Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (11): 105-115    DOI: 10.11868/j.issn.1001-4381.2021.000329
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
304不锈钢激光熔覆Co-Ti3SiC2自润滑复合涂层微观组织与摩擦学性能
王港1, 刘秀波1,2,*(), 刘一帆1, 祝杨1, 欧阳春生1, 孟元1, 罗迎社3,4,*()
1 中南林业科技大学 材料表界面科学与技术湖南省重点实验室, 长沙 410004
2 中国科学院兰州化学物理研究所 固体润滑国家重点实验室, 兰州 730000
3 湖南交通工程学院, 湖南 衡阳 421000
4 中南林业科技大学 工程流变学湖南省重点实验室, 长沙 410004
Microstructure and tribological properties of Co-Ti3SiC2 self-lubricating composite coatings on 304 stainless steel by laser cladding
Gang WANG1, Xiu-bo LIU1,2,*(), Yi-fan LIU1, Yang ZHU1, Chun-sheng OUYANG1, Yuan MENG1, Ying-she LUO3,4,*()
1 Hunan Province Key Laboratory of Materials Surface/Interface Science & Technology, Central South University of Forestry & Technology, Changsha 410004, China
2 State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
3 Hunan Institute of Traffic Engineering, Hengyang 421000, Hunan, China
4 Hunan Province Key Laboratory of Engineering Rheology, Central South University of Forestry & Technology, Changsha 410004, China
全文: PDF(23037 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用激光熔覆同步送粉法在304不锈钢上制备出自润滑耐磨涂层,熔覆粉末配比为纯Co,Co-2% Ti3SiC2(质量分数,下同)和Co-8% Ti3SiC2。借助扫描电子显微镜(SEM),能谱分析仪(EDS)和X射线衍射仪(XRD)对熔覆涂层进行表征,系统地研究304不锈钢与涂层在室温和600℃下的摩擦学性能与磨损机理。结果表明:激光熔覆Co-Ti3SiC2涂层的平均显微硬度高于基体(240.3HV0.5),N1,N2和N3涂层的硬度分别为285.7HV0.5,356.3HV0.5和463.8HV0.5,涂层主要由连续基体γ-Co固溶体,硬质相Fe2C,Cr7C3和TiC,润滑相Ti3SiC2组成。在室温下,基体和N1,N2,N3涂层的摩擦因数分别为0.56,0.62,0.68和0.42,N1,N2,N3三种涂层的磨损率分别为9.15×10-5,7.81×10-5,4.66×10-5 mm3/(N·m),均明显低于基体(66.42×10-5 mm3/(N·m));在高温下,基体和N1,N2,N3涂层的摩擦因数为0.66,0.54,0.52和0.46,N1,N2,N3三种涂层磨损率分别为37.79×10-5,35.6×10-5,18.83×10-5 mm3/(N·m),均低于基体(41.3×10-5 mm3/(N·m))。在室温和600℃下,涂层具有高于304不锈钢基体的显微硬度,且Co-8% Ti3SiC2涂层呈现出最好的自润滑耐磨性能。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王港
刘秀波
刘一帆
祝杨
欧阳春生
孟元
罗迎社
关键词 304不锈钢激光熔覆Co-Ti3SiC2复合涂层固体润滑    
Abstract

The self lubricating wear-resistant coatings were prepared on the surface of 304 stainless steel successfully using laser cladding synchronous powder feeding method, the ratio of cladding powder was pure Co, Co-2%Ti3SiC2(mass fraction, the same below) and Co-8%Ti3SiC2. The microstructure of the cladding coating was characterized by scanning electron microscope(SEM), energy spectrum analyzer(EDS) and X-ray diffractometer(XRD). The tribological performance and related mechanisms of 304 substrate and coatings at RT/600℃ were systematically investigated. The results show that the average microhardness of the N1, N2 and N3 coatings are 285.7HV0.5, 356.3HV0.5 and 463.8HV0.5, which are all much higher than that of the matrix(240.3HV0.5). Co-Ti3SiC2 composite coatings are composed of continuous matrix γ-Co solid solution, hard phase (Fe2C, Cr7C3 and TiC) and lubricating phase Ti3SiC2. At room temperature, the friction coefficients of the matrix and the N1, N2 and N3 coatings are 0.56, 0.62, 0.68 and 0.42, the wear rates of the N1, N2, N3 coatings are 9.15×10-5, 7.81×10-5, 4.66×10-5 mm3/(N·m), which are lower than that of the matrix (66.42×10-5 mm3/(N·m)); at high temperature, the friction coefficients of the matrix and the N1, N2 and N3 coatings are 0.66, 0.54, 0.52 and 0.46, the wear rates of the N1, N2, N3 coatings are 37.79×10-5, 35.6×10-5, 18.83×10-5 mm3/(N·m), which are lower than that of the matrix (41.3×10-5 mm3/(N·m)).At room temperature and 600℃, compared with the 304 stainless substrate, the coatings have the obvious higher microhardness, and the Co-8%Ti3SiC2 coating exhibits the best self-lubricating wear resistance.

Key words304 stainless steel    laser cladding    Co-Ti3SiC2 composite coating    solid lubrication
收稿日期: 2021-04-09      出版日期: 2021-11-12
中图分类号:  TG174.44  
基金资助:国家自然科学基金(52075559);中国科学院兰州化学物理研究所固体润滑国家重点实验室开放基金(LSL-1802);辽宁省航发材料摩擦学重点实验室开放基金(LKLAMTF202101)
通讯作者: 刘秀波,罗迎社     E-mail: liuxiubosz@163.com;lys0258@vip.sina.com
作者简介: 罗迎社(1954-), 男, 教授, 博士, 研究方向为流变力学与材料工程, 联系地址: 湖南省衡阳市蒸湘区呆鹰岭解放西路430号湖南交通工程学院(421000), E-mail: lys0258@vip.sina.com
刘秀波(1968-), 男, 教授, 博士, 研究方向为表面工程与摩擦学、激光加工, 联系地址: 湖南省长沙市韶山南路498号中南林业科技大学材料表界面科学与技术湖南省重点实验室(410004), E-mail: liuxiubosz@163.com
引用本文:   
王港, 刘秀波, 刘一帆, 祝杨, 欧阳春生, 孟元, 罗迎社. 304不锈钢激光熔覆Co-Ti3SiC2自润滑复合涂层微观组织与摩擦学性能[J]. 材料工程, 2021, 49(11): 105-115.
Gang WANG, Xiu-bo LIU, Yi-fan LIU, Yang ZHU, Chun-sheng OUYANG, Yuan MENG, Ying-she LUO. Microstructure and tribological properties of Co-Ti3SiC2 self-lubricating composite coatings on 304 stainless steel by laser cladding. Journal of Materials Engineering, 2021, 49(11): 105-115.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000329      或      http://jme.biam.ac.cn/CN/Y2021/V49/I11/105
Mn C P Si Cr S Ni Fe
0.79 0.051 0.029 0.56 17.92 0.009 8.77 Bal
Table 1  304不锈钢的化学成分 (质量分数/%)
Fig.1  激光熔覆粉末的微观形貌
(a)Co; (b)Ti3SiC2; (c)Co-2%Ti3SiC2; (d)Co-8%Ti3SiC2
Load/N Temperature/ ℃ Wear time/s Rotation diameter/mm Linear velocity/(m·s-1)
4.9 25, 600 1800 3 0.176
Table 2  摩擦学性能测试实验参数
Fig.2  N1(a),N2(b)和N3(c)涂层的宏观形貌
Fig.3  Co-Ti3SiC2复合涂层的XRD谱图
Fig.4  N1涂层SEM图  (a)横截面; (b)中部区域
Region Fe Cr Co Ni Si Ti C
A 32.4 9.7 42.4 6.7 0.9 0 0.1
B 28.3 17.4 33.1 5.5 1 0.1 0.4
C 31.6 40.2 1.3 3.8 1.8 0.2 0.2
Table 3  图 4(b)典型组织EDS结果 (原子分数/%)
Fig.5  N1涂层横截面元素分布
(a)横截面; (b)EDS图层; (c)Fe; (d)Cr; (e)Co; (f)Ni; (g)Ti; (h)Si
Fig.6  N3涂层SEM图  (a)横截面; (b)中部区域; (c)典型组织区域
Region Fe Cr Co Ni Si Ti C
A 30.5 14.3 38.9 3.3 0.4 0 12.6
B 31.0 12.7 36.2 3.8 0.1 0.1 16.1
C 24.0 7.8 42.1 4.6 1.8 0.5 18.9
Table 4  图 6(b)典型组织EDS结果 (原子分数/%)
Fig.7  Co-Ti3SiC2复合涂层的显微硬度曲线
(a)N1涂层; (b)N2涂层; (c)N3涂层
Fig.8  304不锈钢和Co-Ti3SiC2复合涂层的摩擦因数曲线
(a)室温; (b)600 ℃
Fig.9  304不锈钢和Co-Ti3SiC2复合涂层在室温和600 ℃下的磨损率
Fig.10  304不锈钢(1)和N3涂层(2)的磨痕轮廓宏观形貌
(a)室温; (b)600 ℃
Fig.11  304不锈钢和Co-Ti3SiC2复合涂层在室温下的磨痕(1)及磨屑(2)形貌
(a)基体; (b)N1涂层; (c)N2涂层; (d)N3涂层
Fe Co Cr C Ni Ti O
22.63 46.74 13.61 0.6 0.38 0.95 4.87
Table 5  图 11(b-1)N1涂层的面扫EDS分析 (原子分数/%)
Fig.12  304不锈钢和Co-Ti3SiC2复合涂层在600 ℃下的磨痕(1)及磨屑(2)形貌
(a)基体; (b)N1涂层; (c)N2涂层; (d)N3涂层
Fe Co Cr C Ni Ti O
10.9 23.7 6.1 13.8 2.0 0.4 43.1
Table 6  图 12(b-1)N1涂层的面扫EDS分析 (原子分数/%)
1 YANG J , WANG Y , LI F , et al. Weldability, microstructure and mechanical properties of laser-welded selective laser melted 304 stainless steel joints[J]. Journal of Materials Science & Techno-logy, 2019, 35 (9): 1817- 1824.
2 CHEN P , LI J L , LI Y L . Effect of geometric micro-groove texture patterns on tribological performance of stainless steel[J]. Journal of Central South University, 2018, 25 (2): 331- 341.
doi: 10.1007/s11771-018-3740-9
3 OUYANG C S , LIU X B , LUO Y S , et al. Preparation and high temperature tribological properties of laser in-situ synthesized self-lubricating composite coating on 304 stainless steel[J]. Journal of Materials Research and Technology, 2020, 9 (4): 7034- 7046.
doi: 10.1016/j.jmrt.2020.05.008
4 王勇刚, 刘和剑, 回丽, 等. 激光熔覆原位自生碳化物增强自润滑耐磨复合涂层的高温摩擦学性能[J]. 材料工程, 2019, 47 (5): 72- 78.
4 WANG Y G , LIU H J , HUI L , et al. High temperature tribological properties of laser cladding in-situ carbide reinforced self-lubricating wear resistant composite coating[J]. Journal of Materials Engineering, 2019, 47 (5): 72- 78.
5 冯爱新, 陈风国, 裴绍虎, 等. 激光熔覆对304不锈钢表面摩擦磨损性能的影响[J]. 材料热处理学报, 2015, 36 (8): 223- 228.
5 FENG A X , CHEN F G , PEI S H , et al. Effects of laser cladding on friction and wear properties of 304 stainless steel[J]. Transa-ctions of Materials and Heat Treatment, 2015, 36 (8): 223- 228.
6 贺星, 孔德军, 宋仁国. 激光熔覆Al-Ni-TiC-CeO2复合涂层的组织与耐腐蚀磨损性能[J]. 材料工程, 2019, 47 (10): 68- 75.
doi: 10.11868/j.issn.1001-4381.2018.000274
6 HE X , KONG D J , SONG R G . Microstructure and corrosion-wear resistance of laser cladding Al-Ni-TiC-CeO2 composite coa-tings[J]. Journal of Materials Engineering, 2019, 47 (10): 68- 75.
doi: 10.11868/j.issn.1001-4381.2018.000274
7 刘秀波, 刘海青, 孟祥军, 等. 激光熔覆NiCr/Cr2C3-WS2自润滑耐磨涂层的高温摩擦学行为[J]. 材料工程, 2013, (11): 26- 31, 37.
doi: 10.3969/j.issn.1001-4381.2013.11.005
7 LIU X B , LIU H Q , MENG X J , et al. High temperature tribolo-gical behaviors of laser cladding NiCr/Cr2C3-WS2 self-lubrication wear-resistant coating[J]. Journal of Materials Engineering, 2013, (11): 26- 31, 37.
doi: 10.3969/j.issn.1001-4381.2013.11.005
8 欧阳春生, 刘秀波, 罗迎社, 等. 304不锈钢激光制备Ti3SiC2-Ni基自润滑复合涂层高温摩擦学性能[J]. 表面技术, 2020, 49 (8): 161- 171.
8 OUYANG C S , LIU X B , LUO Y S , et al. High-temperature tribological properties of Ti3SiC2-Ni based self-lubricating composite coatings prepared on 304 stainless steel by laser cladding[J]. Surface Technology, 2020, 49 (8): 161- 171.
9 YAN H , LIU K , ZHANG P , et al. Fabrication and tribological behaviors of Ti3SiC2/Ti5Si3/TiC/Ni-based composite coatings by laser cladding for self-lubricating applications[J]. Optics and Laser Technology, 2020, 126 (3): 106077.
10 LI X , ZHANG C H , ZHANG S , et al. Manufacturing of Ti3SiC2 lubricated Co-based alloy coatings using laser cladding technology[J]. Optics and Laser Technology, 2019, 114, 209- 215.
doi: 10.1016/j.optlastec.2019.02.001
11 王勉, 刘秀波, 欧阳春生, 等. 304不锈钢激光原位合成自润滑涂层的宽温域摩擦学性能[J]. 材料工程, 2021, 49 (1): 133- 143.
11 WANG M , LIU X B , OUYANG C S , et al. Wide temperature range tribological performance of laser in-situ synthesized self-lubricating coating on 304 stainless steel[J]. Journal of Materials Engineering, 2021, 49 (1): 133- 143.
12 王忠华, 刘宜强, 余音宏, 等. 热处理条件对WC-Co涂层性能的影响[J]. 稀有金属与硬质合金, 2020, 48 (5): 23- 28.
12 WANG Z H , LIU Y Q , YU Y H , et al. Effect of heat treatment conditions on properties of WC-Co coating[J]. Rare Metals and Cemented Carbides, 2020, 48 (5): 23- 28.
13 GHOSH N C , HARIMKAR S P . Microstructure and wear behavior of spark plasma sintered Ti3SiC2 and Ti3SiC2-TiC composites[J]. Ceramics International, 2013, 39 (4): 4597- 4607.
doi: 10.1016/j.ceramint.2012.11.058
14 李慧, 任书芳, 商剑, 等. Ti3SiC2/Inconel 718摩擦副的高温摩擦学性能[J]. 摩擦学学报, 2013, 33 (2): 129- 134.
14 LI H , REN S F , SHANG J , et al. Tribological properties of Ti3SiC2/Inconel 718 couple at elevated temperature[J]. Tribology, 2013, 33 (2): 129- 134.
15 李眉葭, 孙荣禄, 牛伟. Ti3SiC2含量对激光熔覆自润滑涂层组织及性能的影响[J]. 金属热处理, 2018, 43 (10): 179- 184.
15 LI M J , SUN R L , NIU W , et al. Effect of Ti3SiC2 content on microstructure and properties of laser clad self-lubricant coating[J]. Heat Treatment of Metals, 2018, 43 (10): 179- 184.
16 刘秀波, 王勉, 乔世杰, 等. TA2合金激光熔覆钛基自润滑耐磨复合涂层的高温摩擦学性能[J]. 摩擦学学报, 2018, 38 (3): 283- 290.
16 LIU X B , WANG M , QIAO S J , et al. High temperature tribological properties of laser cladding titanium matrix self-lubricating wear resistant composite coating on TA2 alloy[J]. Tribology, 2018, 38 (3): 283- 290.
17 YIN J , WANG D Z , MENG L , et al. High-temperature slide wear of Ni-Cr-Si metal silicide based composite coatings on co-pper substrate by laser-induction hybrid cladding[J]. Surface and Coatings Technology, 2017, 325, 120- 126.
18 张祥林, 章小峰, 王爱华, 等. 激光熔覆金属基固体自润滑涂层的组织结构[J]. 中国机械工程, 2006, 17 (19): 2084- 2088.
18 ZHANG X L , ZHANG X F , WANG A H , et al. Microstructure of metal-based solid self-lubrication coating by laser cladding[J]. China Mechanical Engineering, 2006, 17 (19): 2084- 2088.
19 ZHAO J , GAO Q , WANG H , et al. Microstructure and mechanical properties of Co-based alloy coatings fabricated by laser cla-dding and plasma arc spray welding[J]. Journal of Alloys and Compounds, 2019, 785, 846- 854.
20 ZHANG J , WANG L , JIANG W , et al. Effect of TiC content on the microstructure and properties of Ti3SiC2-TiC composites in situ fabricated by spark plasma sintering[J]. Materials Science and Engineering: A, 2008, 487 (1/2): 137- 143.
21 周仲炎, 庄宿国, 杨霞辉, 等. Ti6Al4V合金激光原位合成自润滑复合涂层高温摩擦学性能[J]. 材料工程, 2019, 47 (3): 101- 108.
21 ZHOU Z Y , ZHUANG S G , YANG X H , et al. High temperature tribological properties of laser in-situ synthesized self-lubricating composite coating on Ti6Al4V[J]. Journal of Materials Engineering, 2019, 47 (3): 101- 108.
22 刘秀波, 乔世杰, 翟永杰, 等. TA2合金激光熔覆自润滑复合涂层组织与摩擦学性能[J]. 摩擦学学报, 2017, 37 (1): 75- 82.
22 LIU X B , QIAO S J , ZHAI Y J , et al. Microstructure and tribological properties of laser cladding self-lubricating anti-wear composite coatings on TA2 alloy[J]. Tribology, 2017, 37 (1): 75- 82.
23 CUI G , HAN B , ZHAO J , et al. Microstructure and tribological performance of sulfurizing layer prepared on the laser cladding Co-based alloy coating[J]. Surface and Coatings Technology, 2017, 331, 27- 34.
24 SHI X L , WANG M , ZHAI W Z , et al. Friction and wear beha-vior of NiAl-10wt% Ti3SiC2 composites[J]. Wear, 2013, 303 (1/2): 9- 20.
25 朱红梅, 胡际鹏, 李柏春, 等. 铁基材料表面激光熔覆不锈钢涂层的研究进展[J]. 表面技术, 2020, 49 (3): 74- 84.
25 ZHU H M , HU J P , LI B C , et al. Research progress of laser cladding stainless steel coating on Fe-based substrate[J]. Surface Technology, 2020, 49 (3): 74- 84.
26 ZHOU J , KONG D . Friction-wear performances and oxidation behaviors of Ti3AlC2 reinforced Co-based alloy coatings by laser cladding[J]. Surface and Coatings Technology, 2021, 408 (25): 126816.
27 DING L , HU S S , QUAN X M , et al. Effect of VN alloy addition on the microstructure and wear resistance of Co-based alloy coa-tings[J]. Journal of Alloys Compounds, 2016, 659, 8- 14.
28 汪阳, 刘秀波, 欧阳春生, 等. 三元层状固体润滑Ti3SiC2复合材料的制备与摩擦学研究进展[J]. 表面技术, 2020, 49 (1): 142- 153.
28 WANG Y , LIU X B , OUYANG C S , et al. Preparation and tribological research progress of ternary layered solid lubricating material Ti3SiC2 and its composites[J]. Surface Technology, 2020, 49 (1): 142- 153.
29 陈金学, 尹洪峰, 帅航, 等. 添加Al2O3对Ti3SiC2复合材料性能的影响[J]. 中国有色金属学报, 2015, 25 (4): 997- 1004.
29 CHEN J X , YIN H F , SHUAI H , et al. Effect of Al2O3 addition on properties of Ti3SiC2 composites[J]. The Chinese Journal of Nonferrous Metals, 2015, 25 (4): 997- 1004.
[1] 刘庆帅, 刘秀波, 刘一帆, 张林, 孟元, 刘怀菲. 陶瓷基高温自润滑复合涂层的制备及摩擦学性能研究进展[J]. 材料工程, 2022, 50(6): 61-74.
[2] 安强, 祁文军, 左小刚. TA15钛合金表面原位合成TiC增强钛基激光熔覆层的组织与耐磨性[J]. 材料工程, 2022, 50(4): 139-146.
[3] 姜明明, 孙树峰, 王津, 王萍萍, 孙晓雨, 邵晶, 刘纪新, 曹爱霞, 孙维丽, 陈希章. 激光熔覆制备高熵合金涂层耐磨性研究进展[J]. 材料工程, 2022, 50(3): 18-32.
[4] 覃鑫, 祁文军, 左小刚. TC4钛合金表面激光熔覆NiCrCoAlY-Cr3C2复合涂层的摩擦和高温抗氧化性能[J]. 材料工程, 2021, 49(12): 107-114.
[5] 张天刚, 姚波, 张志强, 刘亚楠, 薛鹏. Ni-石墨含量对TC4钛合金表面自润滑耐磨熔覆层组织与摩擦学性能的影响[J]. 材料工程, 2021, 49(10): 104-115.
[6] 王勉, 刘秀波, 欧阳春生, 罗迎社, 陈德强. 304不锈钢激光原位合成自润滑涂层的宽温域摩擦学性能[J]. 材料工程, 2021, 49(1): 133-143.
[7] 王勇刚, 刘和剑, 回丽, 职山杰, 刘海青. 激光熔覆原位自生碳化物增强自润滑耐磨复合涂层的高温摩擦学性能[J]. 材料工程, 2019, 47(5): 72-78.
[8] 陈林, 陈文静, 黄强, 熊中. 超声振动对EA4T钢激光熔覆质量和性能的影响[J]. 材料工程, 2019, 47(5): 79-85.
[9] 张航, 路媛媛, 王涛, 鲁亚冉, 刘德健. 激光熔覆WC/H13-Inconel625复合材料的冲击韧性与磨损性能[J]. 材料工程, 2019, 47(4): 127-134.
[10] 周仲炎, 庄宿国, 杨霞辉, 王勉, 罗迎社, 刘煜, 刘秀波. Ti6Al4V合金激光原位合成自润滑复合涂层高温摩擦学性能[J]. 材料工程, 2019, 47(3): 101-108.
[11] 鲍亚运, 纪秀林, 姬翠翠, 赵建华, 程江波, 徐霖. 激光熔覆FeCrNiCoCuAlx高熵合金涂层的耐腐蚀与抗冲蚀性能[J]. 材料工程, 2019, 47(11): 141-147.
[12] 赵海朝, 梁秀兵, 乔玉林, 柳建, 张志彬, 仝永刚. 激光熔覆高熵合金涂层的研究进展[J]. 材料工程, 2019, 47(10): 33-43.
[13] 贺星, 孔德军, 宋仁国. 激光熔覆Al-Ni-TiC-CeO2复合涂层的组织与耐腐蚀磨损性能[J]. 材料工程, 2019, 47(10): 68-75.
[14] 刘秀波, 周仲炎, 翟永杰, 乔世杰, 徐江宁, 罗迎社, 涂溶. 热处理对激光熔覆钛基复合涂层组织和微动磨损性能的影响[J]. 材料工程, 2018, 46(5): 79-85.
[15] 龚玉兵, 王善林, 李宏祥, 柯黎明, 陈玉华, 马彬. 脉冲宽度对激光熔覆FeSiB涂层组织与硬度的影响[J]. 材料工程, 2018, 46(3): 74-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn