Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (6): 75-85    DOI: 10.11868/j.issn.1001-4381.2021.000349
  综述 本期目录 | 过刊浏览 | 高级检索 |
氮化碳在场发射冷阴极材料中的研究进展
肖浩春1, 丰义兵1, 王继刚1,2,*()
1 东南大学 材料科学与工程学院 江苏省先进金属材料重点 实验室, 南京 211189
2 西藏民族大学 西藏水污染控制与 环境修复工程实验室, 陕西 咸阳 712082
Research progress in carbon nitride in field emission cold cathode materials
Haochun XIAO1, Yibing FENG1, Jigang WANG1,2,*()
1 Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
2 Xizang Engineering Laboratory for Water Pollution Control and Ecological Remediation, Xizang Minzu University, Xianyang 712082, Shaanxi, China
全文: PDF(9376 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

氮化碳具有优良的热稳定性、高热导率、较大的禁带宽度和负的电子亲和势等优点,是一种极具潜力的场发射阴极材料。本文在介绍氮化碳的结构、性能以及作为场发射材料的研究现状的基础上,着重评述了氮化碳薄膜和粉体的制备方法;从优化结构中的sp2簇的数量及尺寸、调控表面形貌、元素掺杂,以及通过与其他场发射材料复合或表面修饰形成多级发射结构等方面,阐述了优化氮化碳场发射性能的方法。最后总结了氮化碳薄膜和粉体分别作为场发射阴极材料仍然存在的问题,并以此指出将来开展相关研究的重点在于继续优化其场发射性能,以及探索其内部结构、缺陷等对场发射性能的影响。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖浩春
丰义兵
王继刚
关键词 氮化碳场发射阴极材料电子发射    
Abstract

Carbon nitride has the advantages of excellent thermal stability, high thermal conductivity, larger forbidden band width and negative electron affinity. Therefore, carbon nitride is a promising field emission cathode material. On the basis of introducing the structure and properties of carbon nitride and its research status as a field emission material, the preparation methods of carbon nitride films and powders were emphatically reviewed in this paper. Then the methods to improve the field emission performance of carbon nitride were discussed from the following aspects: optimizing the number and size of sp2 clusters, texture modification, elements doping and forming hybrid field emitters by compounding with other field emission materials or surface modification. In the end, the problems that still exist in the carbon nitride films and powders as field emission cathode materials were summarized respectively. Based on this, the focus of future researches on field emission of carbon nitride was concluded, which is to continue to optimize its field emission performance, and to explore the influence of its internal structure and defects on the field emission performance.

Key wordscarbon nitride    field emission    cathode material    electron emission
收稿日期: 2021-04-15      出版日期: 2022-06-20
中图分类号:  TB34  
基金资助:西藏自然科学基金重点项目(XZ2017ZRG-66(Z))
通讯作者: 王继刚     E-mail: wangjigang@seu.edu.cn
作者简介: 王继刚(1973—),男,教授,博士生导师,博士,主要从事纳米功能陶瓷的微波合成及功能特性研究,联系地址:南京江宁区东南大学路2号东南大学九龙湖校区材料科学与工程学院(211189),E-mail:wangjigang@seu.edu.cn
引用本文:   
肖浩春, 丰义兵, 王继刚. 氮化碳在场发射冷阴极材料中的研究进展[J]. 材料工程, 2022, 50(6): 75-85.
Haochun XIAO, Yibing FENG, Jigang WANG. Research progress in carbon nitride in field emission cold cathode materials. Journal of Materials Engineering, 2022, 50(6): 75-85.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000349      或      http://jme.biam.ac.cn/CN/Y2022/V50/I6/75
Carbon nitride crystal Crystal system Space group a/nm c/nm Bulk modulus/GPa Band gap/eV
α-C3N4 Hexagonal P31c 0.64665 0.47097 425 3.85
β-C3N4 Hexagonal P63/m 0.64017 0.23950 437 3.28
c-C3N4 Cubic I43d 0.53973 0.53973 496 2.90
pc-C3N4 Cubic P42m 0.34232 0.34232 448
g-C3N4 Hexagonal P6m2 0.47420 0.67205 0.51 2.70
Table 1  五种氮化碳晶体的晶系、空间群、晶体结构参数、体模量和禁带宽度[14-15]
Field emission cathode Turn-on electric field/(V·μm-1) Threshold electric field/(V·μm-1) Maximum emissioncurrent/(mA·cm-2) Ref
CNT arrays 1.9 3.9 18 [29]
N-doped CNTs 1.0 1.25 [8]
Aligned graphene sheets 2.0 300 [30]
Graphene/CNTs 0.93 3.72 < 5 [31]
SiC nanowire arrays 1.54 < 0.5 [32]
Graphene/SiC 1.10-1.12 1.5 8.2 [33]
ZnO short nanowires 1.56 < 1 [34]
Ge-doped ZnO nanowires 3.5 5.9 60 [35]
Table 2  一些纳米结构的场发射阴极的开启电场、阈值电场及最大发射电流
Fig.1  金字塔状g-C3N4阵列(a),(b)和底部边缘(c)以及体相g-C3N4的SEM形貌(d)[56]
Fig.2  利用高能微波合成的g-C3N4二维纳米片的SEM(a),TEM(b),(c),(d)和AFM(e), (f)表征结果[28]
Fig.3  利用CVD合成的CNx纳米管的TEM(a),XPS(b)和CNx-ZnO复合物的SEM(c),(d),TEM(e), (f)表征结果[26]
1 PARK S , KANG J T , JEONG J W , et al. A fully closed nano-focus X-ray source with carbon nanotube field emitters[J]. IEEE Electron Device Letter, 2018, 39 (12): 1936- 1939.
doi: 10.1109/LED.2018.2873727
2 BESPALOV V A , IL'ICHEV E A , KUKLEV S V , et al. Development and investigation of a field emission medium for autocathodes of mobile power microwave devices[J]. Technical Physics, 2018, 63 (3): 443- 451.
doi: 10.1134/S1063784218030027
3 SHAO X , SRINIVASAN A , ANG W K , et al. A high-brightness large-diameter graphene coated point cathode field emission electron source[J]. Nature Communications, 2018, 9 (1): 1288.
doi: 10.1038/s41467-018-03721-y
4 YANG X , ZHANG M , MA H , et al. Self-crystallized Ba2LaF7 glass ceramics with high thermal-stability for white light-emitting-diodes and field emission displays[J]. ECS Journal of Solid State Science and Technology, 2019, 8 (10): R127- R132.
doi: 10.1149/2.0151910jss
5 GUO X , QIN S , BAI S , et al. Vertical graphene nanosheets synthesized by thermal chemical vapor deposition and the field emission properties[J]. Journal of Physics D, 2016, 49 (38): 385301.
doi: 10.1088/0022-3727/49/38/385301
6 GAO Y , OKADA S . Field emission properties of edge-functionalized graphene[J]. Carbon, 2019, 142, 190- 195.
doi: 10.1016/j.carbon.2018.10.019
7 CHEN F , WANG T , JI X . AlxGa1-xN-GaN core-shell nanorods: synthesis and field emission properties[J]. Superlattices & Microstructures, 2018, 120, 272- 278.
8 RAY S C , PONG W F , PAPAKONSTANTINOU P , et al. Electronic structure and field emission properties of nitrogen doped graphene nano-flakes(GNFs: N)and carbon nanotubes(CNTs: N)[J]. Applied Surface Science, 2016, 380, 301- 304.
doi: 10.1016/j.apsusc.2015.12.098
9 WU D , CHI Z , XU S , et al. Nitrogen-doped multilayered nanographene derived from Ni3C with efficient electron field emission[J]. Journal of Materials Chemistry C, 2016, 4, 9251- 9260.
doi: 10.1039/C6TC03264H
10 RINDHATAYATHON P , MUANGRAT W , HORPRATHUM M , et al. Field emission property of vertically aligned nitrogen-doped multi-walled carbon nanotubes produced by chemical vapor deposition[J]. Materials Today: Proceedings, 2018, 5 (7): 14965- 14969.
doi: 10.1016/j.matpr.2018.04.039
11 ZHENG H , CHU Q , ZHENG P , et al. Nitrogen-doped few-layer graphene grown vertically on a Cu substrate via C60/nitrogen microwave plasma and its field emission properties[J]. The Journal of Physical Chemistry C, 2020, 124 (39): 21684- 21691.
doi: 10.1021/acs.jpcc.0c05563
12 YUAN W , FANG L , FENG Z , et al. Highly conductive nitrogen-doped ultrananocrystalline diamond films with enhanced field emission properties: triethylamine as a new nitrogen source[J]. Journal of Materials Chemistry C, 2016, 4 (21): 4778- 4785.
doi: 10.1039/C6TC00087H
13 TETER D M , HEMLEY R J . Low-compressibility carbon nitrides[J]. Science, 1996, 271 (5245): 53- 55.
doi: 10.1126/science.271.5245.53
14 余永志. 高能微波法制备氮化碳及其光催化性能研究[D]. 南京: 东南大学, 2017.
14 YU Y Z. Study on preparation and photocatalytic properties of carbon nitride by high-energy microwave method[D]. Nanjing: Southeast University, 2017.
15 WANG Q , JIANG J . An overview on structure and field emission properties of carbon nitride films[J]. Journal of Nanomaterials, 2014, 2014, 203837.
16 ZHAI C X , ZHAO L L , ZHANG Z Y , et al. Structure and field emission properties of CNx powders synthesized by a polymerization process[J]. Advanced Materials Research, 2015, 1095, 666- 670.
doi: 10.4028/www.scientific.net/AMR.1095.666
17 吕反修. 金刚石膜制备与应用[M]. 北京: 科学出版社, 2014.
17 LV F X . Preparation and application of diamond films[M]. Beijing: Science Press, 2014.
18 HARATA T , AONO M , TAMURA N , et al. Spectroscopic analysis of photo-induced deformation of amorphous carbon nitride films[J]. Journal of Physics Conference, 2015, 619 (1): 012007.
19 DING Z , AN M , MO S , et al. Unexpectedly high cross-plane thermoelectric performance of layered carbon nitrides[J]. Journal of Materials Chemistry A, 2019, 7 (5): 2114- 2121.
doi: 10.1039/C8TA10500F
20 AONO M , HARATA T , ODAWARA T , et al. Deposition of amorphous carbon nitride films on flexible substrates by reactive sputtering for applications in light-driven active devices[J]. Japanese Journal of Applied Physics, 2018, 57, 01AC01.
doi: 10.7567/JJAP.57.01AC01
21 PURHANUDIN N , AWANG R . Formation of chemical bonds and morphological studies of a-CNx: effects of PECVD deposition pressure[J]. AIP Publishing LLC, 2016, 1784, 040018.
22 HARATA T , AONO M , MIYAZAKI H , et al. Long-term irradiation effects of visible light on amorphous carbon nitride films[J]. Diamond & Related Materials, 2016, 63, 132- 135.
23 TIAN Y , WANG J , YU W , et al. Effect of acetic acid on electrochemical deposition of carbon-nitride thin film[J]. Science in China Series E, 2009, 52 (6): 1698- 1702.
doi: 10.1007/s11431-009-0109-1
24 CHI E J, SHIM J Y, BAIK H K. Effects of heat treatment on the field emission property of amorphous carbon nitride[C]// 10th International Vacuum Microelectronics Conference/Journal of Vacuum Science & Technology B. Kyongju, Korea: IEEE, 1998: 127-131.
25 ALEXANDROU I , BAXENDALE M , AMARATUNGA G , et al. Field emission properties of nanocomposite carbon nitride films[J]. Journal of Vacuum Science & Technology B, 2000, 18 (6): 2698- 2703.
26 GHOSH K , KUMAR M , WANG H , et al. Nitrogen-mediated wet-chemical formation of carbon nitride/ZnO heterojunctions for enhanced field emission[J]. Langmuir, 2010, 26 (8): 5527- 5533.
doi: 10.1021/la9037777
27 TANAKA I , YARITA K , SAKAMOTO Y . Field emission properties of carbon nitride synthesized by microwave plasma chemical vapor deposition[J]. Thin Solid Films, 2019, 671, 53- 58.
doi: 10.1016/j.tsf.2018.12.030
28 YU Y Z , ZHOU Q , WANG J . The ultra-rapid synthesis of 2D graphitic carbon nitride nanosheets via direct microwave heating for field emission[J]. Chemical Communications, 2016, 52 (16): 3396- 3399.
doi: 10.1039/C5CC10258H
29 LI D , CHENG Y , WANG Y , et al. Improved field emission properties of carbon nanotubes grown on stainless steel substrate and its application in ionization gauge[J]. Applied Surface Science, 2016, 365, 10- 18.
doi: 10.1016/j.apsusc.2016.01.011
30 LIU J , ZENG B , WANG W , et al. Graphene electron cannon: high-current edge emission from aligned graphene sheets[J]. Applied Physics Letters, 2014, 104 (2): 023101.
doi: 10.1063/1.4861611
31 CHEN L , HE H , YU H , et al. Electron field emission characteristics of graphene/carbon nanotubes hybrid field emitter[J]. Journal of Alloys & Compounds, 2014, 610 (3): 659- 664.
32 YANG W , WANG W , XIE C . Large-scale growth of patterned SiC nanowire arrays and their field emission performance[J]. Journal of the American Ceramic Society, 2019, 102 (7): 3854- 3859.
doi: 10.1111/jace.16423
33 WANG L , JIANG L , ZHANG T , et al. Graphene/SiC heterojunction nanoarrays: toward field emission applications with low turn-on fields and high stabilities[J]. Journal of Materials Chemistry C, 2019, 7 (44): 13748- 13753.
doi: 10.1039/C9TC05035C
34 CHIKATE P R , BANKAR P K , CHOUDHARY R J , et al. Spitzer shaped ZnO nanostructures for enhancement of field electron emission behaviors[J]. RSC Advances, 2018, 8 (38): 21664- 21670.
doi: 10.1039/C8RA03282C
35 LIANG Y . Ge-doped ZnO nanowire arrays as cold field emitters with excellent performance[J]. Nanotechnology, 2019, 30 (37): 375603.
doi: 10.1088/1361-6528/ab28ca
36 FOWLER R H , NORDHEIM L . Electron emission in intense electric fields[J]. The Royal Society, 1928, 119 (781): 173- 181.
37 刘恩科, 朱秉升, 罗晋生, 等. 半导体物理学[M]. 西安: 西安交通大学出版社, 1998.
37 LIU E K , ZHU B S , LUO J S , et al. Semiconductor physics[M]. Xi'an: Xi'an Jiaotong University Press, 1998.
38 CHEN J , XU N S , WANG E G , et al. A study of field electron emission from thin amorphous carbon nitride films[J]. Chinese Physics Letters, 1998, 15 (7): 539- 541.
doi: 10.1088/0256-307X/15/7/026
39 FOGARASSY E , SZORENYI T , ANTONI F , et al. Influence of the nitrogen content on the field emission properties of a-CNx films prepared by pulsed laser deposition[J]. Applied Surface Science, 2002, 197/198, 316- 320.
doi: 10.1016/S0169-4332(02)00389-6
40 KINOSHITA H , KUBOTA M , OHNO G . Deposition of amorphous carbon nitride films using Ar/N2 supermagnetron sputter[J]. Thin Solid Films, 2010, 518 (13): 3502- 3505.
doi: 10.1016/j.tsf.2009.11.051
41 RITIKOS R , OTHMAN M , RAHMAN S A . Effects of applied radio frequency power on low-temperature catalytic-free nanostructured carbon nitride films by RF PECVD[J]. Applied Physics A, 2016, 122 (6): 585.
doi: 10.1007/s00339-016-0076-x
42 KINOSHITA H , SUZUKI S , TAGUCHI R , et al. Field electron-emission from a-CNx: H films formed on Al films using supermagnetron plasma CVD[J]. Journal of Modern Physics, 2015, 6 (11): 1602- 1608.
doi: 10.4236/jmp.2015.611162
43 LI C , CAO C , ZHU H . Preparation of graphitic carbon nitride by electrodeposition[J]. Chinese Science Bulletin, 2003, 48 (16): 1737- 1740.
doi: 10.1360/03wb0011
44 叶凡, 谢二庆, 李瑞山, 等. 类金刚石和碳氮薄膜的电化学沉积及其场发射性能研究[J]. 物理学报, 2005, 54 (8): 3935- 3939.
44 YE F , XIE E Q , LI R S , et al. Field emission properties of diamond-like carbon and carbon nitride films deposited by the electrochemical method[J]. Acta Physica Sinica, 2005, 54 (8): 3935- 3939.
45 KIYOTA H , GAMO H , NISHITANI-GAMO M , et al. Liquid phase deposition of amorphous carbon and carbon nitride films[J]. e-Journal of Surface Science and Nanotechnology, 2009, 7, 102- 106.
doi: 10.1380/ejssnt.2009.102
46 柴杰. 氮化碳粉体的制备及其场发射性能分析[D]. 西安: 西北大学, 2018.
46 CHAI J. Preparation of carbon nitride powder and its field emission performance[D]. Xi'an: Northwest University, 2018.
47 赵佩佩. 石墨相氮化碳纳米材料的制备及其场发射性能研究[D]. 西安: 西北大学, 2019.
47 ZHAO P P. Preparation of graphitic carbon nitride nanomaterials and study on its field emission properties[D]. Xi'an: Northwest University, 2019.
48 王继刚, 李红, 张旭海, 等. 无定型CNx超硬薄膜的生长过程研究[J]. 材料工程, 2007, (4): 39- 42.
48 WANG J G , LI H , ZHANG X H , et al. Study on growth process of amorphous carbon nitride film[J]. Journal of Materials Engineering, 2007, (4): 39- 42.
49 王继刚, 李红, 张旭海, 等. 磁控溅射法制备CNx薄膜及其结构表征[J]. 材料工程, 2006, (7): 11- 13.
49 WANG J G , LI H , ZHANG X H , et al. Structure characterization and preparation of carbon nitride film using magnetron sputtering[J]. Journal of Materials Engineering, 2006, (7): 11- 13.
50 WANG J G , JIANG N . Blood compatibilities of carbon nitride film deposited on biomedical NiTi alloy[J]. Diamond & Related Materials, 2009, 18 (10): 1321- 1325.
51 WANG J G , LIU M . Study on the tribological properties of hard films deposited on biomedical NiTi alloy[J]. Materials Chemistry & Physics, 2011, 129 (1/2): 40- 45.
52 YU Y Z , WANG J G . Direct microwave synthesis of graphitic C3N4 with improved visible-light photocatalytic activity[J]. Ceramics International, 2016, 42 (3): 4063- 4071.
doi: 10.1016/j.ceramint.2015.11.078
53 王继刚, 余永志, 邹婧叶, 等. 基于微波辐照合成类石墨烯氮化碳的研究进展[J]. 材料工程, 2019, 47 (4): 15- 24.
53 WANG J G , YU Y Z , ZOU J Y , et al. Progress in microwave irradiation synthesis of graphene-like carbon nitride[J]. Journal of Materials Engineering, 2019, 47 (4): 15- 24.
54 邹婧叶, 余永志, 顾永攀, 等. 高能微波辐照合成类石墨烯氮化碳纳米片的结构特征研究[J]. 材料工程, 2019, 47 (3): 1- 7.
54 ZOU J Y , YU Y Z , GU Y P , et al. Structural feature of graphene-like carbon nitride nanosheets synthesized via high-energy microwave irradiation[J]. Journal of Materials Engineering, 2019, 47 (3): 1- 7.
55 YU Y Z , CHENG S , WANG L Y . Self-assembly of yolk-shell porous Fe-doped g-C3N4 microarchitectures with excellent photocatalytic performance under visible light[J]. Sustainable Materials and Technologies, 2018, 17, e00072.
56 YU Y Z , WANG C C , LUO L H , et al. An environment-friendly route to synthesize pyramid-like g-C3N4arrays for efficient degradation of rhodamine B under visible-light irradiation[J]. Chemical Engineering Journal, 2018, 334, 1869- 1877.
57 LI J J , GU C Z , XU P , et al. Field emission enhancement of carbon nitride films by annealing with different durations[J]. Materials Science and Engineering: B, 2006, 126 (1): 74- 79.
58 LI J, MIMURA H, NEO Y, et al. Field emission enhancement of amorphous carbon nitride films by the addition of argon to the reactive gas of nitrogen[C] // 18th International Vacuum Nanoelectronics Conference. Oxford, UK: IEEE, 2006: 223-224.
59 ZHANG Y B , LAU S P , HUANG L , et al. Microstructure effect on field emission from tetrahedral amorphous carbon films annealed in nitrogen and acetylene ambient[J]. Diamond & Related Materials, 2004, 13 (1): 133- 138.
60 FOGARASSY E , SZORÉNYI T , ANTONI F , et al. Field emission properties of a-CNx films prepared by pulsed laser deposition[J]. Applied Physics A, 2003, 76 (1): 15- 19.
61 GHOSH K , KUMAR M , WANG H , et al. Facile decoration of platinum nanoparticles on carbon-nitride nanotubes via microwave-assisted chemical reduction and their optimization for field-emission application[J]. The Journal of Physical Chemistry C, 2010, 114 (11): 5107- 5112.
62 KIM J P , NOH Y R , KIM J U , et al. Electron-emission properties of carbon nanotube micro-tips coated by amorphous carbon nitride films[J]. Thin Solid Films, 2011, 519 (22): 7899- 7903.
63 王如志, 严辉. 纳米半导体场发射冷阴极理论与实验[M]. 北京: 科学出版社, 2016.
63 WANG R Z , YAN H . Theory and experiment of nano-semiconductor field emission cold cathode[M]. Beijing: Science Press, 2016.
64 CUTLER P H , MISKOVSKY N M , LERNER P B , et al. The use of internal field emission to inject electronic charge carriers into the conduction band of diamond films: a review[J]. Applied Surface Science, 1999, 146 (1/4): 126- 133.
65 AKASAKA H , YAMADA T , OHTAKE N . Effect of film structure on field emission properties of nitrogen doped hydrogenated amorphous carbon films[J]. Diamond & Related Materials, 2009, 18 (2/3): 423- 425.
66 WEI F , LIU Y , ZHAO H , et al. Oxygen self-doped g-C3N4 with tunable electronic band structure for unprecedentedly enhanced photocatalytic performance[J]. Nanoscale, 2018, 10 (9): 4515- 4522.
67 MAHVELATI-SHAMSABADI T , LEE B K . Photocatalytic H2 evolution and CO2 reduction over phosphorus-doped g-C3N4 nanostructures: electronic, optical, and surface properties[J]. Renewable and Sustainable Energy Reviews, 2020, 130, 109957.
[1] 赵卫峰, 郝宁, 张改, 钱慧锦, 马爱洁, 周宏伟, 陈卫星. 苝四羧酸二酰亚胺修饰增强g-C3N4光催化性能[J]. 材料工程, 2022, 50(3): 98-106.
[2] 葛玉杰, 吴姣, 何志强, 王国华, 刘金香. g-C3N4基异质耦合光催化剂制备及在环境污染物去除领域的研究进展[J]. 材料工程, 2021, 49(4): 23-33.
[3] 王继刚, 余永志, 邹婧叶, 孟江, 李淑萍, 蒋南. 基于微波辐照合成类石墨烯氮化碳的研究进展[J]. 材料工程, 2019, 47(4): 15-24.
[4] 邹婧叶, 余永志, 顾永攀, 岳夏薇, 孟江, 李淑萍, 王继刚. 高能微波辐照合成类石墨烯氮化碳纳米片的结构特征[J]. 材料工程, 2019, 47(3): 1-7.
[5] 孙明岩, 车仁超, 陈清. 定向碳纳米管薄膜的制备及其场发射性能的研究[J]. 材料工程, 2003, 0(8): 13-16.
[6] 何孟兵, 彭友贵, 叶明生, 范湘军, 吴大维. 氮化碳晶体的热生长[J]. 材料工程, 1998, 0(3): 9-10,16.
[7] 杨威, 隋智通. Cr2O3对掺锶亚锰酸镧非化学整比、晶体结构、电导率和热膨胀性能影响[J]. 材料工程, 1997, 0(11): 16-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn