Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (7): 119-127    DOI: 10.11868/j.issn.1001-4381.2021.000379
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
莫来石纤维增强SiO2气凝胶复合材料压缩回弹性能实验与建模研究
吕双祺1, 黄佳2, 孙燕涛3, 付尧明1, 杨晓光4, 石多奇4,*()
1 中国民用航空飞行学院 航空工程学院, 四川 广汉 618307
2 中南大学 航空航天学院, 长沙 410083
3 北京航空工程技术研究中心, 北京 100076
4 北京航空航天大学 能源与动力工程学院, 北京 102206
Experimental and modeling investigation on compression springback property of mullite fiber reinforced silica aerogel composites
Shuangqi LYU1, Jia HUANG2, Yantao SUN3, Yaoming FU1, Xiaoguang YANG4, Duoqi SHI4,*()
1 Aviation Engineering College, Civil Aviation Flight University of China, Guanghan 618307, Sichuan, China
2 School of Aeronautics and Astronautics, Central South University, Changsha 410083, China
3 Beijing Aeronautical Engineering Technical Research Center, Beijing 100076, China
4 School of Energy and Power Engineering, Beihang University, Beijing 102206, China
全文: PDF(9436 KB)   HTML ( 3 )  
输出: BibTeX | EndNote (RIS)      
摘要 

对莫来石纤维增强SiO2气凝胶复合材料开展面外方向单轴压缩实验,研究不同极限应变、热暴露温度对压缩回弹行为与变形恢复能力的影响,基于微观结构形貌变化阐释内在机制,对加载和卸载阶段的变形行为建立唯像力学模型。结果表明:莫来石纤维增强SiO2气凝胶复合材料的压缩回弹行为呈现非线性特征,极限应变越大,变形恢复能力越差;高温热暴露预处理会对压缩回弹性能产生影响,热暴露温度越高,变形恢复能力越差,基体颗粒-团簇结构的聚集、大尺寸孔洞的形成和塌陷是主要原因;所建立的唯像力学模型可以用来描述材料在压缩加载-卸载时的应力-应变曲线,拟合结果与实验数据吻合较好。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕双祺
黄佳
孙燕涛
付尧明
杨晓光
石多奇
关键词 气凝胶复合材料热防护系统压缩回弹高温力学模型    
Abstract

Uniaxial compression tests were carried out on mullite fiber reinforced silica aerogel composites in the out-of-plane direction. Influences of different ultimate strains and thermal exposure temperatures on the compression springback behavior and deformation recovery capability were investigated. Internal mechanisms based on the microstructure morphology changes were explained. Phenomenological mechanical models were established respectively for the deformation behavior in the loading and unloading stages. The results show that the compression springback behavior of mullite fiber reinforced silica aerogel composites exhibits nonlinear characteristics. The greater the ultimate strain, the worse the deformation recovery capability. High temperature thermal exposure pre-treatment has an effect on the compression springback property, the higher the thermal exposure temperature, the worse the deformation recovery capability. The aggregation of matrix particle-cluster structure and the formation and collapse of the large size holes are main causes. The phenomenological mechanical model can be used to describe the stress-strain curve of the composites during loading and unloading. The fitting results are in good agreement with the experimental data.

Key wordsaerogel composite    thermal protection system    compression springback    high temperature    mechanical model
收稿日期: 2021-04-22      出版日期: 2022-07-18
中图分类号:  TB332  
基金资助:国家自然科学基金(51772009);中国民用航空飞行学院科研基金(J2021-042)
通讯作者: 石多奇     E-mail: shdq@buaa.edu.cn
作者简介: 石多奇(1975—), 男, 教授, 博士生导师, 博士, 研究方向为高温合金和复合材料本构理论、高温结构强度, 联系地址: 北京市昌平区沙河高教园南三街9号国实F座北京航空航天大学能源与动力工程学院(102206), E-mail: shdq@buaa.edu.cn
引用本文:   
吕双祺, 黄佳, 孙燕涛, 付尧明, 杨晓光, 石多奇. 莫来石纤维增强SiO2气凝胶复合材料压缩回弹性能实验与建模研究[J]. 材料工程, 2022, 50(7): 119-127.
Shuangqi LYU, Jia HUANG, Yantao SUN, Yaoming FU, Xiaoguang YANG, Duoqi SHI. Experimental and modeling investigation on compression springback property of mullite fiber reinforced silica aerogel composites. Journal of Materials Engineering, 2022, 50(7): 119-127.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000379      或      http://jme.biam.ac.cn/CN/Y2022/V50/I7/119
Fig.1  增强纤维在气凝胶基体中面内方向上的随机分布特征
Fig.2  莫来石纤维增强SiO2气凝胶复合材料的显微结构
(a)面内方向上的莫来石纤维和气凝胶基体;(b)SiO2气凝胶基体中的颗粒-团簇结构
Fig.3  莫来石纤维增强SiO2气凝胶复合材料面外压缩试样示意图
Fig.4  纤维增强气凝胶复合材料典型面外压缩应力-应变曲线
Fig.5  莫来石纤维增强SiO2气凝胶复合材料面外压缩应力-应变曲线
Fig.6  莫来石纤维增强SiO2气凝胶复合材料受压后的显微结构(30%应变)
Fig.7  不同极限应变下莫来石纤维增强SiO2气凝胶复合材料的变形恢复能力
Fig.8  不同温度热暴露后莫来石纤维增强SiO2气凝胶复合材料的面外压缩应力-应变曲线
Fig.9  不同温度热暴露后莫来石纤维增强SiO2气凝胶复合材料的变形恢复能力
Fig.10  高温热暴露对显微结构的影响
(a)颗粒和团簇的聚集;(b)基体和纤维之间的粘连
Loading stage Unloading stage
α β γ δ k1 k2 m1 m2
0.9128 1.3399 0.02304 -2.0386 11.1536 0.4982 10.9037 -0.5761
Table 1  加载-卸载阶段模型的材料常数值(室温)
Fig.11  不同极限应变下压缩回弹行为模拟与实验数据对比
(a)30%应变;(b)20%应变;(c)10%应变;(d)5%应变
Temperature/℃ Loading stage Unloading stage
α β γ δ k1 k2 m1 m2
300 1.1986 1.0279 0.0001 -5.7244 4.2407 1.6342 -8.3620 2.9117
600 1.1003 1.3658 0.000005 -8.2758 5.2105 1.840 -56.0690 12.9229
900 0.9817 1.2120 0.1370 0 7.5898 2.3637 -102.2332 23.7712
Table 2  加载-卸载阶段模型的材料常数值(高温)
Fig.12  不同温度热暴露后压缩回弹行为模拟与实验数据对比
(a)300 ℃;(b)600 ℃;(c)900 ℃
1 AEGERTER M A . Aerogels handbook[M]. New York: Springer, 2011.
2 KOEBEL M , RIGACCI A , ACHARD P . Aerogel-based thermal superinsulation: an overview[J]. Journal of Sol-Gel Science and Technology, 2012, 63, 315- 339.
doi: 10.1007/s10971-012-2792-9
3 MALEKI H , DURÃES L , PORTUGAL A . An overview on silica aerogels synthesis and different mechanical reinforcing strategies[J]. Journal of Non-Crystalline Solids, 2014, 385, 55- 74.
doi: 10.1016/j.jnoncrysol.2013.10.017
4 张贺新, 赫晓东, 何飞. 气凝胶隔热性能及复合气凝胶隔热材料研究进展[J]. 材料工程, 2007, (增刊1): 94- 97.
4 ZHANG H X , HE X D , HE F . Research on thermal insulation for pure aerogel and composite aerogel[J]. Journal of Materials Engineering, 2007, (Suppl 1): 94- 97.
5 冯坚. 气凝胶高效隔热材料[M]. 北京: 科学出版社, 2016.
5 FENG J . Aerogel materials for high efficiency thermal insulation[M]. Beijing: Science Press, 2016.
6 瑚佩, 姜勇刚, 张忠明, 等. 耐高温、高强度隔热复合材料研究进展[J]. 材料导报, 2020, 34 (4): 7082- 7090.
6 HU P , JIANG Y G , ZHANG Z M , et al. Research progress on high-temperature insulation composites with high mechanical property[J]. Materials Reports, 2020, 34 (4): 7082- 7090.
7 BLOSSER M L, CHEN R R, SCHMIDT I H, et al. Advanced metallic thermal protection system development[C]//40th Aerospace Sciences Meeting & Exhibit. Reno, Nevada: American Institute of Aeronautics and Astronautics, 2002.
8 于登云. 新型航天器发展对力学学科的挑战[J]. 科学通报, 2015, 60, 1085- 1094.
8 YU D Y . Mechanical challenges in advanced spacecraft development[J]. Chinese Science Bulletin, 2015, 60, 1085- 1094.
9 高庆福. 纳米多孔SiO2、Al2O3气凝胶及其高效隔热复合材料研究[D]. 长沙: 国防科学技术大学, 2009.
9 GAO Q F. Nano-porous silica, alumina aerogels and thermal super-insulation composites[D]. Changsha: National University of Defense Technology, 2009.
10 HOU X B , ZHANG R B , FANG D N . An ultralight silica-modified ZrO2-SiO2 aerogel composite with ultra-low thermal conductivity and enhanced mechanical strength[J]. Scripta Materialia, 2018, 143, 113- 116.
doi: 10.1016/j.scriptamat.2017.09.028
11 余煜玺, 马锐. SiC微/纳米纤维毡增强SiO2气凝胶复合材料的制备和表征[J]. 材料工程, 2018, 46 (11): 45- 50.
11 YU Y X , MA R . Preparation and characterization of silicon carbide micro/nano fibrous mat reinforced silica aerogel composites[J]. Journal of Materials Engineering, 2018, 46 (11): 45- 50.
12 SHI D Q , SUN Y T , FENG J , et al. Experimental investigation on high temperature anisotropic compression properties of ceramic-fiber-reinforced SiO2 aerogel[J]. Materials Science and Engineering: A, 2013, 585 (11): 25- 31.
13 米春虎, 姜勇刚, 石多奇, 等. 陶瓷纤维增强氧化硅气凝胶复合材料力学性能实验[J]. 复合材料学报, 2014, 31 (3): 635- 643.
13 MI C H , JIANG Y G , SHI D Q , et al. Mechanical property test of ceramic fiber reinforced silica aerogel composites[J]. Acta Materiae Compositae Sinica, 2014, 31 (3): 635- 643.
14 YANG J , LI S K , LUO Y M , et al. Compressive properties and fracture behavior of ceramic fiber-reinforced carbon aerogel under quasi-static and dynamic loading[J]. Carbon, 2011, 49 (5): 1542- 1549.
doi: 10.1016/j.carbon.2010.12.021
15 黄红岩, 苏力军, 雷朝帅, 等. 可重复使用热防护材料应用与研究进展[J]. 航空学报, 2020, 41 (12): 1- 35.
15 HUANG H Y , SU L J , LEI C S , et al. Reusable thermal protective materials: application and research progress[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41 (12): 1- 35.
16 YANG X G , SUN Y T , SHI D Q . Experimental investigation and modeling of the creep behavior of ceramic fiber-reinforced SiO2 aerogel[J]. Journal of Non-Crystalline Solids, 2012, 358 (3): 519- 524.
doi: 10.1016/j.jnoncrysol.2011.11.028
17 YANG X G , WEI J , SHI D Q , et al. Comparative investigation of creep behavior of ceramic fiber reinforced alumina and silica aerogel[J]. Materials Science and Engineering: A, 2014, 609, 125- 130.
doi: 10.1016/j.msea.2014.04.099
18 ZHANG X , ZHANG T , YI Z H , et al. Multiscale mullite fiber/whisker reinforced silica aerogel nanocomposites with enhanced compressive strength and thermal insulation performance[J]. Ceramics International, 2020, 46, 28561- 28568.
doi: 10.1016/j.ceramint.2020.08.013
19 HE S , CHENG X D , LI Z , et al. Facile synthesis of sponge reinforced monolithic silica aerogels with improved mechanical pro-perty and excellent absorptivity[J]. Materials Letters, 2015, 154, 107- 111.
doi: 10.1016/j.matlet.2015.02.101
20 HE J , ZHAO H Y , LI X L , et al. Superelastic and superhydrophobic bacterial cellulose/silica aerogels with hierarchical cellular structure for oil absorption and recovery[J]. Journal of Hazar-dous Materials, 2018, 346, 199- 207.
doi: 10.1016/j.jhazmat.2017.12.045
21 SI Y , AN X Q , DOU L Y , et al. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity[J]. Science Advances, 2018, 4 (4): 8925.
doi: 10.1126/sciadv.aas8925
22 LI C , DING Y W , HU B C , et al. Temperature-invariant super-elastic and fatigue resistant carbon nanofiber aerogels[J]. Advanced Materials, 2020, 32 (2): 1904331.
doi: 10.1002/adma.201904331
23 MURILLO J , BACHLECHNER M , CAMPO F , et al. Structure and mechanical properties of silica aerogels and xerogels modeled by molecular dynamics simulation[J]. Journal of Non-Crystalline Solids, 2010, 356 (25): 1325- 1331.
24 ROY S, JONES S, REINHEIMER P, et al. Mechanical characte-rization and computer simulation of crosslinked nanostructured silica aerogels[C]//50th AIAA/ASME/ASCE/AHS/ASC Stru-ctures, Structural Dynamics and Materials Conference. California: American Institute of Aeronautics and Astronautics. Palm Springs, California, USA: AIAA, 2009: 2383.
25 FU B , LUO H , WANG F , et al. Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression[J]. Journal of Non-Crystalline So-lids, 2011, 357 (10): 2063- 2074.
26 LU Z X , YUAN Z S , LIU Q , et al. Multi-scale simulation of the tensile properties of fiber-reinforced silica aerogel composites[J]. Materials Science and Engineering: A, 2015, 625, 278- 287.
27 SUN Y T , SHI D Q , YANG X G , et al. Stress state analysis of Iosipescu shear specimens for aerogel composite with different properties in tension and compression[J]. Procedia Engineering, 2013, 67, 517- 524.
28 冯坚, 高庆福, 冯军宗, 等. 纤维增强SiO2气凝胶隔热复合材料的制备及其性能[J]. 国防科技大学学报, 2010, 32 (1): 40- 44.
28 FENG J , GAO Q F , FENG J Z , et al. Preparation and properties of fiber-reinforced SiO2 aerogel insulation composites[J]. Journal of National University of Defense Technology, 2010, 32 (1): 40- 44.
29 TABIEI A , WU J . Three-dimensional nonlinear orthotropic finite element material model for wood[J]. Composite Structures, 2000, 50 (2): 143- 149.
30 WOIGNIER T , DUFFOURS L , BEURROIES I , et al. Plasticity in aerogels[J]. Journal of Sol-Gel Science and Technology, 1997, 8 (1): 789- 794.
31 PHALIPPOU J , DESPETIS F , CALAS S , et al. Comparison between sintered and compressed aerogels[J]. Optical Materials, 2004, 26 (2): 167- 172.
32 CAI H F , JIANG Y G , QU C , et al. Sintering behavior of SiO2 aerogel composites reinforced by mullite fibers via in-situ rapid heating TEM observations[J]. Journal of the European Ceramic Society, 2020, 40 (1): 127- 135.
33 LIU G W , ZHOU B , NI X Y , et al. Influence of thermal process on microstructural and physical properties of ambient pressure dried hydrophobic silica aerogel monoliths[J]. Journal of Sol-Gel Science and Technology, 2012, 62 (2): 126- 133.
34 祖国庆, 沈军, 邹丽萍, 等. 弹性气凝胶的制备及其力学、热学性能研究[J]. 无机材料学报, 2014, 29 (4): 417- 422.
34 ZU G Q , SHEN J , ZOU L P , et al. Preparation, mechanical pro-perties and thermal properties of elastic aerogels[J]. Journal of Inorganic Materials, 2014, 29 (4): 417- 422.
[1] 王权威, 王程冬, 鲁中良, 苗恺, 艾子超, 李涤尘. 面向单晶涡轮叶片的氧化硅基陶瓷型芯快速成形性能[J]. 材料工程, 2022, 50(7): 51-58.
[2] 薛燕鹏, 王效光, 赵金乾, 史振学, 刘世忠, 李嘉荣. 两种型壳温度对DD9单晶涡轮叶片凝固组织的影响[J]. 材料工程, 2022, 50(7): 80-87.
[3] 刘庆帅, 刘秀波, 刘一帆, 张林, 孟元, 刘怀菲. 陶瓷基高温自润滑复合涂层的制备及摩擦学性能研究进展[J]. 材料工程, 2022, 50(6): 61-74.
[4] 张轶波, 郑亮, 许文勇, 李周, 张国庆. 热处理温度对刚玉基耐火材料组织和微粒脱落的影响[J]. 材料工程, 2022, 50(6): 138-148.
[5] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
[6] 李红, 闫维嘉, 张禹, 杜文博, 栗卓新, MARIUSZBober, SENKARAJacek. 先进航空材料焊接过程热裂纹研究进展[J]. 材料工程, 2022, 50(2): 50-61.
[7] 曹凯莉, 杨文超, 屈鹏飞, 黄太文, 郭敏, 苏海军, 张军, 刘林. Ru对镍基单晶高温合金凝固特性、TCP相析出及蠕变性能影响的研究进展[J]. 材料工程, 2022, 50(1): 80-92.
[8] 张明达, 刘英飒, 郑真, 曹京霞, 黄旭. 合金元素复合化对Ti2AlNb合金高温抗氧化性能影响[J]. 材料工程, 2022, 50(1): 93-100.
[9] 谢小青, 李轩, 吕威, 来升, 刘益, 李建军, 谢文玲. Co对Ti45Al-8Nb-0.3Y合金组织结构和高温抗氧化性能的影响[J]. 材料工程, 2022, 50(1): 101-108.
[10] 张勇, 刘华艳, 张友源, 燕青芝. Ti3SiC2陶瓷材料的制备及抗烧蚀行为[J]. 材料工程, 2021, 49(9): 119-127.
[11] 王志成, 李嘉荣, 刘世忠, 赵金乾, 史振学, 王效光, 杨万鹏, 岳晓岱. 单晶高温合金雀斑研究进展[J]. 材料工程, 2021, 49(7): 1-9.
[12] 解齐颖, 张祎, 朱阳, 崔红西. 超高温陶瓷改性碳/碳复合材料[J]. 材料工程, 2021, 49(7): 46-55.
[13] 谷籽旺, 郭文敏, 张弘鳞, 李文娟. 基于核壳结构粉体设计的CoNiCrAlY-Al2O3复合涂层组织结构及其抗氧化性能[J]. 材料工程, 2021, 49(7): 112-123.
[14] 刘维维, 刘世忠, 李影, 李嘉荣. 长期时效对DD6单晶高温合金组织和力学性能的影响[J]. 材料工程, 2021, 49(6): 94-99.
[15] 宋鹏, 姜祥伟, 吴俊杰, 卢玉章, 董加胜, 楼琅洪. DD421单晶高温合金在无SOx气氛下的低温热腐蚀硫化行为[J]. 材料工程, 2021, 49(6): 109-115.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn