Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (1): 33-42    DOI: 10.11868/j.issn.1001-4381.2021.000338
  搅拌摩擦焊接专栏 本期目录 | 过刊浏览 | 高级检索 |
铝/钢异种金属的超声振动强化搅拌摩擦焊接工艺
吴程浩1, 刘涛1, 高嵩1,*(), 石磊2, 刘洪涛3
1 齐鲁工业大学(山东省科学院) 机械与汽车工程学院,济南 250353
2 山东大学 材料液固结构演变与加工教育部重点实验室,济南 250061
3 山东省轻质高强金属材料重点实验室,济南 250014
Ultrasonic vibration enhanced friction stir welding process of aluminum/steel dissimilar metals
Chenghao WU1, Tao LIU1, Song GAO1,*(), Lei SHI2, Hongtao LIU3
1 School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
2 Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China
3 Shandong Provincial Key Laboratory for High Strength Lightweight Metallic Materials, Jinan 250014, China
全文: PDF(14181 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用新型超声振动强化搅拌摩擦焊接工艺实现了6061-T6铝合金以及QP980高强钢的搭接焊, 对比分析了有无超声作用下, 接头的宏观形貌、微观组织和拉伸剪切性能, 同时研究了超声振动对焊接载荷的影响。结果表明: 焊接前对母材施加超声振动, 可以起到软化母材的作用, 促进了材料的塑性流动, 扩大了铝/钢界面区和焊核区, 使更多的钢颗粒随搅拌针旋转进入铝合金侧, 在界面区边缘形成钩状结构, 进而提高了接头的失效载荷; 超声改变了FSW接头断裂位置和断口形貌, 提高了接头力学性能, 在本实验工艺参数范围内, 接头最大的平均失效载荷为4.99 kN; 当焊接速度为90 mm/min, 下压量为0.1 mm时, 施加超声振动使接头的平均失效载荷提高了0.98 kN, 拉剪性能提升28.24%;施加超声振动后轴向力Fz、搅拌头扭矩Mt和主轴输出功率分别下降2.46%, 6.44%和4.59%。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴程浩
刘涛
高嵩
石磊
刘洪涛
关键词 铝/钢搭接搅拌摩擦焊超声振动力学性能焊接载荷    
Abstract

A novel ultrasonic vibration enhanced friction stir welding (UVeFSW) process was employed to join the 6061-T6 aluminum alloy and QP980 high-strength steel. The macro morphology, microstructure and tensile shear properties of the joint with or without ultrasonic energy were compared and analyzed. Meanwhile, the effects of ultrasonic energy on the welding load were studied. The results show that the ultrasonic vibration applied to the base metal before welding can soften the base metal, promote the plastic flow of the material, expand interface zone and nugget zone of the aluminum/steel, make more steel particles rotate into the aluminum alloy side with the stirring needle, forming a hook structure at the edge of the interface zone which can improve the failure load of the joint. The fracture position and fracture morphology of FSW joint are changed by ultrasonic, and the mechanical properties of FSW joint are improved. Under the welding parameters conducted in the experiment, the maximum average failure load of the joint is 4.99 kN. Under the conditions of a welding rate of 90 mm/min and a depth of 0.1 mm, the application of ultrasonic vibration makes the average failure load of the joint increase by 0.98 kN and the tensile shear performance increase by 28.24%. After applying ultrasonic vibration, the axial force Fz, the tool torque Mt and the spindle power decrease by 2.46%, 6.44% and 4.59% respectively.

Key wordsaluminum/steel    lap joint    friction stir welding    ultrasonic vibration    mechanical property    welding load
收稿日期: 2021-04-13      出版日期: 2022-01-19
中图分类号:  TG453  
基金资助:山东省自然科学基金青年项目(ZR2020QE177);国家自然科学基金项目(51805285);齐鲁工业大学(山东省科学院)青年博士合作基金项目(2019BSHZ0012)
通讯作者: 高嵩     E-mail: gaosongedu@163.com
作者简介: 高嵩(1990—),男,讲师,博士,研究方向为轻质高强材料连接技术,联系地址:山东省济南市长清区大学路3501号齐鲁工业大学机械与汽车工程学院(250353),E-mail: gaosongedu@163.com
引用本文:   
吴程浩, 刘涛, 高嵩, 石磊, 刘洪涛. 铝/钢异种金属的超声振动强化搅拌摩擦焊接工艺[J]. 材料工程, 2022, 50(1): 33-42.
Chenghao WU, Tao LIU, Song GAO, Lei SHI, Hongtao LIU. Ultrasonic vibration enhanced friction stir welding process of aluminum/steel dissimilar metals. Journal of Materials Engineering, 2022, 50(1): 33-42.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000338      或      http://jme.biam.ac.cn/CN/Y2022/V50/I1/33
Cu Mg Si Fe Ti Mn Zn Cr Al
0.15-0.4 0.8-1.2 0.4-0.8 0.7 0.15 0.15 0.25 0.04-0.35 Bal
Table 1  6061-T6铝合金的化学成分(质量分数/%)
C Mn Si P S Al Cr Fe
0.2 1.93 1.59 0.019 0.003 0.055 0.048 Bal
Table 2  QP980高强钢的化学成分(质量分数/%)
Fig.1  焊接实验装置
Fig.2  铝/钢异种金属搅拌摩擦焊搭接示意图
Fig.3  焊接搅拌头形貌(a)及其尺寸(b)
Fig.4  不同焊接速度下的铝/钢FSW(1)和UVeFSW(2)焊缝横截面宏观形貌
(a)v=30 mm/min; (b)v=60 mm/min; (c)v=90 mm/min
Fig.5  不同下压量的铝/钢FSW(1)和UVeFSW(2)焊缝横截面宏观形貌(ω=600 r/min, v=30 mm/min)
(a)d=0.2 mm; (b)d=0.3 mm
Fig.6  铝/钢FSW(1)和UVeFSW(2)接头微观组织
(a)焊核区;(b)焊核区、热力影响区和热影响区的分界面
Fig.7  不同工艺参数下的铝/钢FSW和UVeFSW力学性能曲线图
(a)焊接速度;(b)下压量
Fig.8  不同工艺参数下的铝/钢FSW和UVeFSW失效载荷对比
(a)焊接速度;(b)下压量
Fig.9  铝/钢接头拉伸剪切断裂位置
(a)FSW; (b)UVeFSW
Fig.10  铝/钢接头拉伸剪切断口中心位置形貌
(a)FSW; (b)UVeFSW
Fig.11  焊接载荷随焊接速度变化曲线图
(a)轴向力;(b)主轴输出功率;(c)搅拌头扭矩
Fig.12  焊接载荷随时间变化曲线图
(a)轴向力;(b)主轴输出功率;(c)搅拌头扭矩
1 张琪, 叶鹏程, 杨中玉, 等. 汽车轻量化连接技术的应用现状与发展趋势[J]. 有色金属加工, 2019, 48 (1): 1- 9.
1 ZHANG Q , YE P C , YANG Z Y , et al. Application and development of connecting technique in automobile lightweight[J]. Nonferrous Metals Processing, 2019, 48 (1): 1- 9.
2 万龙. 铝/钢搅拌摩擦搭接强流变作用下界面行为及力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
2 WAN L. Influence of severe plastic deformation on interfacial behavior and mechanical properties of Al/steel friction stir lap joint [D]. Harbin: Harbin Institute of Technology, 2015.
3 张满, 张军, 蒋腾, 等. Fe-Al金属间化合物对铝/钢钎焊接头力学性能的影响[J]. 焊接学报, 2018, 39 (1): 61- 64.
3 ZHANG M , ZHANG J , JIANG T , et al. Effect of Fe-Al intermetallic compound on mechanical property of aluminum/steel brazed joint[J]. Transactions of the China Welding Institution, 2018, 39 (1): 61- 64.
4 LI T , ZHOU D , YAN Y , et al. Effect of Ti foil on microstructure and mechanical properties of laser fusion welding of DP590 dual-phase steel to 6022 aluminum alloy[J]. Materials Science and Engineering: A, 2020, 796, 139929.
doi: 10.1016/j.msea.2020.139929
5 邓运来, 邓舒浩, 叶凌英, 等. 焊后热处理对AA7204-T4铝合金搅拌摩擦焊接头组织与力学性能的影响[J]. 材料工程, 2020, 48 (4): 131- 138.
5 DENG Y L , DENG S H , YE L Y , et al. Effects of post-weld heat treatment on microstructures and mechanical properties of AA7204-T4 aluminum alloy FSW joint[J]. Journal of Materials Engineering, 2020, 48 (4): 131- 138.
6 赵梓钧, 杨新岐, 李胜利, 等. 工具形状及工艺过程对搅拌摩擦增材成形及缺陷的影响[J]. 材料工程, 2019, 47 (9): 84- 92.
6 ZHAO Z J , YANG X Q , LI S L , et al. Influence of tool shape and process on formation and defects of friction stir additive manufactured build[J]. Journal of Materials Engineering, 2019, 47 (9): 84- 92.
7 王文, 李天麒, 乔柯, 等. 转速对水下搅拌摩擦焊7A04-T6铝合金组织与性能的影响[J]. 材料工程, 2017, 45 (10): 32- 38.
doi: 10.11868/j.issn.1001-4381.2015.001234
7 WANG W , LI T Q , QIAO K , et al. Effect of rotation rate on microstructure and properties of underwater friction stir welded 7A04-T6[J]. Journal of Materials Engineering, 2017, 45 (10): 32- 38.
doi: 10.11868/j.issn.1001-4381.2015.001234
8 刘凯龙, 高辉, 程璋良, 等. 焊接热输入量对铝/钢搅拌摩擦点焊性能影响[J]. 兵器材料科学与工程, 2020, 43 (1): 117- 121.
8 LIU K L , GAO H , CHENG Z L , et al. Effect of welding heat input on friction stir spot welding performance of aluminum/steel[J]. Ordnance Material Science and Engineering, 2020, 43 (1): 117- 121.
9 Van der REST C , JACQUES P J , SIMAR A . On the joining of steel and aluminium by means of a new friction melt bonding process[J]. Scripta Materialia, 2014, 77, 25- 28.
doi: 10.1016/j.scriptamat.2014.01.008
10 TANAKA T , MORISHIGE T , HIRATA T . Comprehensive analysis of joint strength for dissimilar friction stir welds of mild steel to aluminum alloys[J]. Scripta Materialia, 2009, 61, 756- 759.
doi: 10.1016/j.scriptamat.2009.06.022
11 黄幸, 周林, 姜进京. 搅拌摩擦焊工艺参数对超薄铝合金板/高强钢搭接焊接头组织及性能的影响[J]. 有色金属材料与工程, 2019, 40 (1): 13- 19.
11 HUANG X , ZHOU L , JIANG J J . Effect of friction stir welding parameters on microstructure and mechanical properties of ultra-thin aluminium alloy plate/high strength steel lap joints[J]. Nonferrous Metal Materials and Engineering, 2019, 40 (1): 13- 19.
12 张敏, 相倩, 吕念春, 等. 工具尺寸对铝-钢异种金属搅拌摩擦搭焊接头组织与性能的影响[J]. 机械工程学报, 2020, 56 (6): 200- 205.
12 ZHANG M , XIANG Q , LV N C , et al. Influence of tool size on the microstructure and mechanical properties of friction stir lap welded dissimilar aluminum-steel joint[J]. Journal of Mechanical Engineering, 2020, 56 (6): 200- 205.
13 HAGHSHENAS M , ABDEL-GWAD A , OMRAN A M , et al. Friction stir weld assisted diffusion bonding of 5754 aluminum alloy to coated high strength steels[J]. Materials & Design, 2014, 55, 442- 449.
14 CHITTURI V , PEDAPATI S R , AWANG M . Challenges in dissimilar friction stir welding of aluminum 5052 and 304 stainless steel alloys[J]. Materials Science and Engineering Technology, 2020, 51 (6): 811- 816.
15 CHITTURI V , PEDAPATI S R , AWANG M . Effect of tilt angle and pin depth on dissimilar friction stir lap welded joints of aluminum and steel alloys[J]. Materials, 2019, 12 (23): 3901.
doi: 10.3390/ma12233901
16 TANAKA T , NEZU M , UCHIDA S , et al. Mechanism of intermetallic compound formation during the dissimilar friction stir welding of aluminum and steel[J]. Journal of Materials Science, 2020, 55 (7): 1- 9.
17 杨金帅, 刘含莲, 黄传真, 等. 基于Fluent的钢-铝异种金属搅拌摩擦焊数值模拟研究[J]. 焊接技术, 2020, 49 (8): 11- 15.
17 YANG J S , LIU H L , HUANG C Z , et al. Numerical simulation of friction stir welding between steel and aluminum dissimilar metal based on Fluent[J]. Welding Technology, 2020, 49 (8): 11- 15.
18 SHI L , WU C S , GAO S , et al. Modified constitutive equation for use in modeling the ultrasonic vibration enhanced friction stir welding process[J]. Scripta Materialia, 2016, 119, 21- 26.
doi: 10.1016/j.scriptamat.2016.03.023
19 任航, 刘浩, 吴庚毅, 等. 铝/钢搅拌摩擦辅助铆接接头界面特性研究[J]. 精密成形工程, 2019, 11 (5): 91- 97.
doi: 10.3969/j.issn.1674-6457.2019.05.013
19 REN H , LIU H , WU G Y , et al. Interface characteristics of riveted Al/steel joints by assisted friction stir welding[J]. Journal of Netshape Forming Engineering, 2019, 11 (5): 91- 97.
doi: 10.3969/j.issn.1674-6457.2019.05.013
20 费鑫江, 李俊, 姚蔚峰, 等. 激光功率对钢/铝激光辅助搅拌摩擦焊接头的影响[J]. 热加工工艺, 2019, 48 (3): 204- 209.
20 FEI X J , LI J , YAO W F , et al. Effect of laser power on laser assisted friction stir welding joint of steel/aluminum[J]. Hot Working Technology, 2019, 48 (3): 204- 209.
21 BANG H S , HONG S M , DAS A , et al. Study on the weldability and mechanical characteristics of dissimilar materials (Al5052-DP590) by TIG assisted hybrid friction stir welding[J]. Metals and Materials International, 2021, 27, 1193- 1204.
doi: 10.1007/s12540-019-00461-6
22 LIU X , LAN S , NI J . Electrically assisted friction stir welding for joining Al 6061 to TRIP 780 steel[J]. Journal of Materials Processing Technology, 2015, 219, 112- 123.
doi: 10.1016/j.jmatprotec.2014.12.002
23 THOMÄ M , WAGNERA G , STRAß B , et al. Ultrasound enhanced friction stir welding of aluminum and steel: process and properties of EN AW 6061/DC04-joints[J]. Journal of Materials Science & Technology, 2018, 34, 163- 172.
24 BANG H S , BANG H S , JEON G H , et al. Gas tungsten arc welding assisted hybrid friction stir welding of dissimilar materials Al6061-T6 aluminum alloy and STS304 stainless steel[J]. Materials & Design, 2012, 37, 48- 55.
25 PARK K, KIM G Y, NI J. Design and analysis of ultrasonic assisted friction stir welding[C]//ASME 2007 International Mechanical Engineering Congress and Exposition. Seattle, Washington: American Society of Mechanical Engineers, 2007: 731-737.
26 PARK K. Development and analysis of ultrasonic assisted friction stir welding process[D]. Ann Arbor, State of Michigan: the Uni-versity of Michigan, 2009.
27 PADHY G K , WU C S , GAO S . Friction stir based welding and processing technologies-processes, parameters, microstructures and applications: a review[J]. Journal of Materials Science & Technology, 2018, 34 (1): 1- 38.
28 刘小超, 武传松. 超声振动对6061-T4铝合金搅拌摩擦焊接头组织和性能的影响[J]. 焊接学报, 2014, 35 (1): 49- 53.
28 LIU X C , WU C S . Effect of ultrasonic vibration on microstructure and mechanical properties of friction stir welded joint of 6061-T4 aluminum alloy[J]. Transactions of the China Welding Institution, 2014, 35 (1): 49- 53.
29 贺地求, 胡雷, 赵志峰, 等. 超声功率对2219-T351铝合金搅拌摩擦焊接头组织与性能的影响[J]. 焊接学报, 2020, 41 (3): 23- 28.
29 HE D Q , HU L , ZHAO Z F , et al. Effect of ultrasonic power on microstructure and properties of 2219-T351 aluminum alloy friction stir welding joint[J]. Transactions of the China Welding Institution, 2020, 41 (3): 23- 28.
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[3] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[4] 金士杰, 田鑫, 林莉. 铝合金搅拌摩擦焊超声检测研究进展[J]. 材料工程, 2022, 50(8): 45-59.
[5] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[6] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[7] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[8] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[9] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[10] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[11] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[12] 张昌青, 王树文, 罗德春, 师文辰, 刘晓, 崔国胜, 陈波阳, 辛舟, 芮执元. 热电耦合对铝/钢连续驱动摩擦焊接头组织的影响机理[J]. 材料工程, 2022, 50(5): 35-42.
[13] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[14] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[15] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn