Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (6): 97-106    DOI: 10.11868/j.issn.1001-4381.2021.000401
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
并流共沉淀法合成Dy2O3-ZrO2纳米粉体
程慧聪1, 王雅雷1,*(), 李阿欣1, 刘怀菲2,*(), 武囡囡1, 刘蓉1
1 中南大学 粉末冶金国家重点实验室, 长沙 410083
2 中南林业科技大学 材料科学与工程学院, 长沙 410004
Synthesis of Dy2O3-ZrO2 nano powders by cocurrent coprecipitation
Huicong CHENG1, Yalei WANG1,*(), Axin LI1, Huaifei LIU2,*(), Nannan WU1, Rong LIU1
1 State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
2 School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
全文: PDF(15902 KB)   HTML ( 3 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用并流化学共沉淀法合成了Dy2O3掺杂ZrO2(DySZ)纳米粉体材料,系统研究稳定剂掺杂量、阳离子浓度、反应系统pH值和煅烧温度对粉体材料物相组成、晶体结构和微观形貌的影响。结果表明:不同合成工艺条件下,DySZ粉体材料均具有纳米尺度特征,球形颗粒尺寸为10~30 nm,Dy2O3的掺杂可以起到稳定晶型的作用; 稳定剂掺杂量对DySZ粉体的物相组成具有明显影响,掺杂量为10%(质量分数)时可合成单一四方相结构的DySZ粉体; DySZ粉体材料的四方度和微观形貌对稳定剂掺杂量、阳离子浓度、反应体系pH值和煅烧温度均不敏感,但其平均晶粒尺寸随稳定剂掺杂量、阳离子浓度和反应体系pH值的升高略有降低,随煅烧温度的提高而显著增加。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程慧聪
王雅雷
李阿欣
刘怀菲
武囡囡
刘蓉
关键词 Dy2O3-ZrO2粉体并流共沉淀法晶体结构微观形貌    
Abstract

Nano-sized Dy2O3 doped ZrO2 powders (DySZ) were synthesized by cocurrent co-precipitation method. The effects of Dy2O3 content, cation concentration, pH value and calcination temperature on the phase composition, crystal structure, grain size and micromorphology of DySZ powders were investigated. Results show that under different synthesis conditions, the spherical DySZ powders have nano scale characteristics with a size range of 10-30 nm, Dy2O3-doping can promote the DySZ stabilized as tetragonal structure. The doping amount of stabilizer has a significant effect on the phase composition of DySZ powder. Single tetragonal DySZ can be obtained with 10%(mass fraction) Dy2O3-doping. No significant effect can be found between the tetragonality, microstructure of DySZ powders and the stabilizer content, cation concentration, pH value as well as calcination temperature. The average grain size exhibits a slight decrease with the increase of stabilizer content, cation concentration and pH value. Meanwhile, the elevated calcination temperature can promote the crystal growth of DySZ.

Key wordsDy2O3-ZrO2 powders    cocurrent coprecipitation method    crystal structure    micromorphology
收稿日期: 2021-04-28      出版日期: 2022-06-20
中图分类号:  TQ174  
  TB383  
基金资助:国家科技重大专项(2017-Ⅵ-0020-0092);湖南省教育厅科学研究项目(19C1913)
通讯作者: 王雅雷,刘怀菲     E-mail: yaleipm@csu.edu.cn;huaifei011@126.com
作者简介: 刘怀菲(1983—),女,讲师,博士,主要从事高温热防护涂层材料的研究,联系地址:湖南省长沙市天心区韶山南路498号中南林业科技大学材料科学与工程学院(410004),E-mail: huaifei011@126.com
王雅雷(1982—),男,副研究员,博士,主要从事高性能碳基复合材料、粉末冶金材料的研究,联系地址:湖南省长沙市岳麓区麓山南路932号中南大学粉末冶金国家重点实验室(410083),E-mail: yaleipm@csu.edu.cn
引用本文:   
程慧聪, 王雅雷, 李阿欣, 刘怀菲, 武囡囡, 刘蓉. 并流共沉淀法合成Dy2O3-ZrO2纳米粉体[J]. 材料工程, 2022, 50(6): 97-106.
Huicong CHENG, Yalei WANG, Axin LI, Huaifei LIU, Nannan WU, Rong LIU. Synthesis of Dy2O3-ZrO2 nano powders by cocurrent coprecipitation. Journal of Materials Engineering, 2022, 50(6): 97-106.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000401      或      http://jme.biam.ac.cn/CN/Y2022/V50/I6/97
Fig.1  并流共沉淀法合成DySZ粉体工艺流程图
Mass fraction of Dy2O3/% Cation concentration/
(mol·L-1)
pH value Calcination
temperature/
Holding time/h
5-15 0.5 11 800 2
10 0.1-0.9 11 800 2
10 0.5 7-11 800 2
10 0.5 11 500-800 2
Table 1  DySZ粉体合成工艺参数
Fig.2  不同稳定剂掺杂量合成DySZ粉体的XRD图谱
(a)全谱; (b)27°~32°特征区域; (c)72°~76°特征区域
Fig.3  DySZ粉体材料的四方度与晶粒尺寸随稳定剂含量的变化
Fig.4  不同稳定剂掺杂量合成DySZ粉体的微观形貌
(a)5%;(b)7.5%;(c)10%;(d)12.5%;(e)15%
Fig.5  不同阳离子浓度合成10DySZ粉体的XRD图谱
Fig.6  10DySZ粉体材料的四方度与晶粒尺寸随阳离子浓度的变化
Fig.7  不同阳离子浓度合成10DySZ粉体的微观形貌
(a)0.1 mol/L; (b)0.3 mol/L; (c)0.5 mol/L; (d)0.7 mol/L; (e)0.9 mol/L
Fig.8  不同反应系统pH值合成DySZ粉体的XRD图谱
Fig.9  10DySZ粉体材料的四方度与晶粒尺寸随pH值的变化
Fig.10  不同反应体系pH值合成10DySZ粉体的微观形貌
(a)pH=7;(b)pH=8;(c)pH=9;(d)pH=10;(e)pH=11
Fig.11  10DySZ前驱体的TG-DSC曲线
Fig.12  不同煅烧温度合成10DySZ粉体的XRD图谱
Fig.13  10DySZ粉体材料的四方度与晶粒尺寸随煅烧温度变化
1 GUO L , LI M , YE F . Phase stability and thermal conductivity of RE2O3 (RE=La, Nd, Gd, Yb) and Yb2O3 co-doped Y2O3 stabilized ZrO2 ceramics[J]. Ceramics International, 2016, 42 (6): 7360- 7365.
doi: 10.1016/j.ceramint.2016.01.138
2 黄巧玲. 氧化钇稳定氧化锆粉体的制备与表征[D]. 长沙: 湖南大学, 2015.
2 HUANG Q L. Preparation and characterization of yttria stabilized zirconia powders[D]. Changsha: Hunan University, 2015.
3 梁明德, 于继平, 张鑫, 等. 高温热障涂层陶瓷层材料研究进展[J]. 热喷涂技术, 2013, 5 (2): 1- 9.
doi: 10.3969/j.issn.1674-7127.2013.02.001
3 LIANG M D , YU J P , ZHANG X , et al. Progress in ceramic materials for high temperature thermal barrier coatings[J]. Thermal Spray Technology, 2013, 5 (2): 1- 9.
doi: 10.3969/j.issn.1674-7127.2013.02.001
4 任继文, 彭蓓, 张鸿海, 等. 钇稳定氧化锆纳米粉体烧结工艺的研究[J]. 材料工程, 2009, (2): 38- 42.
doi: 10.3969/j.issn.1001-4381.2009.02.009
4 REN J W , PENG B , ZHANG H H , et al. Research on the sintering processing of the yttria stabilized zirconia nano-powders[J]. Journal of Materials Engineering, 2009, (2): 38- 42.
doi: 10.3969/j.issn.1001-4381.2009.02.009
5 袁佟, 邓畅光, 毛杰, 等. 等离子喷涂-物理气相沉积制备7YSZ热障涂层及其热导率研究[J]. 材料工程, 2017, 45 (7): 1- 6.
5 YUAN T , DENG C G , MAO J , et al. Preparation and thermal conductivity of 7YSZ thermal barrier coatings prepared by plasma spray-physical vapor deposition[J]. Journal of Materials Engineering, 2017, 45 (7): 1- 6.
6 LIU H , LI S , LI Q , et al. Investigation on the phase stability, sintering and thermal conductivity of Sc2O3-Y2O3-ZrO2 for thermal barrier coating application[J]. Materials & Design, 2010, 31 (6): 2972- 2977.
7 LIU H , LI S , LI Q , et al. Microstructure, phase stability and thermal conductivity of plasma sprayed Yb2O3, Y2O3 co-stabilized ZrO2 coatings[J]. Solid State Sciences, 2011, 13 (3): 513- 519.
doi: 10.1016/j.solidstatesciences.2010.11.043
8 苏正夫, 刘怀菲, 王雅雷. La2O3和Y2O3掺杂ZrO2复合材料的高温相稳定性、抗烧结性及热导率[J]. 复合材料学报, 2015, 32 (5): 1381- 1389.
8 SU Z F , LIU H F , WANG Y L . High temperature phase stability, sintering resistance and thermal conductivity of La2O3 and Y2O3 doped ZrO2composites[J]. Acta Materiae Compositae Sinica, 2015, 32 (5): 1381- 1389.
9 张丹华, 王璐, 郭洪波, 等. 多元稀土氧化物掺杂二氧化锆基陶瓷材料的热物理性能[J]. 复合材料学报, 2011, 28 (2): 179- 184.
9 ZHANG D H , WANG L , GUO H B , et al. Thermophysical properties of multiple rare earth oxide co-doped zirconia-based ceramic materials[J]. Acta Materiae Compositae Sinica, 2011, 28 (2): 179- 184.
10 REN X , ZHAO M , FENG J , et al. Phase transformation behavior in air plasma sprayed yttria stabilized zirconia coating[J]. Journal of Alloys and Compounds, 2018, 750, 189- 196.
doi: 10.1016/j.jallcom.2018.03.011
11 李凤梅. 稀土在航空工业中的应用现状与发展趋势[J]. 材料工程, 1998, (6): 10- 13.
11 LI F M . Application and development trend of rare earth in aviation industry[J]. Journal of Materials Engineering, 1998, (6): 10- 13.
12 郭源源, 吴基球. CeO2-Y2O3共稳定纳米四方多晶氧化锆粉体的制备与研究[J]. 中国陶瓷, 2007, 43 (5): 3- 6.
doi: 10.3969/j.issn.1001-9642.2007.05.001
12 GUO Y Y , WU J Q . Preparation and study of TZP nano-powder doped by ceria/yttria multi-stabilizer[J]. China Ceramics, 2007, 43 (5): 3- 6.
doi: 10.3969/j.issn.1001-9642.2007.05.001
13 RAHAMAN M , GROSS J , DUTTON R , et al. Phase stability, sintering, and thermal conductivity of plasma-sprayed ZrO2-Gd2O3 compositions for potential thermal barrier coating applications[J]. Acta Materialia, 2006, 54 (6): 1615- 1621.
doi: 10.1016/j.actamat.2005.11.033
14 VOROZHTCOV V A , STOLYAROVA V L , SHILOV A L , et al. Thermodynamics and vaporization of the Sm2O3-ZrO2 system studied by Knudsen effusion mass spectrometry[J]. Journal of Physics and Chemistry of Solids, 2021, 156, 110156.
doi: 10.1016/j.jpcs.2021.110156
15 GUO L , GUO H , GONG S , et al. Improvement on the phase stability, mechanical properties and thermal insulation of Y2O3-stabilized ZrO2 by Gd2O3 and Yb2O3 co-doping[J]. Ceramics International, 2013, 39 (8): 9009- 9015.
doi: 10.1016/j.ceramint.2013.04.103
16 GUO L , LI M , ZHANG C , et al. Dy2O3stabilized ZrO2 as a toughening agent for Gd2Zr2O7 ceramic[J]. Materials Letters, 2017, 188, 142- 144.
doi: 10.1016/j.matlet.2016.11.038
17 王刚, 滕佰秋, 王志宏, 等. 航空发动机上可磨耗封严涂层的应用及需求[J]. 热喷涂技术, 2012, 4 (1): 20- 23.
doi: 10.3969/j.issn.1674-7127.2012.01.006
17 WANG G , TENG B Q , WANG Z H , et al. The development of abradable coatings for aeroengine[J]. Thermal Spray Technology, 2012, 4 (1): 20- 23.
doi: 10.3969/j.issn.1674-7127.2012.01.006
18 SPORER D, REFKE A. Processing and properties of advanced ceramic abradable coatings[C]// Beijing: International thermal spraying Conference. 2007.
19 QULCK L , WHEATLEY R . Theoretical and experimental studies of doping effects on thermodynamic properties of (Dy, Y)-ZrO2[J]. Acta Materialia, 2016, 114, 7- 14.
doi: 10.1016/j.actamat.2016.04.007
20 曹学强. 热障涂层新材料和新结构[M]. 北京: 科学出版社, 2016.
20 CAO X Q . New materials and new structures of thermal barrier coatings[M]. Beijing: Science Press, 2016.
21 向星. Y3Al5O12: Eu3+红色荧光粉的化学共沉淀法合成与表征[D]. 重庆: 重庆大学, 2009.
21 XIANG X. Synthesis and characterization of Y3Al5O12: Eu3+ red phosphor by coprecipitation method[D]. Chongqing: Chongqing University, 2009.
22 谭强强, 唐子龙, 张中太. 纳米四方多晶氧化锆粉体的低温制备及反应机理研究[J]. 材料工程, 2004, (11): 57- 60.
doi: 10.3969/j.issn.1001-4381.2004.11.014
22 TAN Q Q , TANG Z L , ZHANG Z T . Preparation and microstructure of nanometer tetragonal polycrystal zirconia powder at low temperature condition[J]. Journal of Materials Engineering, 2004, (11): 57- 60.
doi: 10.3969/j.issn.1001-4381.2004.11.014
23 CHEN H , GAO Y , LIU Y , et al. Coprecipitation synthesis and thermal conductivity of La2Zr2O7[J]. Journal of Alloys and Compounds, 2009, 480 (2): 843- 848.
doi: 10.1016/j.jallcom.2009.02.081
24 CHUAH G K , JAENICKE S , CHEONG S A , et al. The influence of preparation conditions on the surface area of zirconia[J]. Applied Catalysis A, 1996, 145, 267- 284.
doi: 10.1016/0926-860X(96)00152-4
25 沈志坚, 方中华, 李廷凯, 等. 化学共沉淀过程pH值对Y2O3(MgO)-PSZ相组成的影响[J]. 硅酸盐学报, 1991, 19 (5): 403- 408.
25 SHEN Z J , FANG Z H , LI T K , et al. Effect of pH value in coprecipitation on crystal phase of calcined Y2O3 (MgO)-PSZ[J]. Journal of the Chinese Ceramic Society, 1991, 19 (5): 403- 408.
26 苏小莉, 李晓乐, 蔡天聪, 等. 钇稳定氧化锆的反向共沉淀制备及固溶体晶型研究[J]. 中国陶瓷, 2017, 53 (1): 41- 45.
26 SU X L , LI X L , CAI T C , et al. Study on preparation process and solid solution crystal type of yttria stabilized zirconia by reverse coprecipitation method[J]. China Ceramics, 2017, 53 (1): 41- 45.
27 LI A X , WANG Y L , XIONG X , et al. Microstructure and synthesis mechanism of dysprosia-stabilized zirconia nanocrystals via chemical coprecipitation[J]. Ceramics International, 2020, 46 (9): 13331- 13341.
doi: 10.1016/j.ceramint.2020.02.112
28 WU N N , WANG Y L , LIU R T , et al. Preparation and synthesis mechanism of ytterbium monosilicate nano-powders by a cocurrent coprecipitation method[J]. Ceramics International, 2020, 46 (10): 15003- 15012.
doi: 10.1016/j.ceramint.2020.03.030
29 BAHAMIRIAN M , HADAVI S M M , RAHIMIPOUR M R , et al. Synthesis and characterization of yttria-stabilized zirconia nanoparticles doped with ytterbium and gadolinium: ZrO29.5Y2O35.6Yb2O35.2Gd2O3[J]. Metallurgical and Materials Transactions A, 2018, 49 (6): 2523- 2532.
doi: 10.1007/s11661-018-4555-x
30 ATKINS E . Elements of X-ray diffraction[J]. Physics Today, 1978, 10 (3): 50.
31 DIAZ-TORRES L A , ROSA E D L , SALAS P , et al. Efficient photoluminescence of Dy3+ at low concentrations in nanocrystalline ZrO2[J]. Journal of Solid State Chemistry, 2008, 181 (1): 75- 80.
doi: 10.1016/j.jssc.2007.09.033
32 RAZA M , CORNIL D , CORNIL J , et al. Oxygen vacancy stabilized zirconia: a joint experimental and theoretical study[J]. Scripta Materialia, 2016, 124, 26- 29.
doi: 10.1016/j.scriptamat.2016.06.025
33 AZZOPARDI A , MÉVREL R , SAINT-RAMOND B , et al. Influence of aging on structure and thermal conductivity of Y-PSZ and Y-FSZ EB-PVD coatings[J]. Surface and Coatings Technology, 2004, 177/178, 131- 139.
doi: 10.1016/j.surfcoat.2003.08.073
34 刘怀菲, 李松林, 李其连. 热障涂层用La2O3、Y2O3共掺杂稳定ZrO2的制备及其相稳定性[J]. 无机材料学报, 2009, 24 (6): 1226- 1230.
34 LIU H F , LI S L , LI Q L . Preparation and phase stability of La2O3, Y2O3 co-doped ZrO2 ceramic powder application for thermal barrier coating[J]. Journal of Inorganic Materials, 2009, 24 (6): 1226- 1230.
35 JIANG K , LIU S , WANG X . Low-thermal-conductivity and high-toughness CeO2-Gd2O3 co-stabilized zirconia ceramic for potential thermal barrier coating applications[J]. Journal of the European Ceramic Society, 2018, 38 (11): 3986- 3993.
doi: 10.1016/j.jeurceramsoc.2018.04.065
36 徐刚, 李海舰, 杨琳琳, 等. 锆液浓度、焙烧温度对氨基共沉淀法合成Y-PSZ相组成影响的研究[C]//第十一届全国高技术陶瓷学术年会论文集. 重庆: 材料导报社, 2000: 45-46.
36 XU G, LI H J, YANG L L, et al. Effect of zirconium solution concentration and calcination temperature on phase composition of Y-PSZ synthesis by amino coprecipitation[C]//Proceedings of the Eleventh National Annual Conference on High Tech Ceramics. Chongqing: Materials Reports Press, 2000: 45-46.
37 陈士冰, 王世峰, 李亮. 反向共沉淀法制备3YSZ超细粉体[J]. 陶瓷学报, 2010, 31 (2): 262- 265.
doi: 10.3969/j.issn.1000-2278.2010.02.020
37 CHEN S B , WANG S F , LI L . Preparation of 3Y-TZP ultrafine powder by reverse coprecipitation[J]. Journal of Ceramics, 2010, 31 (2): 262- 265.
doi: 10.3969/j.issn.1000-2278.2010.02.020
38 陆佩文. 无机材料科学基础[M]. 武汉: 武汉工业大学出版社, 1996.
38 LU P W . Fundamentals of inorganic materials science[M]. Wuhan: Wuhan University of Technology Press, 1996.
[1] 邓奇林, 杨敏, 姚彧敏, 李红, 任慕苏, 孙晋良. 三向正交预制体织造参数对C/C复合材料性能的影响[J]. 材料工程, 2022, 50(5): 139-146.
[2] 阮家苗, 李红, 姚彧敏, 杨敏, 任慕苏, 孙晋良. 热处理温度对高导热3D C/C复合材料性能的影响[J]. 材料工程, 2021, 49(9): 128-134.
[3] 张浩, 李海丽. 复合乳化剂作用下相变调湿复合材料的性能和机理[J]. 材料工程, 2019, 47(12): 157-162.
[4] 梁家浩, 魏智强, 朱学良, 张旭东, 武晓娟, 姜金龙. 尖晶石结构Ni掺杂ZnFe2O4纳米颗粒的性能表征[J]. 材料工程, 2019, 47(10): 113-119.
[5] 陈俊, 张代军, 张天骄, 包建文, 钟翔屿, 张朋, 刘巍. 溶液静电纺丝制备热塑性聚酰亚胺超细纤维无纺布[J]. 材料工程, 2018, 46(2): 41-49.
[6] 邓城, 漆小鹏, 李倩, 尹从岭, 杨辉. 沉淀法与水热法合成载银羟基磷灰石及其抗菌性能[J]. 材料工程, 2017, 45(4): 113-120.
[7] 张林, 陈多礼, 朱旻昊, 蔡振兵, 彭金方. 氧化石墨烯对阻尼丁腈橡胶抗老化性能的影响[J]. 材料工程, 2017, 45(3): 7-12.
[8] 曹同坤, 孙何, 王晓明. 采用端面带孔电极进行电火花沉积制备自润滑涂层[J]. 材料工程, 2017, 45(10): 88-94.
[9] 马李, 何录菊, 邵先亦, 王古平, 张梦贤. 电子束沉积TiAl合金的微观形貌及组织结构稳定性[J]. 材料工程, 2016, 44(1): 89-95.
[10] 赵健闯, 胡建东, 孟繁有, 王耀民. TiBCN陶瓷线切割加工表面质量及蚀除机理[J]. 材料工程, 2015, 43(7): 21-25.
[11] 冯柳, 周邦新, 彭剑超, 王均安. RPV模拟钢中纳米富Cu析出相的复杂晶体结构表征[J]. 材料工程, 2015, 43(7): 80-86.
[12] 余强, 陈阵, 范莹莹, 魏昶, 梁美艳, 文大楷. 纳米二氧化锆对制备PbO2-CeO2-ZrO2复合阳极材料的影响[J]. 材料工程, 2014, 0(5): 40-45.
[13] 顾建军, 刘鹏飞, 韩金荣, 杨淑敏, 韩伟, 岂云开. Fe掺杂量和退火氛围对TiO2薄膜晶体结构和磁性能的影响[J]. 材料工程, 2014, 0(10): 101-105.
[14] 刘晓丽, 鹿海军, 邢丽英. 双马来酰亚胺泡沫的微观形貌与结构控制研究[J]. 材料工程, 2012, 0(8): 83-87.
[15] 于萍, 张金岭, 许红, 张长桥. 表面不均匀性黑斑的钢芯铝绞线模拟海洋环境5年腐蚀行为的研究[J]. 材料工程, 2010, 0(3): 46-50,55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn