Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (10): 111-117    DOI: 10.11868/j.issn.1001-4381.2021.000330
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
核-壳结构Al2O3@CIPs的制备及其抗氧化性能和吸波性能
于明飞1, 姚伦标1, 卿玉长2(), 马莉娅2
1 中国航发贵阳发动机设计研究所, 贵阳 550081
2 西北工业大学 凝固技术国家重点实验室, 西安 710072
Preparation of core-shell Al2O3@CIPs and its anti-oxidation properties and microwave absorbing performance
Mingfei YU1, Lunbiao YAO1, Yuchang QING2(), Liya MA2
1 AECC Guiyang Engine Research Institute, Guiyang 550081, China
2 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
全文: PDF(7049 KB)   HTML ( 1 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用球磨-原位氧化法制备出具有核-壳结构的Al2O3@CIPs复合材料。通过X射线衍射仪、热重分析仪、扫描电镜对Al2O3@CIPs的物相组成、质量变化和微观形貌进行分析,研究不同氧化温度对Al2O3@CIPs复合材料电磁性能和吸波性能的影响。结果表明:随着氧化温度的升高,Al2O3@CIPs的壳层出现不同程度的损坏,并伴有Fe氧化物的生成。其中,介电常数先增大后减小,而磁导率则降低。对比CIPs,经过400℃原位氧化获得的Al2O3@CIPs具有良好的吸波性能,对应的介电常数实部约为15,虚部为2.8~4.3。在X波段1.8 mm厚度下可获得3.4 GHz的有效吸收带宽(< -10 dB),而在450℃原位氧化得到的Al2O3@CIPs在11.1 GHz处获得最大的反射损耗,为-30 dB。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于明飞
姚伦标
卿玉长
马莉娅
关键词 核-壳结构Al2O3@CIPs抗氧化性介电常数磁导率微波吸收    
Abstract

Core-shell Al2O3@carbonyl iron powders (CIPs) were prepared by ball-milling-in-situ oxidation method. The phase composition, mass change and micromorphology of Al2O3@CIPs were analyzed by X-ray diffraction, thermogravimetric analyzer and scanning electron microscopy. The effects of various oxidation temperature on electromagnetic properties and absorbing performance of Al2O3@CIPs were studied. The results show that, as the oxidation temperature increases, the shell of Al2O3@CIPs is damaged to some extent and accompanied by the formation of iron oxides, its permittivity rises first and then declines, while permeability shows a downward trend. Compared with CIPs, Al2O3@CIPs obtained by in-situ oxidation at 400℃ achieve excellent electromagnetic wave absorption performance.The real part of the permittivity is about 15, and the imaginary part is 2.8-4.3. The effective absorption band (< -10 dB) of 3.4 GHz can be obtained under the thickness of 1.8 mm in the X-band, while the Al2O3@CIPs obtained by in-situ oxidation at 450℃ achieve the maximum reflection loss of -30 dB at 11.1 GHz.

Key wordscore-shell Al2O3@CIPs    anti-oxidation property    permittivity    permeability    microwave ab-sorption
收稿日期: 2021-04-10      出版日期: 2022-10-24
中图分类号:  V25  
基金资助:西北工业大学凝固技术国家重点实验室基金(2020-TS-01)
作者简介: 卿玉长(1985—), 男, 副教授, 博士, 研究方向为功能陶瓷和薄膜, 联系地址: 陕西省西安市碑林区友谊西路127号西北工业大学材料科技大楼513(710072), E-mail: qingyuchang@nwpu.edu.cn
引用本文:   
于明飞, 姚伦标, 卿玉长, 马莉娅. 核-壳结构Al2O3@CIPs的制备及其抗氧化性能和吸波性能[J]. 材料工程, 2022, 50(10): 111-117.
Mingfei YU, Lunbiao YAO, Yuchang QING, Liya MA. Preparation of core-shell Al2O3@CIPs and its anti-oxidation properties and microwave absorbing performance. Journal of Materials Engineering, 2022, 50(10): 111-117.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000330      或      http://jme.biam.ac.cn/CN/Y2022/V50/I10/111
Fig.1  CIPs(a)、Al粉(b)和Al@CIPs(c)的SEM图
Fig.2  Al@CIPs在300(a),350(b),400 ℃(c)和450 ℃(d)下氧化2 h的SEM图
Fig.3  Al@CIPs在不同温度下氧化2 h与未氧化Al@CIPs的XRD谱图
Fig.4  CIPs与不同氧化温度的Al2O3@CIPs的热重曲线
Fig.5  CIPs与不同温度下氧化生成的Al2O3@CIPs样品的电磁参数
(a)介电常数;(b)磁导率;(1)实部;(2)虚部
Fig.6  CIPs与不同温度下原位氧化生成的Al2O3@CIPs在1.8 mm厚度下的反射损耗曲线
1 LV H L , YANG Z H , LIU B , et al. A flexible electromagnetic wave-electricity harvester[J]. Nature Communications, 2021, 12 (1): 834- 841.
doi: 10.1038/s41467-021-21103-9
2 LI Y , QING Y C , ZHOU Y F , et al. Unique nanoporous structure derived from Co3O4-C and Co/CoO-C composites towards the ultra-strong electromagnetic absorption[J]. Composites: Part B, 2021, 213, 108731- 108742.
doi: 10.1016/j.compositesb.2021.108731
3 葛超群, 汪刘应, 刘顾. 碳基/羰基Fe复合吸波材料的研究进展[J]. 材料工程, 2019, 47 (12): 43- 54.
doi: 10.11868/j.issn.1001-4381.2018.000220
3 GE C Q , WANG L Y , LIU G . Research progress in carbon-based/carbonyl iron composite microwave absorption materials[J]. Journal of Materials Engineering, 2019, 47 (12): 43- 54.
doi: 10.11868/j.issn.1001-4381.2018.000220
4 周影影, 谢辉, 周万城. 羰基铁粉抗氧化性能研究现状[J]. 材料导报, 2018, 32 (5): 749- 754.
4 ZHOU Y Y , XIE H , ZHOU W C , et al. The absorbing principle and application of carbonyl iron powder absorbing coating[J]. Materials Review, 2018, 32 (5): 749- 754.
5 WU H J , WANG L D , WANG Y M , et al. Enhanced microwave absorbing properties of carbonyl iron-doped Ag/ordered mesoporous carbon nanocomposites[J]. Materials Science & Engineering: B, 2012, 177 (6): 476- 482.
6 CAO X G , REN H , ZHANG H Y . Preparation and microwave shielding property of silver-coated carbonyl iron powder[J]. Journal of Alloys and Compounds, 2015, 631, 133- 137.
doi: 10.1016/j.jallcom.2015.01.103
7 刘晓明, 任志宇, 陈陆平, 等. 红外隐身超材料[J]. 材料工程, 2020, 48 (6): 1- 11.
doi: 10.3969/j.issn.1673-1433.2020.06.001
7 LIU X M , REN Z Y , CHEN L P , et al. Infrared stealth metamaterial[J]. Journal of Materials Engineering, 2020, 48 (6): 1- 11.
doi: 10.3969/j.issn.1673-1433.2020.06.001
8 ZHOU Y Y , ZHOU W C , LI R , et al. Enhanced antioxidation and electromagnetic properties of Co-coated flaky carbonyl iron particles prepared by electroless plating[J]. Journal of Alloys & Compounds, 2015, 637, 10- 15.
9 ZHOU Y Y , ZHOU W C , LI R , et al. Electroless plating preparation and electromagnetic properties of Co-coated carbonyl iron particles/polyimide composite[J]. Journal of Magnetism and Magnetic Materials, 2016, 401, 251- 258.
doi: 10.1016/j.jmmm.2015.10.056
10 WANG H Y , ZHU D M , ZHOU W C , et al. Enhanced microwave absorbing properties and heat resistance of carbonyl iron by electroless plating Co[J]. Journal of Magnetism and Magnetic Materials, 2015, 393, 445- 451.
doi: 10.1016/j.jmmm.2015.05.090
11 江万权, 张复殿, 陈祖耀, 等. CIPs表面纳米钴修饰及其对磁流变液性能的影响[J]. 功能材料, 2006, 37 (7): 1163- 1165.
doi: 10.3321/j.issn:1001-9731.2006.07.045
11 JIANG W Q , ZHANG F D , CHEN Z Y , et al. Surface modification of carbonyl iron powder with nano-cobalt and its effect on the properties of magnetorheological fluids[J]. Functional Materials, 2006, 37 (7): 1163- 1165.
doi: 10.3321/j.issn:1001-9731.2006.07.045
12 LI R , ZHOU W C , QING Y C . Preparation of Ni-B coating on carbonyl iron and its microwave absorption properties in the X band[J]. Chinese Physics Letters, 2014, 31 (9): 97701.
doi: 10.1088/0256-307X/31/9/097701
13 YI D Q , YU P C , HU B , et al. Preparation of nickel-coated titanium carbide particulates and their use in the production of reinforced iron matrix composites[J]. Materials & Design, 2013, 52, 572- 579.
14 JIA S , LUO F , QING Y C , et al. Electroless plating preparation and microwave electromagnetic properties of Ni-coated carbonyl iron particle/epoxy coatings[J]. Physica B: Condensed Matter, 2010, 405 (17): 3611- 3615.
doi: 10.1016/j.physb.2010.05.050
15 LIU Y D , LEE J , CHOI S B , et al. Silica-coated carbonyl iron microsphere based magnetorheological fluid and its damping force characteristics[J]. Smart Materials and Structures, 2013, 22 (6): 65022- 65028.
doi: 10.1088/0964-1726/22/6/065022
16 LI J , FENG W J , WANG J S , et al. Impact of silica-coating on the microwave absorption properties of carbonyl iron powder[J]. Journal of Magnetism and Magnetic Materials, 2015, 393, 82- 87.
doi: 10.1016/j.jmmm.2015.05.049
17 李天天, 夏龙, 黄小萧, 等. 介电损耗型微波吸收材料的研究进展[J]. 材料工程, 2021, 49 (6): 1- 13.
doi: 10.3969/j.issn.1673-1433.2021.06.001
17 LI T T , XIA L , HUANG X X , et al. Progress in dielectric loss microwave absorbing materials[J]. Journal of Materials Engineering, 2021, 49 (6): 1- 13.
doi: 10.3969/j.issn.1673-1433.2021.06.001
18 YAN L G , WANG J B , HAN X H , et al. Enhanced microwave absorption of Fe nanoflakes after coating with SiO2 nano-shell[J]. Nanotechnology, 2010, 21 (9): 95708- 95712.
doi: 10.1088/0957-4484/21/9/095708
19 WANG H Y , ZHU D M , ZHOU W C , et al. Electromagnetic property of SiO2-coated carbonyl iron/polyimide composites as heat resistant microwave absorbing materials[J]. Journal of Magnetism and Magnetic Materials, 2015, 375, 111- 116.
doi: 10.1016/j.jmmm.2014.09.061
20 GUO X H , DENG Y H , GU D , et al. Synthesis and microwave absorption of uniform hematite nanoparticles and their core-shell mesoporous silica nanocomposites[J]. Journal of Materials Chemistry, 2009, 19, 6706- 6712.
doi: 10.1039/b910606e
21 伍倪燕, 程艳奎, 刘存平, 等. SiO2包覆片状CIPs的制备及电磁性能[J]. 磁性材料及器件, 2016, 47 (1): 22- 26.
doi: 10.3969/j.issn.1001-3830.2016.01.006
21 WU N Y , CHENG Y K , LIU C P , et al. Preparation and electromagnetic properties of SiO2 coated flake carbonyl iron powder[J]. Magnetic Materials and Devices, 2016, 47 (1): 22- 26.
doi: 10.3969/j.issn.1001-3830.2016.01.006
22 童国秀, 王维, 官建国, 等. SiO2纳米壳的厚度对羰基Fe/SiO2核壳复合粒子的性能影响[J]. 无机材料学报, 2006, 21 (6): 1461- 1466.
doi: 10.3321/j.issn:1000-324X.2006.06.029
22 TONG G X , WANG W , GUAN J G , et al. The influence of the thickness of SiO2 nanoshells on the properties of carbonyl iron/SiO2 core-shell composite particles[J]. Journal of Inorganic Materials, 2006, 21 (6): 1461- 1466.
doi: 10.3321/j.issn:1000-324X.2006.06.029
23 郭飞, 杜红亮, 屈绍波, 等. 海胆状氧化锌/羰基铁粉核壳结构复合粒子的抗氧化及吸波性能[J]. 无机化学学报, 2015, (4): 755- 760.
23 GUO F , DU H L , QU S B , et al. Antioxidant and microwave absorbing properties of sea urchin-like zinc oxide/carbonyl iron powder core-shell structure composite particles[J]. Chinese Journal of Inorganic Chemistry, 2015, (4): 755- 760.
24 SEDLACIK M , PAVLINEK V , SAHA P . Rheological properties of magnetorheological suspensions based on core-shell structured polyaniline-coated carbonyl iron particles[J]. Smart Materials & Structures, 2010, 19 (11): 115008- 115013.
25 ABSHINOVA M A , KAZANTSEVA N E , SAHA P . The enhancement of the oxidation resistance of carbonyl iron by poly-aniline coating and consequent changes in electromagnetic pro-perties[J]. Polymer Degradation & Stability, 2008, 93 (10): 1826- 1831.
26 CHANDRAKANTHI N , CAREEM M A . Thermal stability of polyaniline[J]. Synthetic Metals, 1989, 30 (3): 321- 325.
doi: 10.1016/0379-6779(89)90654-1
27 MRLIK M , ILCIKOVA M , PACLINEK V . Improved thermo-oxidation and sedimentation stability of covalently-coated carbonyl iron particles with cholesteryl groups and their influence on magnetorheology[J]. Journal of Colloid & Interface Science, 2013, 396, 146- 151.
28 ZHANG C , YIN S , LONG C , et al. Hybrid metamaterial absor-ber for ultra-low and dual-broadband absorption[J]. Optics Express, 2021, 29 (9): 14078- 14086.
doi: 10.1364/OE.423245
[1] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
[2] 覃鑫, 祁文军, 左小刚. TC4钛合金表面激光熔覆NiCrCoAlY-Cr3C2复合涂层的摩擦和高温抗氧化性能[J]. 材料工程, 2021, 49(12): 107-114.
[3] 马向雨, 邢孟达, 张耀辉, 宫元勋, 陈冲, 赵宏杰. 无反射层泡沫夹层结构设计及吸波性能研究[J]. 材料工程, 2020, 48(2): 94-99.
[4] 毕松, 汤进, 王鑫, 侯根良, 李军, 刘朝辉, 苏勋家. 共沉淀过程中镍锌添加比例对两步法制备的Ni0.5Zn0.5Fe2O4吸波性能的影响[J]. 材料工程, 2019, 47(4): 91-96.
[5] 史思涛, 陈畅, 郭政, 李国新, 伍勇华, 苏明周, 王会萌. 原料配比对多孔MgO/Fe-Cr-Ni复合材料性能的影响[J]. 材料工程, 2019, 47(4): 167-173.
[6] 李浩, 毕松, 侯根良, 苏勋家, 李军, 汤进, 林阳阳. 两步法中煅烧温度对Ni0.5Zn0.5Fe2O4电磁性能的影响[J]. 材料工程, 2019, 47(1): 64-69.
[7] 周远良, 赛义德, 张黎, 贾韦迪, 段玉平, 董星龙. 树脂基Fe纳米粒子及碳纤维复合吸波平板的制备与性能[J]. 材料工程, 2018, 46(3): 41-47.
[8] 王红星, 毛向阳, 沈彤, 张月. 纳米TiC颗粒对Ni-TiC复合镀层组织与性能的影响[J]. 材料工程, 2017, 45(1): 52-57.
[9] 马玉启, 刘先松, 冯双久, 黄鑫, 黄风. Sn4+取代对NiZn功率铁氧体磁性能的影响[J]. 材料工程, 2015, 43(8): 72-76.
[10] 宋凯, 康宜华, 张丽攀, 彭旭钊. 钢管磁特性对涡流检测影响的研究进展[J]. 材料工程, 2015, 43(11): 106-112.
[11] 冯永宝, 唐传明, 丘泰. Fe85Si9.6Al5.4合金的制备、表征及其低频吸波性能[J]. 材料工程, 2014, 0(2): 1-6,12.
[12] 苏艳丽, 黄鹤. 巨介电陶瓷CaCu3Ti4O12/聚合物复合材料研究进展[J]. 材料工程, 2014, 0(2): 94-98.
[13] 贾海鹏, 苏勋家, 侯根良, 曹小平, 毕松, 刘朝辉. 石墨烯基磁性纳米复合材料的制备与微波吸收性能研究进展[J]. 材料工程, 2013, 0(5): 89-93,100.
[14] 高俊国, 陆峰, 王长亮, 郭孟秋, 崔永静. 氧燃充枪比对爆炸喷涂CoCrAlYTa涂层抗氧化性能的影响[J]. 材料工程, 2013, 0(4): 28-33.
[15] 尚继武, 张以河, 吕凤柱. 高介电常数聚合物基复合材料研究进展[J]. 材料工程, 2012, 0(5): 87-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn