Preparation of core-shell Al2O3@CIPs and its anti-oxidation properties and microwave absorbing performance
Mingfei YU1, Lunbiao YAO1, Yuchang QING2(), Liya MA2
1 AECC Guiyang Engine Research Institute, Guiyang 550081, China 2 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
Core-shell Al2O3@carbonyl iron powders (CIPs) were prepared by ball-milling-in-situ oxidation method. The phase composition, mass change and micromorphology of Al2O3@CIPs were analyzed by X-ray diffraction, thermogravimetric analyzer and scanning electron microscopy. The effects of various oxidation temperature on electromagnetic properties and absorbing performance of Al2O3@CIPs were studied. The results show that, as the oxidation temperature increases, the shell of Al2O3@CIPs is damaged to some extent and accompanied by the formation of iron oxides, its permittivity rises first and then declines, while permeability shows a downward trend. Compared with CIPs, Al2O3@CIPs obtained by in-situ oxidation at 400℃ achieve excellent electromagnetic wave absorption performance.The real part of the permittivity is about 15, and the imaginary part is 2.8-4.3. The effective absorption band (< -10 dB) of 3.4 GHz can be obtained under the thickness of 1.8 mm in the X-band, while the Al2O3@CIPs obtained by in-situ oxidation at 450℃ achieve the maximum reflection loss of -30 dB at 11.1 GHz.
LV H L , YANG Z H , LIU B , et al. A flexible electromagnetic wave-electricity harvester[J]. Nature Communications, 2021, 12 (1): 834- 841.
doi: 10.1038/s41467-021-21103-9
2
LI Y , QING Y C , ZHOU Y F , et al. Unique nanoporous structure derived from Co3O4-C and Co/CoO-C composites towards the ultra-strong electromagnetic absorption[J]. Composites: Part B, 2021, 213, 108731- 108742.
doi: 10.1016/j.compositesb.2021.108731
GE C Q , WANG L Y , LIU G . Research progress in carbon-based/carbonyl iron composite microwave absorption materials[J]. Journal of Materials Engineering, 2019, 47 (12): 43- 54.
doi: 10.11868/j.issn.1001-4381.2018.000220
ZHOU Y Y , XIE H , ZHOU W C , et al. The absorbing principle and application of carbonyl iron powder absorbing coating[J]. Materials Review, 2018, 32 (5): 749- 754.
5
WU H J , WANG L D , WANG Y M , et al. Enhanced microwave absorbing properties of carbonyl iron-doped Ag/ordered mesoporous carbon nanocomposites[J]. Materials Science & Engineering: B, 2012, 177 (6): 476- 482.
6
CAO X G , REN H , ZHANG H Y . Preparation and microwave shielding property of silver-coated carbonyl iron powder[J]. Journal of Alloys and Compounds, 2015, 631, 133- 137.
doi: 10.1016/j.jallcom.2015.01.103
LIU X M , REN Z Y , CHEN L P , et al. Infrared stealth metamaterial[J]. Journal of Materials Engineering, 2020, 48 (6): 1- 11.
doi: 10.3969/j.issn.1673-1433.2020.06.001
8
ZHOU Y Y , ZHOU W C , LI R , et al. Enhanced antioxidation and electromagnetic properties of Co-coated flaky carbonyl iron particles prepared by electroless plating[J]. Journal of Alloys & Compounds, 2015, 637, 10- 15.
9
ZHOU Y Y , ZHOU W C , LI R , et al. Electroless plating preparation and electromagnetic properties of Co-coated carbonyl iron particles/polyimide composite[J]. Journal of Magnetism and Magnetic Materials, 2016, 401, 251- 258.
doi: 10.1016/j.jmmm.2015.10.056
10
WANG H Y , ZHU D M , ZHOU W C , et al. Enhanced microwave absorbing properties and heat resistance of carbonyl iron by electroless plating Co[J]. Journal of Magnetism and Magnetic Materials, 2015, 393, 445- 451.
doi: 10.1016/j.jmmm.2015.05.090
JIANG W Q , ZHANG F D , CHEN Z Y , et al. Surface modification of carbonyl iron powder with nano-cobalt and its effect on the properties of magnetorheological fluids[J]. Functional Materials, 2006, 37 (7): 1163- 1165.
doi: 10.3321/j.issn:1001-9731.2006.07.045
12
LI R , ZHOU W C , QING Y C . Preparation of Ni-B coating on carbonyl iron and its microwave absorption properties in the X band[J]. Chinese Physics Letters, 2014, 31 (9): 97701.
doi: 10.1088/0256-307X/31/9/097701
13
YI D Q , YU P C , HU B , et al. Preparation of nickel-coated titanium carbide particulates and their use in the production of reinforced iron matrix composites[J]. Materials & Design, 2013, 52, 572- 579.
14
JIA S , LUO F , QING Y C , et al. Electroless plating preparation and microwave electromagnetic properties of Ni-coated carbonyl iron particle/epoxy coatings[J]. Physica B: Condensed Matter, 2010, 405 (17): 3611- 3615.
doi: 10.1016/j.physb.2010.05.050
15
LIU Y D , LEE J , CHOI S B , et al. Silica-coated carbonyl iron microsphere based magnetorheological fluid and its damping force characteristics[J]. Smart Materials and Structures, 2013, 22 (6): 65022- 65028.
doi: 10.1088/0964-1726/22/6/065022
16
LI J , FENG W J , WANG J S , et al. Impact of silica-coating on the microwave absorption properties of carbonyl iron powder[J]. Journal of Magnetism and Magnetic Materials, 2015, 393, 82- 87.
doi: 10.1016/j.jmmm.2015.05.049
LI T T , XIA L , HUANG X X , et al. Progress in dielectric loss microwave absorbing materials[J]. Journal of Materials Engineering, 2021, 49 (6): 1- 13.
doi: 10.3969/j.issn.1673-1433.2021.06.001
18
YAN L G , WANG J B , HAN X H , et al. Enhanced microwave absorption of Fe nanoflakes after coating with SiO2 nano-shell[J]. Nanotechnology, 2010, 21 (9): 95708- 95712.
doi: 10.1088/0957-4484/21/9/095708
19
WANG H Y , ZHU D M , ZHOU W C , et al. Electromagnetic property of SiO2-coated carbonyl iron/polyimide composites as heat resistant microwave absorbing materials[J]. Journal of Magnetism and Magnetic Materials, 2015, 375, 111- 116.
doi: 10.1016/j.jmmm.2014.09.061
20
GUO X H , DENG Y H , GU D , et al. Synthesis and microwave absorption of uniform hematite nanoparticles and their core-shell mesoporous silica nanocomposites[J]. Journal of Materials Chemistry, 2009, 19, 6706- 6712.
doi: 10.1039/b910606e
WU N Y , CHENG Y K , LIU C P , et al. Preparation and electromagnetic properties of SiO2 coated flake carbonyl iron powder[J]. Magnetic Materials and Devices, 2016, 47 (1): 22- 26.
doi: 10.3969/j.issn.1001-3830.2016.01.006
TONG G X , WANG W , GUAN J G , et al. The influence of the thickness of SiO2 nanoshells on the properties of carbonyl iron/SiO2 core-shell composite particles[J]. Journal of Inorganic Materials, 2006, 21 (6): 1461- 1466.
doi: 10.3321/j.issn:1000-324X.2006.06.029
GUO F , DU H L , QU S B , et al. Antioxidant and microwave absorbing properties of sea urchin-like zinc oxide/carbonyl iron powder core-shell structure composite particles[J]. Chinese Journal of Inorganic Chemistry, 2015, (4): 755- 760.
24
SEDLACIK M , PAVLINEK V , SAHA P . Rheological properties of magnetorheological suspensions based on core-shell structured polyaniline-coated carbonyl iron particles[J]. Smart Materials & Structures, 2010, 19 (11): 115008- 115013.
25
ABSHINOVA M A , KAZANTSEVA N E , SAHA P . The enhancement of the oxidation resistance of carbonyl iron by poly-aniline coating and consequent changes in electromagnetic pro-perties[J]. Polymer Degradation & Stability, 2008, 93 (10): 1826- 1831.
26
CHANDRAKANTHI N , CAREEM M A . Thermal stability of polyaniline[J]. Synthetic Metals, 1989, 30 (3): 321- 325.
doi: 10.1016/0379-6779(89)90654-1
27
MRLIK M , ILCIKOVA M , PACLINEK V . Improved thermo-oxidation and sedimentation stability of covalently-coated carbonyl iron particles with cholesteryl groups and their influence on magnetorheology[J]. Journal of Colloid & Interface Science, 2013, 396, 146- 151.
28
ZHANG C , YIN S , LONG C , et al. Hybrid metamaterial absor-ber for ultra-low and dual-broadband absorption[J]. Optics Express, 2021, 29 (9): 14078- 14086.
doi: 10.1364/OE.423245