Metallic glasses (MGs) have a series of excellent mechanical, physical, chemical and other properties due to their unique short-range ordered and long-range disordered atomic structure characteristics, making them have great potential application value in the field of advanced metal structural materials. However, when the bulk metallic glass (BMG) is deformed under room temperature, the large amount of free volume formed by the shear transformation of the atomic clusters will evolve into a highly localized shear bands. The localized shear bands will undergo instability expansion due to the lack of media, which leads to the fact that BMGs are very prone to brittle fracture at room temperature. In particular, there is no plasticity during uniaxial tension. In order to overcome this shortcoming, the researchers proposed to introduce the micron-sized crystal phase into the glass matrix to suppress the instability expansion of the shear band, so that the in-situ dendritic toughened bulk metallic glass composite (BMGC) has obvious tensile plasticity, and the BMGC has attracted much attention from the material science community. In recent years, researchers have successively improved the plastic deformation ability of BMGC through composition design, preparation technology, heat treatment process and other methods, making BMGC be expected to move towards practical engineering applications. This article focuses on the key scientific issue of microstructure control of in-situ second-phase toughened BMGC, from the factors that affect the microstructure of BMGC (alloy composition design, preparation process parameters, microstructure construction, etc.) to the mechanism of the influence of microstructure on its room temperature mechanical properties, the research results were systematically summarized. In particular, the article focuses on the research progress in the field of in-situ second-phase toughened BMGC in the past 10 years in the field of microstructure regulation and the correlation between mechanical properties at room temperature. In addition, the current problems and challenges in the field of in-situ second-phase toughened BMGC were addressed. The prospects are expected to provide a theoretical reference for the design and preparation of high-strength and high-toughness in-situ second-phase toughened BMGC.
ZHANG S Y , GAO Y Y , ZHANG Z B , et al. Research progress in corrosion resistance of high-entropy metallic glasses[J]. Journal of Materials Engineering, 2021, 49 (1): 44- 54.
LIU T H , GUO S F . Research progress of glass-formation rule and mechanical properties of Fe-based bulk amorphous alloys[J]. Journal of Materials Engineering, 2020, 48 (11): 46- 57.
doi: 10.11868/j.issn.1001-4381.2020.000389
ZHAO Y C , MAO R P , YUAN X P , et al. Corrosion behaviour of Ti-based bulk metallic glass matrix composites[J]. Journal of Materials Engineering, 2018, 46 (1): 25- 30.
YIN G , LI F W , DENG L , et al. Research status and prospect of impact toughness of bulk metallic glasses[J]. The Chinese Journal of Nonferrous Metals, 2020, 30 (3): 530- 541.
6
LEWANDOSKI J , WANG W H , GREER A L , et al. Intrinsic plasticity or brittleness of metallic glasses[J]. Philosophical Magazine Letters, 2005, 85 (2): 77- 87.
doi: 10.1080/09500830500080474
7
GU B , LIU F . Characterization of structural inhomogeneity in Al88Ce8Co4 metallic glass[J]. Acta Materialia, 2016, 112, 94- 104.
doi: 10.1016/j.actamat.2016.04.009
8
QIAO J W , JIA H L , LIAW P K , et al. Metallic glass matrix composites[J]. Materials Science and Engineering: R, 2016, 100, 1- 69.
LIU P , LI S K , ZHANG Y B , et al. Microstructure and corrosion properties of aluminum matrix composite reinforced with Al-based amorphous[J]. Journal of Materials Engineering, 2015, 43 (3): 67- 71.
MA Y F , GONG P , LI F W , et al. Research progress on the tungsten reinforced bulk metallic glass matrix composites[J]. Rare Metal Materials and Engineering, 2020, 49 (4): 1445- 1456.
11
HAYS C C , KIM C P , JOHNSON W L , et al. Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions[J]. Physical Review Letters, 2000, 84, 2901- 2904.
doi: 10.1103/PhysRevLett.84.2901
12
HOFMANN D C , SUH J Y , WIEST A , et al. Designing metallic glass matrix composites with high toughness and tensile ductility[J]. Nature, 2008, 451, 1085- 1089.
doi: 10.1038/nature06598
13
HOFMANN D C , SUH J Y , WIEST A , et al. Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility[J]. Proceedings of the National Academy of Sciences, 2008, 105, 20136- 20140.
doi: 10.1073/pnas.0809000106
LIU X F , CHEN Y , DAI L H . Deformation field evolution and shear banding of an in-situ crystal reinforced amorphous alloy composite (in Chinese)[J]. Sci Sin-Phys Mech Astron, 2020, 50, 067006.
15
QIAO J W , WANG S , ZHANG Y , et al. Large plasticity and tensile necking of Zr-based bulk-metallic-glass-matrix composites synthesized by the Bridgman solidification[J]. Applied Physics Letters, 2009, 94 (15): 151905.
doi: 10.1063/1.3118587
ZHAO Y C , MAO R P , XU C Y , et al. Strengthening and toughening mechanism of Ti-based metallic glass composites[J]. Rare Metal Materials and Engineering, 2019, 48 (6): 1841- 1846.
WANG H J , LIU Y , PANG S J , et al. Microstructure and mechanical properties of Ti-Cu-Fe-Si-Nb dendrite-ultrafine grained composites with high strength[J]. Rare Metals, 2019, 43 (1): 25- 31.
GUO Z X , WANG Y S , SUI M L , et al. Microstructure and deformation mechanism of titanium-based metallic glass matrix composites[J]. Rare Metal Materials and Engineering, 2017, 46 (9): 2558- 2564.
19
WANG Y S , HAO G J , ZHANG Y , et al. Fabrication and mechanical characterization of Ti-based metallic glass matrix composites by the Bridgman solidification[J]. Metallurgical and Materials Transactions A, 2014, 45, 2357- 2362.
20
CHENG J L , CHEN G , XU F , et al. Correlation of the microstructure and mechanical properties of Zr-based in-situ bulk metallic glass matrix composites[J]. Intermetallics, 2010, 18 (12): 2425- 2430.
doi: 10.1016/j.intermet.2010.08.040
21
CHEN G , CHENG J L , LIU C T . Large-sized Zr-based bulk-metallic-glass composite with enhanced tensile properties[J]. Intermetallics, 2012, 18, 25- 33.
QU L D , HAN B H , LYU Y Z , et al. Theoretical prediction of crystallization volume fraction for laser 3D printing of metallic glasses[J]. Journal of Materials Engineering, 2020, 48 (7): 133- 138.
23
LU Y Z , SU S , ZHANG S B , et al. Controllable additive manufacturing of gradient bulk metallic glass composite with high strength and tensile ductility[J]. Acta Materialia, 2021, 206, 116632.
doi: 10.1016/j.actamat.2021.116632
24
GAO X H , LIN X , YAN Q D , et al. Effect of Cu content on microstructure and mechanical properties of in-situ phases reinforced Ti/Zr-based bulk metallic glass matrix composite by selective laser melting (SLM)[J]. Journal of Materials Science & Technology, 2021, 67, 174- 185.
ZHANG Y J , ZHANG J L , ZHANG L , et al. Research progress on 3D printed metallic glasses materials, processing and property[J]. Journal of Materials Engineering, 2018, 46 (7): 12- 18.
26
OH Y S , KIM C P , LEE S , et al. Microstructure and tensile properties of high-strength high-ductility Ti-based amorphous matrix composites containing ductile dendrites[J]. Acta Materialia, 2011, 59 (19): 7277- 7286.
doi: 10.1016/j.actamat.2011.08.006
27
JEON C , KIM C P , JOO S H , et al. High tensile ductility of Ti-based amorphous matrix composites modified from conventional Ti-6Al-4V titanium alloy[J]. Acta Materialia, 2013, 61 (8): 3012- 3026.
doi: 10.1016/j.actamat.2013.01.061
28
ZHANG L , ZHU Z W , FU H M , et al. Improving plasticity and work-hardening capability of β-type bulk metallic glass composites by destabilizing β phases[J]. Materials Science and Engineering: A, 2017, 689, 404- 410.
doi: 10.1016/j.msea.2017.02.070
29
ZHANG L , NARAYAN R L , SUN B A , et al. Cooperative shear in bulk metallic glass composites containing metastable β-Ti dendrites[J]. Physical Review Letters, 2020, 125 (5): 055501.
doi: 10.1103/PhysRevLett.125.055501
30
FAN J , QIAO J W , WANG Z H , et al. Twinning-induced plasticity (TWIP) and work hardening in Ti-based metallic glass matrix composites[J]. Scientific Reports, 2017, 7, 1877.
doi: 10.1038/s41598-017-02100-9
31
ZHAI H M , WANG H F , LIU F . A strategy for designing bulk metallic glass composites with excellent work-hardening and large tensile ductility[J]. Journal of Alloys and Compounds, 2016, 685, 322- 330.
doi: 10.1016/j.jallcom.2016.05.290
32
DAVIDSON M , ROBERTS S , CASTRO G , et al. Investigating amorphous metal composite architectures as spacecraft shielding[J]. Advanced Engineering Materials, 2013, 15, 27- 33.
doi: 10.1002/adem.201200313
LIU J , YANG X J . Semi-solid processing technology of amorphous composites[J]. Journal of Netshape Forming Engineering, 2020, 12 (3): 1- 11.
34
HOFMANN D C , KOZACHKOV H , KHALIFA H E , et al. Semi-solid induction forging of metallic glass matrix composites[J]. JOM, 2009, 61 (12): 11- 17.
doi: 10.1007/s11837-009-0172-x
35
NARAYAN R L , SINGH P S , HOFMANN D C , et al. On the microstructure-tensile property correlations in bulk metallic glass matrix composites with crystalline dendrites[J]. Acta Materialia, 2012, 60 (13/14): 5089- 5100.
36
HOFMANN D C , ROBERTS S N , KOZACHKOV H . Infrared thermal processing history of a Ti-based bulk metallic glass matrix composite manufactured via semi-solid forging[J]. Acta Materialia, 2015, 95, 192- 200.
doi: 10.1016/j.actamat.2015.05.029
ZHAO Y C , YUAN X P , KOU S Z , et al. Effect of semi-solid heat-treatment on microstructure and mechanical properties of Ti-based bulk amorphous composites[J]. Journal of Functional Materials, 2015, 46 (3): 03069- 03072.
38
SZUECS F , KIM C P , JOHNSON W L . Mechanical properties of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass composite[J]. Acta Materialia, 2001, 49 (9): 1507- 1513.
doi: 10.1016/S1359-6454(01)00068-4
39
ZHANG L , LI W Q , ZHU Z W , et al. Distribution of Be in a Ti-based bulk metallic glass composite containing β-Ti[J]. Journal of Materials Science & Technology, 2017, 33 (7): 708- 711.
40
GUO Z X , WANG Y S , ZHU L J , et al. Beryllium-distribution in metallic glass matrix composite containing beryllium[J]. Transactions of Nonferrous Metals Society of China, 2017, 27 (1): 110- 116.
doi: 10.1016/S1003-6326(17)60012-8
41
LIU X F , CHEN Y , JIANG M Q , et al. Tuning plasticity of in-situ dendrite metallic glass composites via the dendrite-volume-fraction-dependent shear banding[J]. Materials Science and Engineering: A, 2017, 680, 121- 129.
doi: 10.1016/j.msea.2016.10.085
42
QIAO J W , ZHANG Y , CHEN G L . Fabrication and mechanical characterization of a series of plastic Zr-based bulk metallic glass matrix composites[J]. Materials & Design, 2009, 30 (10): 3966- 3971.
43
ZHAI H M , XU Y H , ZHANG F , et al. Effect of transition metal elements (Cu, Ni, Co and Fe) on the mechanical properties of Ti-based bulk metallic glass composites[J]. Journal of Alloys and Compounds, 2017, 694, 1- 9.
doi: 10.1016/j.jallcom.2016.09.280
44
MA D Q , LI J , ZHANG Y F , et al. Effect of compositional tailoring on the glass-forming ability and mechanical properties of TiZr-based bulk metallic glass matrix composites[J]. Materials Science & Engineering A, 2014, 612, 310- 315.
45
ZHANG L , NARAYAN R L , FU H M , et al. Tuning the microstructure and metastability of β-Ti for simultaneous enhancement of strength and ductility of Ti-based bulk metallic glass composites[J]. Acta Materialia, 2019, 168, 24- 36.
doi: 10.1016/j.actamat.2019.02.002
46
ZHANG L , ZHANG H F , LI W Q , et al. β-type Ti-based bulk metallic glass composites with tailored structural metastability[J]. Journal of Alloys and Compounds, 2017, 708, 972- 981.
doi: 10.1016/j.jallcom.2017.03.074
47
KOLODZIEJSKA J , KOZACHLOV H , KRANJC K , et al. Towards an understanding of tensile deformation in Ti-based bulk metallic glass matrix composites with BCC dendrites[J]. Scientific Reports, 2016, 6, 22563.
doi: 10.1038/srep22563
48
ZHAI H M , WANG H F , LIU F . Effects of Sn addition on mechanical properties of Ti-based bulk metallic glass composites[J]. Materials & Design, 2016, 110, 782- 789.
49
QIAO J W , ZHANG Y . Effect of Nb content on the microstructures and mechanical properties of Zr-Ti-Cu-Be-Nb glass-forming alloys[J]. Intermetallics, 2011, 19 (2): 149- 153.
doi: 10.1016/j.intermet.2010.08.025
50
MA X Z , MA D Q , XU H , et al. Enhancing the compressive and tensile properties of Ti-based glassy matrix composites with Nb addition[J]. Journal of Non-Crystalline Solids, 2017, 463, 56- 63.
doi: 10.1016/j.jnoncrysol.2017.02.025
51
LI J S , BAI J , WANG J , et al. Deformation behavior of a Ti-based bulk metallic glass composite with excellent cryogenic mechanical properties[J]. Materials & Design, 2014, 53, 737- 740.
52
MA D Q , JIAO W T , ZHANG Y F , et al. Strong work-hardening behavior induced by the solid solution strengthening of dendrites in TiZr-based bulk metallic glass matrix composites[J]. Journal of Alloys and Compounds, 2015, 624, 9- 16.
doi: 10.1016/j.jallcom.2014.11.099
53
CHENG J L , CHEN G , LIU C T , et al. Innovative approach to the design of low-cost Zr-based BMG composites with good glass formation[J]. Scientific Reports, 2013, 3, 2097.
doi: 10.1038/srep02097
54
LI L Y , KOU H C , WANG J , et al. Enhanced mechanical properties of Ti-based metallic glass composites prepared under medium vacuum system[J]. Journal of Non-Crystalline Solids, 2015, 413, 15- 19.
doi: 10.1016/j.jnoncrysol.2015.01.013
55
JEON C , KANG M J , KIM C P , et al. Quasi-static and dynamic compressive deformation behaviors in Zr-based amorphous alloys containing ductile dendrites[J]. Materials Science and Engineering: A, 2013, 579, 77- 85.
doi: 10.1016/j.msea.2013.04.086
56
QIAO J W , ZHANG Y , LIAW P K . Tailoring microstructures and mechanical properties of Zr-based bulk metallic glass matrix composites by the Bridgman solidification[J]. Advanced Engineering Materials, 2008, 10, 1039- 1042.
doi: 10.1002/adem.200800149
57
QIAO J W , ZHANG J T , JIANG F , et al. Development of plastic Ti-based bulk-metallic-glass-matrix composites by controlling the microstructures[J]. Materials Science and Engineering A, 2010, 527 (29/30): 7752- 7756.
58
SUN G Y , CHEN G , CHEN G L . Comparison of microstructures and properties of Zr-based bulk metallic glass composites with dendritic and spherical bcc phase precipitates[J]. Intermetallics, 2007, 15 (5/6): 632- 634.
59
MAO J , ZHANG H F , FU H M , et al. The effects of casting temperature on the glass formation of Zr-based metallic glasses[J]. Advanced Engineering Materials, 2009, 11, 986- 991.
60
SHA P F , ZHU Z W , FU H M , et al. Effects of casting temperature on the microstructure and mechanical properties of the TiZr-based bulk metallic glass matrix composite[J]. Materials Science and Engineering: A, 2014, 589, 182- 188.
doi: 10.1016/j.msea.2013.09.078
61
LEE M L , LI Y , SCHUH C A . Effect of a controlled volume fraction of dendritic phases on tensile and compressive ductility in La-based metallic glass matrix composites[J]. Acta Materialia, 2004, 52 (14): 4121- 4131.
doi: 10.1016/j.actamat.2004.05.025
62
PAULY S , LIU G , WANG G , et al. Modeling deformation behavior of Cu-Zr-Al bulk metallic glass matrix composites[J]. Applied Physics Letters, 2009, 95 (10): 101906.
doi: 10.1063/1.3222973
63
SHETE M K , SINGH I , NARASIMHAN R , et al. Effect of strain hardening and volume fraction of crystalline phase on strength and ductility of bulk metallic glass composites[J]. Scripta Materialia, 2016, 124, 51- 55.
doi: 10.1016/j.scriptamat.2016.06.020
64
JIANG Y P , QIU K . Computational micromechanics analysis of toughening mechanisms of particle-reinforced bulk metallic glass composites[J]. Materials & Design, 2015, 65, 410- 416.
65
SHETE M K , DUTTA T , SINGH I , et al. Tensile stress-strain response of metallic glass matrix composites reinforced with crystalline dendrites: role of dendrite morphology[J]. Intermetallics, 2017, 83, 70- 82.
doi: 10.1016/j.intermet.2016.12.006
66
ZHOU H F , QU S X , YANG W . An atomistic investigation of structural evolution in metallic glass matrix composites[J]. International Journal of Plasticity, 2013, 44, 147- 160.
doi: 10.1016/j.ijplas.2013.01.002
QIU K , JIANG Y P , SHI X P , et al. Tensile toughening mechanism of new particle reinforced metallic glass composites[J]. Acta Materiae Compositae Sinica, 2018, 35 (1): 124- 131.
68
SHA Z D , BRANICIO P S , LEE H P , et al. Strong and ductile nano-laminate composites combining metallic glasses and nanoglasses[J]. International Journal of Plasticity, 2017, 90, 231- 241.
doi: 10.1016/j.ijplas.2017.01.010
QIU K , JIANG Y P , SHI X P , et al. Microstructure effect of metallic glass matrix composites[J]. Acta Materiae Compositae Sinica, 2017, 34 (5): 1316- 1324.
70
JIANG Y P , SUN L G , WU Q , et al. Enhanced tensile ductility of metallic glass matrix composites with novel microstructure[J]. Journal of Non-Crystalline Solids, 2017, 459, 26- 31.
doi: 10.1016/j.jnoncrysol.2016.12.033
71
WU F F , CHAN K C , LI S T , et al. Tensile deformation of a Ti-based metallic glass composite lamella confined by commercially pure titanium[J]. Philosophical Magazine Letters, 2014, 94 (4): 233- 241.
doi: 10.1080/09500839.2014.886784
72
QIAO J W , SUN A C , HUANG E W , et al. Tensile deformation micromechanisms for bulk metallic glass matrix composites: from work-hardening to softening[J]. Acta Materialia, 2011, 29, 4126- 4137.
73
ZHANG Z Y , WU Y , ZHOU J , et al. Strong work-hardening behavior in a Ti-based bulk metallic glass composite[J]. Scripta Materialia, 2013, 69 (1): 73- 76.
doi: 10.1016/j.scriptamat.2013.03.004
74
WU F F , WEI J S , CHAN K C , et al. Revealing homogeneous plastic deformation in dendrite-reinforced Ti-based metallic glass composites under tension[J]. Scientific Reports, 2017, 7, 42598.
doi: 10.1038/srep42598
75
HOFMANN D C , SUH J , WIEST A , et al. New processing possibilities for highly toughened metallic glass matrix composites with tensile ductility[J]. Scripta Materialia, 2008, 59 (7): 684- 687.
doi: 10.1016/j.scriptamat.2008.05.046
76
RIM K R , PARK J M , KIM W T , et al. Tensile necking and enhanced plasticity of cold rolled β-Ti dendrite reinforced Ti-based bulk metallic glass matrix composite[J]. Journal of Alloys and Compounds, 2013, 579, 253- 258.