Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (4): 62-73    DOI: 10.11868/j.issn.1001-4381.2021.000343
  综述 本期目录 | 过刊浏览 | 高级检索 |
电弧熔丝增材制造铝合金研究进展
韩启飞1, 符瑞2, 胡锦龙1, 郭跃岭2,*(), 韩亚峰2, 王俊升1,3, 纪涛4, 卢继平2, 刘长猛2
1 北京理工大学 材料学院,北京 100081
2 北京理工大学 机械与车辆学院,北京 100081
3 北京理工大学 前沿交叉科学研究院,北京 100081
4 中国航空研究院 中国航空工业空气动力研究院,沈阳 110034
Research progress in wire arc additive manufacturing of aluminum alloys
Qifei HAN1, Rui FU2, Jinlong HU1, Yueling GUO2,*(), Yafeng HAN2, Junsheng WANG1,3, Tao JI4, Jiping LU2, Changmeng LIU2
1 School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
2 School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
3 Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
4 AVIC Aerodynamics Research Institute, Chinese Aeronautical Establishment, Shenyang 110034, China
全文: PDF(11774 KB)   HTML ( 6 )  
输出: BibTeX | EndNote (RIS)      
摘要 

电弧增材制造因其独特的无模壳快速近净成形特点而备受关注,有望成为突破铝合金材料研发与工业应用瓶颈的先进制造技术。电弧增材技术在传统电弧焊接的基础上发展而来,二者均以高能电弧为热源、以金属丝材为原材料进行成形。本文综合分析了电弧增材制造工艺与设备研发现状、凝固与固态相变特性、显微组织特点、冶金缺陷概况以及力学性能特点,论述了热丝及多丝增材制造技术前景和电弧增材制造独特的成形方式与相变显微组织特征。针对电弧增材制造铝合金制造精度及稳定性较差、气孔及热裂缺陷严重、材料力学性能优势不突出的问题,提出了电弧增材制造专用设备开发、熔丝累加快速凝固冶金缺陷控制专用方法研发、专用材料成分及显微组织设计、专用热处理工艺制定等发展方向,为加快电弧增材制造铝合金高端化、定制化、专属化发展提供重要参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩启飞
符瑞
胡锦龙
郭跃岭
韩亚峰
王俊升
纪涛
卢继平
刘长猛
关键词 电弧增材制造铝合金相变特征冶金缺陷    
Abstract

Wire arc additive manufacturing (WAAM) attracts much attention due to its unique feature of rapid near net shape forming without die. It has the potential to become an advanced manufacturing technology that can break the bottleneck of alloy development and industrial application for aluminum materials. Wire arc additive manufacturing technology originates from traditional arc welding, and both of them use high-energy arc as heat source and metal wires as raw material. The WAAM technology and equipment development, the solidification and solid state phase transformation performance, microstructures, metallurgical defects as well as mechanical property of aluminum alloys were reviewed. The technique prospects of hot wire and multi-wire additive manufacturing, the unique fabrication manner and the exclusive phase transformation microstructure were discussed. The WAAM-specialized approaches to address the issues of poor manufacturing accuracy, serious porosity and cracking, and unsatisfied mechanical property, including fabrication system development, metallurgical defect controlling, alloy composition and microstructure design and heat treatment optimization were proposed. Such proposals are expected to facilitate the rapid development of high-end, customized and distinguished aluminum alloys via WAAM.

Key wordswire arc additive manufacturing    aluminum alloy    phase transition characteristic    meta-llurgical defect
收稿日期: 2021-04-15      出版日期: 2022-04-18
中图分类号:  TG146.2+1  
  TG444  
基金资助:国家自然科学基金项目(51875041);国家自然科学基金项目(11972208);国家自然科学基金项目(11921002)
通讯作者: 郭跃岭     E-mail: y.guo@bit.edu.cn
作者简介: 郭跃岭(1990—),男,副研究员,博士,研究方向为金属增材制造与非平衡凝固,联系地址:北京市海淀区中关村南大街5号北京理工大学机械与车辆学院(100081),E-mail: y.guo@bit.edu.cn
引用本文:   
韩启飞, 符瑞, 胡锦龙, 郭跃岭, 韩亚峰, 王俊升, 纪涛, 卢继平, 刘长猛. 电弧熔丝增材制造铝合金研究进展[J]. 材料工程, 2022, 50(4): 62-73.
Qifei HAN, Rui FU, Jinlong HU, Yueling GUO, Yafeng HAN, Junsheng WANG, Tao JI, Jiping LU, Changmeng LIU. Research progress in wire arc additive manufacturing of aluminum alloys. Journal of Materials Engineering, 2022, 50(4): 62-73.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000343      或      http://jme.biam.ac.cn/CN/Y2022/V50/I4/62
Fig.1  电弧熔丝增材制造原理图
(a)MIG; (b)TIG; (c)TIG-MIG; (d)CMT; (e)PAW
Fig.2  热丝电弧增材制造原理图
Fig.3  Tandem原理图[12](a)以及单电源四丝材原理图(b)
Alloy Equilibrium maximum solubility limit/% Solubility limit of rapid solidification/% Equilibrium eutectic point/%
Al-Cu 2.53 18 17.3
Al-Si 1.78 16 11.3
Al-Mg 18.90 40 37.0
Al-Ni < 1 8
Table 1  铝合金的固溶极限[16]
Fig.4  电弧熔丝增材制造铝合金不同位置第二相的形成机理[26]
Fig.5  不同电弧移动速度下电弧熔丝增材制造铝合金的分层结构[27]
(a)150 mm/min; (b)250 mm/min; (c)350 mm/min; (d)450 mm/min
Fig.6  电弧增材制造铝合金与铸造及变形铝合金性能对比(a)以及典型电弧增材制造铝合金力学性能(b)
1 陈伟, 陈玉华, 毛育青. 铝合金增材制造技术研究进展[J]. 精密成形工程, 2017, 9 (5): 214- 219.
doi: 10.3969/j.issn.1674-6457.2017.05.034
1 CHEN W , CHEN Y H , MAO Y Q . Research progress in additive manufacturing technology of aluminum alloy[J]. Journal of Netshape Forming Engineering, 2017, 9 (5): 214- 219.
doi: 10.3969/j.issn.1674-6457.2017.05.034
2 朱胜, 杜文博. 电弧增材再制造技术研究进展[J]. 电焊机, 2020, 50 (9): 251- 255.
2 ZHU S , DU W B . State-of-art of wire arc additive remanufacturing technology[J]. Electric Welding Machine, 2020, 50 (9): 251- 255.
3 王世杰, 王海东, 罗锋. 基于电弧的金属增材制造技术研究现状[J]. 金属加工(热加工), 2018, (1): 19- 22.
doi: 10.3969/j.issn.1674-165X.2018.01.010
3 WANG S J , WANG H D , LUO F . Research status of arc-based metal additive manufacturing technology[J]. MW Metal Forming, 2018, (1): 19- 22.
doi: 10.3969/j.issn.1674-165X.2018.01.010
4 左为. TIG-MIG复合电弧增材制造散热器用铝合金工艺及组织与性能研究[D]. 太原: 太原理工大学, 2018.
4 ZUO W. Study on process, microstructure and properties of aluminum alloy for radiator based on TIG-MIG hybrid arc additive manufacturing[D]. Taiyuan: Taiyuan University of Technology, 2018.
5 刘辉. 双丝脉冲MIG焊工艺研究[D]. 天津: 天津大学, 2007.
5 LIU H. Processing research of tandem pulsed MIG welding[D]. Tianjin: Tianjin University, 2007.
6 柏久阳, 王计辉, 师建行, 等. TIG增材制造4043铝合金薄壁零件组织及力学性能[J]. 焊接, 2015, 49 (10): 23- 26.
doi: 10.3969/j.issn.1001-1382.2015.10.006
6 BAI J Y , WANG J H , SHI J H , et al. Microstructure and mechanical properties of 4043-Al alloy thin-walled components produced by additive manufacturing with TIG welding[J]. Welding & Joining, 2015, 49 (10): 23- 26.
doi: 10.3969/j.issn.1001-1382.2015.10.006
7 姜鹏举. 5356铝合金电弧增材制造成形控制及性能研究[D]. 秦皇岛: 燕山大学, 2019.
7 JIANG P J. Research on forming control and performance of 5356 aluminum alloy by arc additive manufacturing[D]. Qinhuangdao: Yanshan University, 2019.
8 党晓玲, 王婧. 增材制造技术国内外研究现状与展望[J]. 航空精密制造技术, 2020, 56 (2): 35- 38.
doi: 10.3969/j.issn.1003-5451.2020.02.009
8 DANG X L , WANG J . Research status and prospects of additive manufacturing technology at home and abroad[J]. Aviation Precision Manufacturing Technology, 2020, 56 (2): 35- 38.
doi: 10.3969/j.issn.1003-5451.2020.02.009
9 殷树言. 气体保护焊基础及应用[M]. 北京: 机械工业出版社, 2012: 199- 201.
9 YIN S Y . Foundation and application of gas shielded welding[M]. Beijing: China Machine Press, 2012: 199- 201.
10 LI Z X , LIU C M , XU T Q , et al. Reducing arc heat input and obtaining equiaxed grains by hot-wire method during arc additive manufacturing titanium alloy[J]. Materials Science and Engineering: A, 2019, 742, 287- 294.
doi: 10.1016/j.msea.2018.11.022
11 FU R , TANG S Y , LU J P , et al. Hot-wire arc additive manufacturing of aluminum alloy with reduced porosity and high deposition rate[J]. Materials & Design, 2021, 199, 109370.
12 王宣. 基于多丝共熔的高强铝合金电弧增材制造方法及工艺研究[D]. 北京: 北京工业大学, 2019.
12 WANG X. Research on the method and characteristics of wire and arc additive manufacturing of high strength aluminum alloy based on mutual melting technology of multi-wires[D]. Beijing: Beijing University of Technology, 2019.
13 刘长猛, 鲁涛, 李自祥, 等. 一种多丝材高效成形增材制造装置: CN 111014885 B[P]. 2021-02-19.
13 LIU C M, LU T, LI Z X, et al. Multi-wire efficient forming additive manufacturing device: CN 111014885 B[P]. 2021-02-19.
14 陈树君, 王宣, 徐旻, 等. 基于TIG三丝电弧增材制造Al-Zn-Mg-Cu合金成形规律探究[J]. 热加工工艺, 2021, 50 (1): 147- 150.
14 CHEN S J , WANG X , XU M , et al. Research on forming of Al-Zn-Mg-Cu alloy by TIG triple-wire arc additive manufacturing[J]. Hot Working Technology, 2021, 50 (1): 147- 150.
15 何杰. 双填丝GTA电弧增材制造Al-Mg合金工艺及性能研究[D]. 南京: 南京理工大学, 2018.
15 HE J. Research on process and properties of Al-Mg alloy by gas tungsten arc additive manufacturing[D]. Nanjing: Nanjing University of Science and Technology, 2018.
16 胡汉起. 金属凝固原理[M]. 北京: 机械工业出版社, 2000: 285- 289.
16 HU H Q . Fundamentals of metal solidification[M]. Beijing: China Machine Press, 2000: 285- 289.
17 BOSE S K , KUMAR R . Structure of rapidly solidified alumi-nium-silicon alloys[J]. Journal of Materials Science, 1973, 8 (12): 1795- 1799.
doi: 10.1007/BF02403532
18 DAS S , YEGNESWARAN A H , ROHATGI P K . Characterization of rapidly solidified aluminium-silicon alloy[J]. Journal of Materials Science, 1987, 22 (9): 3173- 3177.
doi: 10.1007/BF01161179
19 潘海成, 陈业高, 张安民, 等. 快速凝固合金的变化与用途研究[J]. 科技视界, 2019, (35): 44- 45.
19 PAN H C , CHEN Y G , ZHANG A M , et al. Study on the change and application of rapid solidification alloy[J]. Science & Technology Vision, 2019, (35): 44- 45.
20 刘宁, 杨根仓, 刘峰, 等. 快速凝固Fe-Co合金中的亚稳相[J]. 材料研究学报, 2010, 24 (5): 525- 529.
20 LIU N , YANG G C , LIU F , et al. Metastable phase in rapid solidification of Fe-Co alloy[J]. Chinese Journal of Materials Research, 2010, 24 (5): 525- 529.
21 贾祥磊, 朱秀荣, 陈大辉, 等. 耐热铝合金研究进展[J]. 兵器材料科学与工程, 2010, 33 (2): 108- 113.
doi: 10.3969/j.issn.1004-244X.2010.02.030
21 JIA X L , ZHU X R , CHEN D H , et al. Research development of heat-resistant aluminium alloys[J]. Ordnance Material Science and Engineering, 2010, 33 (2): 108- 113.
doi: 10.3969/j.issn.1004-244X.2010.02.030
22 胡伟超. 脉冲电弧增材制造2A12铝合金热处理工艺研究[D]. 北京: 北京理工大学, 2017.
22 HU W C. Research on heat treatment process of 2A12 aluminum alloy by arc additive manufacturing[D]. Beijing: Beijing Institute of Technology, 2017.
23 彭晖杰. 电弧增材制造5356铝合金工艺研究[D]. 沈阳: 沈阳航空航天大学, 2019.
23 PENG H J. Study on wire and arc additive manufacturing for-ming process of 5356 aluminum alloy[D]. Shenyang: Shenyang Aerospace University, 2019.
24 柏久阳. 2219铝合金GTA增材制造及其热处理过程的组织演变[D]. 哈尔滨: 哈尔滨工业大学, 2017.
24 BAI J Y. Microstructure evolution of 2219-Al during GTA based additive manufacturing and heat treatment[D]. Harbin: Harbin Institute of Technology, 2017.
25 李承德, 顾惠敏, 王伟, 等. 电弧增材制造ZL114A铝合金的组织与性能[J]. 稀有金属材料与工程, 2019, 48 (9): 2917- 2922.
25 LI C D , GU H M , WANG W , et al. Microstructure and properties of ZL114A aluminum alloy prepared by wire arc additive manufacturing[J]. Rare Metal Materials and Engineering, 2019, 48 (9): 2917- 2922.
26 DONG B L , CAI X Y , LIN S B , et al. Wire arc additive manufacturing of Al-Zn-Mg-Cu alloy: microstructures and mechanical properties[J]. Additive Manufacturing, 2020, 36, 101447.
doi: 10.1016/j.addma.2020.101447
27 ZHOU Y H , LIN X , KANG N , et al. Influence of travel speed on microstructure and mechanical properties of wire + arc additively manufactured 2219 aluminum alloy[J]. Journal of Mate-rials Science & Technology, 2020, 37, 143- 153.
28 MONDOL S , KASHYAP S , KUMAR S , et al. Improvement of high temperature strength of 2219 alloy by Sc and Zr addition through a novel three-stage heat treatment route[J]. Materials Science and Engineering: A, 2018, 732, 157- 166.
doi: 10.1016/j.msea.2018.07.003
29 柏久阳, 范成磊, 杨雨晨, 等. 2219铝合金TIG填丝堆焊成形薄壁试样组织特征[J]. 焊接学报, 2016, 37 (6): 124- 128.
29 BAI J Y , FAN C L , YANG Y C , et al. Microstructures of 2219-Al thin-walled parts produced by shaped metal deposition[J]. Transactions of the China Welding Institution, 2016, 37 (6): 124- 128.
30 LIN D C , WANG G X , SRIVATSAN T S . A mechanism for the formation of equiaxed grains in welds of aluminum-lithium alloy 2090[J]. Materials Science and Engineering: A, 2003, 351 (1/2): 304- 309.
31 OUYANG J H , WANG H , KOVACEVIC R . Rapid prototyping of 5356-aluminum alloy based on variable polarity gas tungsten arc welding: process control and microstructure[J]. Mate-rials and Manufacturing Processes, 2002, 17 (1): 103- 124.
doi: 10.1081/AMP-120002801
32 ZHANG Y , XU J , ZHAI T . Distributions of pore size and fatigue weak link strength in an A713 sand cast aluminum alloy[J]. Materials Science and Engineering: A, 2010, 527 (16/17): 3639- 3644.
33 于璐. 高强铝合金电弧增材制造工艺研究[D]. 北京: 北京理工大学, 2017.
33 YU L. Investigation on the process of wire arc additive manufacturing of high strength aluminum alloy[D]. Beijing: Beijing Institute of Technology, 2017.
34 ZHANG C , GAO M , ZENG X Y . Workpiece vibration augmented wire arc additive manufacturing of high strength aluminum alloy[J]. Journal of Materials Processing Technology, 2019, 271, 85- 92.
doi: 10.1016/j.jmatprotec.2019.03.028
35 GU J L , YANG S L , GAO M J , et al. Micropore evolution in additively manufactured aluminum alloys under heat treatment and inter-layer rolling[J]. Materials & Design, 2020, 186, 108288.
36 CONG B Q , DING J L , WILLIAMS S . Effect of arc mode in cold metal transfer process on porosity of additively manufactured Al-6.3%Cu alloy[J]. The International Journal of Advanced Manufacturing Technology, 2015, 76 (9/12): 1593- 1606.
37 从保强, 丁佳洛. CMT工艺对Al-Cu合金电弧增材制造气孔的影响[J]. 稀有金属材料与工程, 2014, 43 (12): 3149- 3153.
37 CONG B Q , DING J L . Influence of CMT process on porosity of wire arc additive manufactured Al-Cu alloy[J]. Rare Metal Materials and Engineering, 2014, 43 (12): 3149- 3153.
38 从保强, 孙红叶, 彭鹏, 等. Al-6.3Cu AC-GTAW电弧增材成形的气孔控制[J]. 稀有金属材料与工程, 2017, 46 (5): 1359- 1364.
38 CONG B Q , SUN H Y , PENG P , et al. Porosity control of wire+arc additively manufactured Al-6.3Cu alloy deposition using AC-GTAW process[J]. Rare Metal Materials and Engineering, 2017, 46 (5): 1359- 1364.
39 ABOULKHAIR N T , EVERITT N M , ASHCROFT I , et al. Reducing porosity in AlSi10Mg parts processed by selective laser melting[J]. Additive Manufacturing, 2014, 1/4, 77- 86.
doi: 10.1016/j.addma.2014.08.001
40 WEINGARTEN C , BUCHBINDER D , PIRCH N , et al. Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg[J]. Journal of Materials Processing Technology, 2015, 221, 112- 120.
doi: 10.1016/j.jmatprotec.2015.02.013
41 WANG D H , LU J P , TANG S Y , et al. Reducing porosity and refining grains for arc additive manufacturing aluminum alloy by adjusting arc pulse frequency and current[J]. Materials, 2018, 11 (8): 1344.
doi: 10.3390/ma11081344
42 HORGAR A , FOSTERVOLL H , NYHUS B , et al. Additive manufacturing using WAAM with AA5183 wire[J]. Journal of Materials Processing Technology, 2018, 259, 68- 74.
doi: 10.1016/j.jmatprotec.2018.04.014
43 王小杰. Al-Mg-Si合金激光焊接凝固裂纹形成机理研究[D]. 上海: 上海交通大学, 2015.
43 WANG X J. Formation mechanism of solidification cracking in laser welding on Al-Mg-Si alloy[D]. Shanghai: Shanghai Jiao Tong University, 2015.
44 崔云龙, 汪认, 张世欣, 等. 6061铝合金焊接接头液化裂纹分析[J]. 焊接, 2020, (10): 49- 52.
44 CUI Y L , WANG R , ZHANG S X , et al. Analysis of liquation crack of 6061 aluminum alloy welded joint[J]. Welding & Joining, 2020, (10): 49- 52.
45 MARTIN J H , YAHATA B D , HUNDLEY J M , et al. 3D printing of high-strength aluminium alloys[J]. Nature, 2017, 549 (7672): 365- 369.
doi: 10.1038/nature23894
46 王俊, 李芳, 张跃龙, 等. 焊丝中Si元素含量对铝合金接头裂纹敏感性的影响规律及机理[J]. 焊接学报, 2020, 41 (1): 55- 60.
46 WANG J , LI F , ZHANG Y L , et al. Effect of Si content in welding wire on crack sensitivity of aluminum alloy joints and its mechanism[J]. Transactions of the China Welding Institution, 2020, 41 (1): 55- 60.
47 CICALǍ E , DUFFET G , ANDRZEJEWSKI H , et al. Hot cracking in Al-Mg-Si alloy laser welding-operating parameters and their effects[J]. Materials Science and Engineering: A, 2005, 395 (1/2): 1- 9.
48 FABRÈGUE D, DESCHAMPS A, SUÉRY M, et al. Hot tearing during laser butt welding of 6xxx aluminium alloys: process optimisation and 2D/3D characterisation of hot tears[M]//Hot cracking phenomena in welds Ⅱ. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008: 241-255.
49 WANG J , WANG H P , WANG X J , et al. Statistical analysis of process parameters to eliminate hot cracking of fiber laser welded aluminum alloy[J]. Optics & Laser Technology, 2015, 66, 15- 21.
50 HU B , RICHARDSON I M . Mechanism and possible solution for transverse solidification cracking in laser welding of high strength aluminium alloys[J]. Materials Science and Engineering: A, 2006, 429 (1/2): 287- 294.
51 ZHOU S Y , SU Y , WANG H , et al. Selective laser melting additive manufacturing of 7xxx series Al-Zn-Mg-Cu alloy: cracking elimination by co-incorporation of Si and TiB2[J]. Additive Manufacturing, 2020, 36, 101458.
doi: 10.1016/j.addma.2020.101458
52 SOKOLUK M , CAO C , PAN S , et al. Nanoparticle-enabled phase control for arc welding of unweldable aluminum alloy 7075[J]. Nature Communications, 2019, 10 (1): 98.
doi: 10.1038/s41467-018-07989-y
53 CHOI H , CHO W H , KONISHI H , et al. Nanoparticle-induced superior hot tearing resistance of A206 alloy[J]. Metallurgical and Materials Transactions A, 2013, 44 (4): 1897- 1907.
doi: 10.1007/s11661-012-1531-8
54 OROPEZA D , HOFMANN D C , WILLIAMS K , et al. Welding and additive manufacturing with nanoparticle-enhanced aluminum 7075 wire[J]. Journal of Alloys and Compounds, 2020, 834, 154987.
doi: 10.1016/j.jallcom.2020.154987
55 TAN Q Y , ZHANG J Q , SUN Q , et al. Inoculation treatment of an additively manufactured 2024 aluminium alloy with tita-nium nanoparticles[J]. Acta Materialia, 2020, 196, 1- 16.
doi: 10.1016/j.actamat.2020.06.026
56 YU Z L , YUAN T , XU M , et al. Microstructure and mechanical properties of Al-Zn-Mg-Cu alloy fabricated by wire+arc additive manufacturing[J]. Journal of Manufacturing Processes, 2021, 62, 430- 439.
doi: 10.1016/j.jmapro.2020.12.045
57 姜云禄. 基于冷金属过渡技术的铝合金快速成形技术及工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.
57 JIANG Y L. Research on the rapid prototyping technology and forming process of aluminum alloy based on the CMT[D]. Harbin: Harbin Institute of Technology, 2013.
58 HASELHUHN A S , BUHR M W , WIJNEN B , et al. Structure-property relationships of common aluminum weld alloys utilized as feedstock for GMAW-based 3-D metal printing[J]. Materials Science and Engineering: A, 2016, 673, 511- 523.
doi: 10.1016/j.msea.2016.07.099
59 李权, 王国庆, 罗志伟, 等. 2219铝合金电弧增材制造组织及力学性能的非均匀性[J]. 稀有金属材料与工程, 2020, 49 (11): 3969- 3976.
59 LI Q , WANG G Q , LUO Z W , et al. Inhomogeneity of microstructures and mechanical properties of 2219 aluminum alloy by WAAM[J]. Rare Metal Materials and Engineering, 2020, 49 (11): 3969- 3976.
60 WANG H , JIANG W , OUYANG J , et al. Rapid prototyping of 4043 Al-alloy parts by VP-GTAW[J]. Journal of Materials Processing Technology, 2004, 148 (1): 93- 102.
doi: 10.1016/j.jmatprotec.2004.01.058
[1] 余晖, 任军超, 杨鑫, 郭舒龙, 余炜, 冯建航, 殷福星, 辛光善. Zn层添加AZ31/7075合金复合成形工艺及组织与性能研究[J]. 材料工程, 2022, 50(3): 157-165.
[2] 李红, 闫维嘉, 张禹, 杜文博, 栗卓新, MARIUSZBober, SENKARAJacek. 先进航空材料焊接过程热裂纹研究进展[J]. 材料工程, 2022, 50(2): 50-61.
[3] 陈高红, 张月, 李应权, 刘建华, 于美. 缓蚀剂组合的容器负载方式对铝合金涂层耐蚀性能的影响[J]. 材料工程, 2022, 50(2): 153-163.
[4] 邵震, 崔雷, 王东坡, 陈永亮, 胡正根, 王非凡. 几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响[J]. 材料工程, 2022, 50(1): 25-32.
[5] 王浩, 肖纳敏, 李惠曲, 王晓. 7050铝合金结构件热处理与冷成形过程残余应力演化规律的数值模拟[J]. 材料工程, 2021, 49(8): 72-80.
[6] 陈海燕, 曾越, 李艺, 吴建新, 许世锬, 邹燕成. 基于非线性超声空化效应的铝合金热浸镀工艺[J]. 材料工程, 2021, 49(7): 133-140.
[7] 詹强坤, 刘允中, 刘小辉, 周志光. 激光选区熔化成形含锆7×××系铝合金的显微组织与力学性能[J]. 材料工程, 2021, 49(6): 85-93.
[8] 臧金鑫, 邢清源, 陈军洲, 戴圣龙. 800 MPa级超高强度铝合金的时效析出行为[J]. 材料工程, 2021, 49(4): 71-77.
[9] 孙大翔, 董宇, 叶凌英, 唐建国. 形变热处理工艺对2519A铝合金动态变形行为的影响[J]. 材料工程, 2021, 49(2): 79-87.
[10] 吴桢, 陆政, 刘闪光, 罗传彪. 微量Ag对ZL114A铝合金组织和力学性能的影响[J]. 材料工程, 2021, 49(1): 82-88.
[11] 陈亚军, 徐鹏达, 王付胜, 刘辰辰. 基于DIC的铝合金薄壁缺口件多轴疲劳行为[J]. 材料工程, 2021, 49(1): 168-176.
[12] 冯昊, 符殿宝, 程佳乐, 唐寅林, 陈俊锋, 王晨, 邹林池. 压缩预变形对7050铝合金非等温时效析出行为的影响[J]. 材料工程, 2020, 48(9): 107-114.
[13] 栾建泽, 那景新, 谭伟, 慕文龙, 申浩, 秦国锋. 铝合金-BFRP粘接接头的服役高温老化力学性能及失效预测[J]. 材料工程, 2020, 48(9): 166-172.
[14] 段晓鸽, 江海涛, 米振莉, 王丽丽, 李萧. 轧制方式对6016铝合金薄板组织和塑性各向异性的影响[J]. 材料工程, 2020, 48(8): 134-141.
[15] 张桂源, 李于朋, 宫文彪, 宫明月, 崔恒. Zn对钢/铝异种金属搅拌摩擦焊接头界面组织及性能的影响[J]. 材料工程, 2020, 48(8): 149-156.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn