1 Aviation Engineering College, Civil Aviation Flight University of China, Guanghan 618307, Sichuan, China 2 School of Aeronautics and Astronautics, Central South University, Changsha 410083, China 3 Beijing Aeronautical Engineering Technical Research Center, Beijing 100076, China 4 School of Energy and Power Engineering, Beihang University, Beijing 102206, China
Uniaxial compression tests were carried out on mullite fiber reinforced silica aerogel composites in the out-of-plane direction. Influences of different ultimate strains and thermal exposure temperatures on the compression springback behavior and deformation recovery capability were investigated. Internal mechanisms based on the microstructure morphology changes were explained. Phenomenological mechanical models were established respectively for the deformation behavior in the loading and unloading stages. The results show that the compression springback behavior of mullite fiber reinforced silica aerogel composites exhibits nonlinear characteristics. The greater the ultimate strain, the worse the deformation recovery capability. High temperature thermal exposure pre-treatment has an effect on the compression springback property, the higher the thermal exposure temperature, the worse the deformation recovery capability. The aggregation of matrix particle-cluster structure and the formation and collapse of the large size holes are main causes. The phenomenological mechanical model can be used to describe the stress-strain curve of the composites during loading and unloading. The fitting results are in good agreement with the experimental data.
AEGERTER M A . Aerogels handbook[M]. New York: Springer, 2011.
2
KOEBEL M , RIGACCI A , ACHARD P . Aerogel-based thermal superinsulation: an overview[J]. Journal of Sol-Gel Science and Technology, 2012, 63, 315- 339.
doi: 10.1007/s10971-012-2792-9
3
MALEKI H , DURÃES L , PORTUGAL A . An overview on silica aerogels synthesis and different mechanical reinforcing strategies[J]. Journal of Non-Crystalline Solids, 2014, 385, 55- 74.
doi: 10.1016/j.jnoncrysol.2013.10.017
ZHANG H X , HE X D , HE F . Research on thermal insulation for pure aerogel and composite aerogel[J]. Journal of Materials Engineering, 2007, (Suppl 1): 94- 97.
5
冯坚. 气凝胶高效隔热材料[M]. 北京: 科学出版社, 2016.
5
FENG J . Aerogel materials for high efficiency thermal insulation[M]. Beijing: Science Press, 2016.
HU P , JIANG Y G , ZHANG Z M , et al. Research progress on high-temperature insulation composites with high mechanical property[J]. Materials Reports, 2020, 34 (4): 7082- 7090.
7
BLOSSER M L, CHEN R R, SCHMIDT I H, et al. Advanced metallic thermal protection system development[C]//40th Aerospace Sciences Meeting & Exhibit. Reno, Nevada: American Institute of Aeronautics and Astronautics, 2002.
GAO Q F. Nano-porous silica, alumina aerogels and thermal super-insulation composites[D]. Changsha: National University of Defense Technology, 2009.
10
HOU X B , ZHANG R B , FANG D N . An ultralight silica-modified ZrO2-SiO2 aerogel composite with ultra-low thermal conductivity and enhanced mechanical strength[J]. Scripta Materialia, 2018, 143, 113- 116.
doi: 10.1016/j.scriptamat.2017.09.028
YU Y X , MA R . Preparation and characterization of silicon carbide micro/nano fibrous mat reinforced silica aerogel composites[J]. Journal of Materials Engineering, 2018, 46 (11): 45- 50.
12
SHI D Q , SUN Y T , FENG J , et al. Experimental investigation on high temperature anisotropic compression properties of ceramic-fiber-reinforced SiO2 aerogel[J]. Materials Science and Engineering: A, 2013, 585 (11): 25- 31.
MI C H , JIANG Y G , SHI D Q , et al. Mechanical property test of ceramic fiber reinforced silica aerogel composites[J]. Acta Materiae Compositae Sinica, 2014, 31 (3): 635- 643.
14
YANG J , LI S K , LUO Y M , et al. Compressive properties and fracture behavior of ceramic fiber-reinforced carbon aerogel under quasi-static and dynamic loading[J]. Carbon, 2011, 49 (5): 1542- 1549.
doi: 10.1016/j.carbon.2010.12.021
HUANG H Y , SU L J , LEI C S , et al. Reusable thermal protective materials: application and research progress[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41 (12): 1- 35.
16
YANG X G , SUN Y T , SHI D Q . Experimental investigation and modeling of the creep behavior of ceramic fiber-reinforced SiO2 aerogel[J]. Journal of Non-Crystalline Solids, 2012, 358 (3): 519- 524.
doi: 10.1016/j.jnoncrysol.2011.11.028
17
YANG X G , WEI J , SHI D Q , et al. Comparative investigation of creep behavior of ceramic fiber reinforced alumina and silica aerogel[J]. Materials Science and Engineering: A, 2014, 609, 125- 130.
doi: 10.1016/j.msea.2014.04.099
18
ZHANG X , ZHANG T , YI Z H , et al. Multiscale mullite fiber/whisker reinforced silica aerogel nanocomposites with enhanced compressive strength and thermal insulation performance[J]. Ceramics International, 2020, 46, 28561- 28568.
doi: 10.1016/j.ceramint.2020.08.013
19
HE S , CHENG X D , LI Z , et al. Facile synthesis of sponge reinforced monolithic silica aerogels with improved mechanical pro-perty and excellent absorptivity[J]. Materials Letters, 2015, 154, 107- 111.
doi: 10.1016/j.matlet.2015.02.101
20
HE J , ZHAO H Y , LI X L , et al. Superelastic and superhydrophobic bacterial cellulose/silica aerogels with hierarchical cellular structure for oil absorption and recovery[J]. Journal of Hazar-dous Materials, 2018, 346, 199- 207.
doi: 10.1016/j.jhazmat.2017.12.045
21
SI Y , AN X Q , DOU L Y , et al. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity[J]. Science Advances, 2018, 4 (4): 8925.
doi: 10.1126/sciadv.aas8925
22
LI C , DING Y W , HU B C , et al. Temperature-invariant super-elastic and fatigue resistant carbon nanofiber aerogels[J]. Advanced Materials, 2020, 32 (2): 1904331.
doi: 10.1002/adma.201904331
23
MURILLO J , BACHLECHNER M , CAMPO F , et al. Structure and mechanical properties of silica aerogels and xerogels modeled by molecular dynamics simulation[J]. Journal of Non-Crystalline Solids, 2010, 356 (25): 1325- 1331.
24
ROY S, JONES S, REINHEIMER P, et al. Mechanical characte-rization and computer simulation of crosslinked nanostructured silica aerogels[C]//50th AIAA/ASME/ASCE/AHS/ASC Stru-ctures, Structural Dynamics and Materials Conference. California: American Institute of Aeronautics and Astronautics. Palm Springs, California, USA: AIAA, 2009: 2383.
25
FU B , LUO H , WANG F , et al. Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression[J]. Journal of Non-Crystalline So-lids, 2011, 357 (10): 2063- 2074.
26
LU Z X , YUAN Z S , LIU Q , et al. Multi-scale simulation of the tensile properties of fiber-reinforced silica aerogel composites[J]. Materials Science and Engineering: A, 2015, 625, 278- 287.
27
SUN Y T , SHI D Q , YANG X G , et al. Stress state analysis of Iosipescu shear specimens for aerogel composite with different properties in tension and compression[J]. Procedia Engineering, 2013, 67, 517- 524.
FENG J , GAO Q F , FENG J Z , et al. Preparation and properties of fiber-reinforced SiO2 aerogel insulation composites[J]. Journal of National University of Defense Technology, 2010, 32 (1): 40- 44.
29
TABIEI A , WU J . Three-dimensional nonlinear orthotropic finite element material model for wood[J]. Composite Structures, 2000, 50 (2): 143- 149.
30
WOIGNIER T , DUFFOURS L , BEURROIES I , et al. Plasticity in aerogels[J]. Journal of Sol-Gel Science and Technology, 1997, 8 (1): 789- 794.
31
PHALIPPOU J , DESPETIS F , CALAS S , et al. Comparison between sintered and compressed aerogels[J]. Optical Materials, 2004, 26 (2): 167- 172.
32
CAI H F , JIANG Y G , QU C , et al. Sintering behavior of SiO2 aerogel composites reinforced by mullite fibers via in-situ rapid heating TEM observations[J]. Journal of the European Ceramic Society, 2020, 40 (1): 127- 135.
33
LIU G W , ZHOU B , NI X Y , et al. Influence of thermal process on microstructural and physical properties of ambient pressure dried hydrophobic silica aerogel monoliths[J]. Journal of Sol-Gel Science and Technology, 2012, 62 (2): 126- 133.
ZU G Q , SHEN J , ZOU L P , et al. Preparation, mechanical pro-perties and thermal properties of elastic aerogels[J]. Journal of Inorganic Materials, 2014, 29 (4): 417- 422.