1 State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China 2 School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
Nano-sized Dy2O3 doped ZrO2 powders (DySZ) were synthesized by cocurrent co-precipitation method. The effects of Dy2O3 content, cation concentration, pH value and calcination temperature on the phase composition, crystal structure, grain size and micromorphology of DySZ powders were investigated. Results show that under different synthesis conditions, the spherical DySZ powders have nano scale characteristics with a size range of 10-30 nm, Dy2O3-doping can promote the DySZ stabilized as tetragonal structure. The doping amount of stabilizer has a significant effect on the phase composition of DySZ powder. Single tetragonal DySZ can be obtained with 10%(mass fraction) Dy2O3-doping. No significant effect can be found between the tetragonality, microstructure of DySZ powders and the stabilizer content, cation concentration, pH value as well as calcination temperature. The average grain size exhibits a slight decrease with the increase of stabilizer content, cation concentration and pH value. Meanwhile, the elevated calcination temperature can promote the crystal growth of DySZ.
GUO L , LI M , YE F . Phase stability and thermal conductivity of RE2O3 (RE=La, Nd, Gd, Yb) and Yb2O3 co-doped Y2O3 stabilized ZrO2 ceramics[J]. Ceramics International, 2016, 42 (6): 7360- 7365.
doi: 10.1016/j.ceramint.2016.01.138
2
黄巧玲. 氧化钇稳定氧化锆粉体的制备与表征[D]. 长沙: 湖南大学, 2015.
2
HUANG Q L. Preparation and characterization of yttria stabilized zirconia powders[D]. Changsha: Hunan University, 2015.
LIANG M D , YU J P , ZHANG X , et al. Progress in ceramic materials for high temperature thermal barrier coatings[J]. Thermal Spray Technology, 2013, 5 (2): 1- 9.
doi: 10.3969/j.issn.1674-7127.2013.02.001
REN J W , PENG B , ZHANG H H , et al. Research on the sintering processing of the yttria stabilized zirconia nano-powders[J]. Journal of Materials Engineering, 2009, (2): 38- 42.
doi: 10.3969/j.issn.1001-4381.2009.02.009
YUAN T , DENG C G , MAO J , et al. Preparation and thermal conductivity of 7YSZ thermal barrier coatings prepared by plasma spray-physical vapor deposition[J]. Journal of Materials Engineering, 2017, 45 (7): 1- 6.
6
LIU H , LI S , LI Q , et al. Investigation on the phase stability, sintering and thermal conductivity of Sc2O3-Y2O3-ZrO2 for thermal barrier coating application[J]. Materials & Design, 2010, 31 (6): 2972- 2977.
7
LIU H , LI S , LI Q , et al. Microstructure, phase stability and thermal conductivity of plasma sprayed Yb2O3, Y2O3 co-stabilized ZrO2 coatings[J]. Solid State Sciences, 2011, 13 (3): 513- 519.
doi: 10.1016/j.solidstatesciences.2010.11.043
SU Z F , LIU H F , WANG Y L . High temperature phase stability, sintering resistance and thermal conductivity of La2O3 and Y2O3 doped ZrO2composites[J]. Acta Materiae Compositae Sinica, 2015, 32 (5): 1381- 1389.
ZHANG D H , WANG L , GUO H B , et al. Thermophysical properties of multiple rare earth oxide co-doped zirconia-based ceramic materials[J]. Acta Materiae Compositae Sinica, 2011, 28 (2): 179- 184.
10
REN X , ZHAO M , FENG J , et al. Phase transformation behavior in air plasma sprayed yttria stabilized zirconia coating[J]. Journal of Alloys and Compounds, 2018, 750, 189- 196.
doi: 10.1016/j.jallcom.2018.03.011
GUO Y Y , WU J Q . Preparation and study of TZP nano-powder doped by ceria/yttria multi-stabilizer[J]. China Ceramics, 2007, 43 (5): 3- 6.
doi: 10.3969/j.issn.1001-9642.2007.05.001
13
RAHAMAN M , GROSS J , DUTTON R , et al. Phase stability, sintering, and thermal conductivity of plasma-sprayed ZrO2-Gd2O3 compositions for potential thermal barrier coating applications[J]. Acta Materialia, 2006, 54 (6): 1615- 1621.
doi: 10.1016/j.actamat.2005.11.033
14
VOROZHTCOV V A , STOLYAROVA V L , SHILOV A L , et al. Thermodynamics and vaporization of the Sm2O3-ZrO2 system studied by Knudsen effusion mass spectrometry[J]. Journal of Physics and Chemistry of Solids, 2021, 156, 110156.
doi: 10.1016/j.jpcs.2021.110156
15
GUO L , GUO H , GONG S , et al. Improvement on the phase stability, mechanical properties and thermal insulation of Y2O3-stabilized ZrO2 by Gd2O3 and Yb2O3 co-doping[J]. Ceramics International, 2013, 39 (8): 9009- 9015.
doi: 10.1016/j.ceramint.2013.04.103
16
GUO L , LI M , ZHANG C , et al. Dy2O3stabilized ZrO2 as a toughening agent for Gd2Zr2O7 ceramic[J]. Materials Letters, 2017, 188, 142- 144.
doi: 10.1016/j.matlet.2016.11.038
WANG G , TENG B Q , WANG Z H , et al. The development of abradable coatings for aeroengine[J]. Thermal Spray Technology, 2012, 4 (1): 20- 23.
doi: 10.3969/j.issn.1674-7127.2012.01.006
18
SPORER D, REFKE A. Processing and properties of advanced ceramic abradable coatings[C]// Beijing: International thermal spraying Conference. 2007.
19
QULCK L , WHEATLEY R . Theoretical and experimental studies of doping effects on thermodynamic properties of (Dy, Y)-ZrO2[J]. Acta Materialia, 2016, 114, 7- 14.
doi: 10.1016/j.actamat.2016.04.007
20
曹学强. 热障涂层新材料和新结构[M]. 北京: 科学出版社, 2016.
20
CAO X Q . New materials and new structures of thermal barrier coatings[M]. Beijing: Science Press, 2016.
TAN Q Q , TANG Z L , ZHANG Z T . Preparation and microstructure of nanometer tetragonal polycrystal zirconia powder at low temperature condition[J]. Journal of Materials Engineering, 2004, (11): 57- 60.
doi: 10.3969/j.issn.1001-4381.2004.11.014
23
CHEN H , GAO Y , LIU Y , et al. Coprecipitation synthesis and thermal conductivity of La2Zr2O7[J]. Journal of Alloys and Compounds, 2009, 480 (2): 843- 848.
doi: 10.1016/j.jallcom.2009.02.081
24
CHUAH G K , JAENICKE S , CHEONG S A , et al. The influence of preparation conditions on the surface area of zirconia[J]. Applied Catalysis A, 1996, 145, 267- 284.
doi: 10.1016/0926-860X(96)00152-4
SHEN Z J , FANG Z H , LI T K , et al. Effect of pH value in coprecipitation on crystal phase of calcined Y2O3 (MgO)-PSZ[J]. Journal of the Chinese Ceramic Society, 1991, 19 (5): 403- 408.
SU X L , LI X L , CAI T C , et al. Study on preparation process and solid solution crystal type of yttria stabilized zirconia by reverse coprecipitation method[J]. China Ceramics, 2017, 53 (1): 41- 45.
27
LI A X , WANG Y L , XIONG X , et al. Microstructure and synthesis mechanism of dysprosia-stabilized zirconia nanocrystals via chemical coprecipitation[J]. Ceramics International, 2020, 46 (9): 13331- 13341.
doi: 10.1016/j.ceramint.2020.02.112
28
WU N N , WANG Y L , LIU R T , et al. Preparation and synthesis mechanism of ytterbium monosilicate nano-powders by a cocurrent coprecipitation method[J]. Ceramics International, 2020, 46 (10): 15003- 15012.
doi: 10.1016/j.ceramint.2020.03.030
29
BAHAMIRIAN M , HADAVI S M M , RAHIMIPOUR M R , et al. Synthesis and characterization of yttria-stabilized zirconia nanoparticles doped with ytterbium and gadolinium: ZrO29.5Y2O35.6Yb2O35.2Gd2O3[J]. Metallurgical and Materials Transactions A, 2018, 49 (6): 2523- 2532.
doi: 10.1007/s11661-018-4555-x
30
ATKINS E . Elements of X-ray diffraction[J]. Physics Today, 1978, 10 (3): 50.
31
DIAZ-TORRES L A , ROSA E D L , SALAS P , et al. Efficient photoluminescence of Dy3+ at low concentrations in nanocrystalline ZrO2[J]. Journal of Solid State Chemistry, 2008, 181 (1): 75- 80.
doi: 10.1016/j.jssc.2007.09.033
32
RAZA M , CORNIL D , CORNIL J , et al. Oxygen vacancy stabilized zirconia: a joint experimental and theoretical study[J]. Scripta Materialia, 2016, 124, 26- 29.
doi: 10.1016/j.scriptamat.2016.06.025
33
AZZOPARDI A , MÉVREL R , SAINT-RAMOND B , et al. Influence of aging on structure and thermal conductivity of Y-PSZ and Y-FSZ EB-PVD coatings[J]. Surface and Coatings Technology, 2004, 177/178, 131- 139.
doi: 10.1016/j.surfcoat.2003.08.073
LIU H F , LI S L , LI Q L . Preparation and phase stability of La2O3, Y2O3 co-doped ZrO2 ceramic powder application for thermal barrier coating[J]. Journal of Inorganic Materials, 2009, 24 (6): 1226- 1230.
35
JIANG K , LIU S , WANG X . Low-thermal-conductivity and high-toughness CeO2-Gd2O3 co-stabilized zirconia ceramic for potential thermal barrier coating applications[J]. Journal of the European Ceramic Society, 2018, 38 (11): 3986- 3993.
doi: 10.1016/j.jeurceramsoc.2018.04.065
XU G, LI H J, YANG L L, et al. Effect of zirconium solution concentration and calcination temperature on phase composition of Y-PSZ synthesis by amino coprecipitation[C]//Proceedings of the Eleventh National Annual Conference on High Tech Ceramics. Chongqing: Materials Reports Press, 2000: 45-46.
CHEN S B , WANG S F , LI L . Preparation of 3Y-TZP ultrafine powder by reverse coprecipitation[J]. Journal of Ceramics, 2010, 31 (2): 262- 265.
doi: 10.3969/j.issn.1000-2278.2010.02.020
38
陆佩文. 无机材料科学基础[M]. 武汉: 武汉工业大学出版社, 1996.
38
LU P W . Fundamentals of inorganic materials science[M]. Wuhan: Wuhan University of Technology Press, 1996.