Tensile toughening mechanism of new particle reinforced metallic glass composites[J]. Acta Materiae Compositae Sinica, 2018, 35 (1): 124- 131.
68 SHA Z D , BRANICIO P S , LEE H P , et al. Strong and ductile nano-laminate composites combining metallic glasses and nanoglasses[J]. International Journal of Plasticity, 2017, 90, 231- 241.
doi: 10.1016/j.ijplas.2017.01.010
69 邱昆, 姜云鹏, 史雪萍, 等. 金属玻璃基复合材料的微结构效应[J]. 复合材料学报, 2017, 34 (5): 1316- 1324.
69 QIU K , JIANG Y P , SHI X P , et al. Microstructure effect of metallic glass matrix composites[J]. Acta Materiae Compositae Sinica, 2017, 34 (5): 1316- 1324.
70 JIANG Y P , SUN L G , WU Q , et al. Enhanced tensile ductility of metallic glass matrix composites with novel microstructure[J]. Journal of Non-Crystalline Solids, 2017, 459, 26- 31.
doi: 10.1016/j.jnoncrysol.2016.12.033
71 WU F F , CHAN K C , LI S T , et al. Tensile deformation of a Ti-based metallic glass composite lamella confined by commercially pure titanium[J]. Philosophical Magazine Letters, 2014, 94 (4): 233- 241.
doi: 10.1080/09500839.2014.886784
72 QIAO J W , SUN A C , HUANG E W , et al. Tensile deformation micromechanisms for bulk metallic glass matrix composites: from work-hardening to softening[J]. Acta Materialia, 2011, 29, 4126- 4137.
73 ZHANG Z Y , WU Y , ZHOU J , et al. Strong work-hardening behavior in a Ti-based bulk metallic glass composite[J]. Scripta Materialia, 2013, 69 (1): 73- 76.
doi: 10.1016/j.scriptamat.2013.03.004
74 WU F F , WEI J S , CHAN K C , et al. Revealing homogeneous plastic deformation in dendrite-reinforced Ti-based metallic glass composites under tension[J]. Scientific Reports, 2017, 7, 42598.
doi: 10.1038/srep42598
75 HOFMANN D C , SUH J , WIEST A , et al. New processing possibilities for highly toughened metallic glass matrix composites with tensile ductility[J]. Scripta Materialia, 2008, 59 (7): 684- 687.
doi: 10.1016/j.scriptamat.2008.05.046
76 RIM K R , PARK J M , KIM W T , et al. Tensile necking and enhanced plasticity of cold rolled β-Ti dendrite reinforced Ti-based bulk metallic glass matrix composite[J]. Journal of Alloys and Compounds, 2013, 579, 253- 258.
[1] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[2] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[3] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[4] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
[5] 陈帅, 陶凤和, 贾长治, 孙河洋. 成形角度对选区激光熔化4Cr5MoSiV1钢组织和性能的影响[J]. 材料工程, 2022, 50(3): 122-130.
[6] 唐鹏钧, 房立家, 王兴元, 李沛勇, 张学军. 人工时效对激光选区熔化AlMg4.5Sc0.55Mn0.5Zr0.2合金显微组织和力学性能的影响[J]. 材料工程, 2022, 50(2): 84-93.
[7] 邵震, 崔雷, 王东坡, 陈永亮, 胡正根, 王非凡. 几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响[J]. 材料工程, 2022, 50(1): 25-32.
[8] 吴程浩, 刘涛, 高嵩, 石磊, 刘洪涛. 铝/钢异种金属的超声振动强化搅拌摩擦焊接工艺[J]. 材料工程, 2022, 50(1): 33-42.
[9] 徐学宏, 郑义珠, 陈吉平, 宁博, 刘晓忱. 缝合参数对泡沫夹层结构复合材料力学性能的影响[J]. 材料工程, 2022, 50(1): 132-137.
[10] 肖伟, 杨占旭, 乔庆东. 石墨电极表面聚丙烯腈纳米纤维膜的制备及性能[J]. 材料工程, 2021, 49(9): 60-68.
[11] 王庆娟, 吴金城, 王伟, 杜忠泽, 尹仁锟. 超高强β钛合金等温相转变特性及力学性能[J]. 材料工程, 2021, 49(9): 94-100.
[12] 孙昊飞, 肖志, 韦凯, 杨旭静, 齐军. 预弯曲变形对CP800复相钢力学性能的影响[J]. 材料工程, 2021, 49(8): 81-88.
[13] 姜卓钰, 束小文, 吕晓旭, 高晔, 周怡然, 董禹飞, 焦健. SiC晶须增强SiCf/SiC复合材料的力学性能[J]. 材料工程, 2021, 49(8): 89-96.
[14] 张海连, 段淼, 李四中, 林志勇. 催化炭化-原位反应/反应熔体浸渗法制备C/C-SiC复合材料[J]. 材料工程, 2021, 49(7): 85-91.
[15] 唐延川, 万能, 唐兴昌, 刘德佳, 焦海涛, 胡勇, 赵龙志. 合金化组元(Al,Cr,Si,Ti)含量对激光沉积(FeNiCo)-(AlCrSiTi)非等原子比多组元合金涂层组织与力学性能的影响[J]. 材料工程, 2021, 49(7): 92-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn