Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (8): 99-106    DOI: 10.11868/j.issn.1001-4381.2021.000408
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
氧化石墨烯接枝聚乙二醇对左旋聚乳酸结晶行为和热稳定性的影响
李守佳1, 罗春燕1,2,*(), 陈卫星1,2, 方铭港1, 孙健鑫1
1 西安工业大学 材料与化工学院, 西安 710021
2 陕西省光电功能材料与器件重点实验室, 西安 710021
Effects of graphene oxide grafted polyethylene glycol on crystallization behavior and thermal stability of poly(L-lactic acid)
Shoujia LI1, Chunyan LUO1,2,*(), Weixing CHEN1,2, Minggang FANG1, Jianxin SUN1
1 School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
2 Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, Xi'an 710021, China
全文: PDF(1068 KB)   HTML ( 6 )  
输出: BibTeX | EndNote (RIS)      
摘要 

为改善聚乳酸的结晶性能和热稳定性,通过酯化反应将聚乙二醇(PEG)接枝到氧化石墨烯(GO)表面,制备出表面修饰PEG的GO(GO-g-PEG)作为聚乳酸的结晶促进剂。利用溶液共混法制备出不同GO-g-PEG含量的GO-g-PEG/左旋聚乳酸(PLLA)复合材料,通过傅里叶变换红外光谱仪(FTIR)和X射线衍射仪(XRD)表征分析证实PEG成功接枝到GO表面。通过差示扫描热量仪(DSC)、热台偏光显微镜(POM)和热重分析仪(TGA)研究GO-g-PEG对PLLA结晶行为和热稳定性的影响。结果表明:在GO-g-PEG的异相成核及增塑作用下,GO-g-PEG/PLLA复合材料结晶成核密度明显增大,结晶能力和结晶度提高;在PEG接枝量为11.8%(质量分数)时,GO-g-PEG/PLLA复合材料的热分解温度较纯PLLA提高20 ℃左右。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李守佳
罗春燕
陈卫星
方铭港
孙健鑫
关键词 氧化石墨烯聚乙二醇左旋聚乳酸异相成核结晶行为热稳定性    
Abstract

In order to improve the crystallization properties of polylactic acid, the crystallization accelerator of graphene oxide grafted polyethylene glycol (GO-g-PEG) was prepared by esterification. The GO-g-PEG/poly(L-lactic acid) (PLLA) composite materials with different GO-g-PEG contents were prepared by solution blending method, and the structure was confirmed by Fourier transform infrared spectroscopy (FTIR) and X-ray diffractometer (XRD). The effect of GO-g-PEG on the crystallization behavior and thermal stability of PLLA was studied by differential scanning calorimeter (DSC), polarizing microscope (POM) and thermogravimetric analyzer (TGA). The results show that under the heterogeneous nucleation and plasticization of GO-g-PEG, the crystallization nucleation density of GO-g-PEG/PLLA composites is increased significantly, the crystallization ability and crystallinity are improved; when the grafting amount of PEG is 11.8%(mass fraction), comparing the thermal stability of GO-g-PEG/PLLA composites with PLLA neat, the thermal decomposition temperature of GO-g-PEG/PLLA composites is increased by about 20 ℃.

Key wordsgraphene oxide    polyethylene glycol    polylactic(L-lactic acid)    heterogeneous nucleation    crystallization behavior    thermal stability
收稿日期: 2021-04-28      出版日期: 2022-08-16
中图分类号:  O631  
基金资助:国家自然科学基金青年科学基金项目(21506167);陕西省自然科学基础研究计划资助项目(2021 JM-431);西北大学文化遗产研究与保护技术教育部重点实验室开放课题(wysys201906)
通讯作者: 罗春燕     E-mail: luochunyan@xatu.edu.cn
作者简介: 罗春燕(1981—),女,副教授,博士,研究方向为生物可降解材料的制备和改性,联系地址:陕西省西安市西安工业大学材料与化工学院(710021),E-mail: luochunyan@xatu.edu.cn
引用本文:   
李守佳, 罗春燕, 陈卫星, 方铭港, 孙健鑫. 氧化石墨烯接枝聚乙二醇对左旋聚乳酸结晶行为和热稳定性的影响[J]. 材料工程, 2022, 50(8): 99-106.
Shoujia LI, Chunyan LUO, Weixing CHEN, Minggang FANG, Jianxin SUN. Effects of graphene oxide grafted polyethylene glycol on crystallization behavior and thermal stability of poly(L-lactic acid). Journal of Materials Engineering, 2022, 50(8): 99-106.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000408      或      http://jme.biam.ac.cn/CN/Y2022/V50/I8/99
Fig.1  GO-g-PEG枝接产物的制备流程示意图
Fig.2  GO,PEG和GO-g-PEG的FTIR谱图(a)和XRD谱图(b)
Fig.3  均聚物PLLA(a)和GO-g-PEG质量分数分别为0.5%(b),1.0%(c),1.5%(d)的复合材料在不同温度下等温结晶20 min的偏光显微图(1)135 ℃;(2)140 ℃;(3)145 ℃;(4)150 ℃
Fig.4  GO-g-PEG,PLLA和不同GO-g-PEG质量分数的GO-g-PEG/PLLA复合材料的DSC降温(a)和第二次升温(b)曲线
Sample Mass fraction/% Cooling process Second heating process
Tc/℃ ΔHc/(J·g-1) Tcc/℃ ΔHcc/(J·g-1) Tm1/℃ Tm2/℃ ΔHm/(J·g-1) Xc/%
PLLA 134.8 17.4 167.2 15.4 16.4
GO-g-PEG 0.2 131.4 21.3 166.9 24.6 26.5
GO-g-PEG 0.5 101.1 20.9 168.2 30.2 32.6
GO-g-PEG 1.0 101.9 21.5 168.2 33.1 35.9
GO-g-PEG 1.5 115.4 31.9 165.5 39.6 43.2
GO-g-PEG 2.0 107.3 30.4 163.5 168.5 37.2 40.8
Table 1  降温和第二次升温过程中GO-g-PEG/PLLA复合材料的DSC焓值
Fig.5  0.5%GO-g-PEG/PLLA(a),1%GO-g-PEG/PLLA(b),1.5%GO-g-PEG/PLLA(c)和2%GO-g-PEG/PLLA(d) 在不同温度下的等温结晶曲线
Mass fraction of GO-g-PEG/% Tc/℃ n k/10-7 t1/2-1/ 10-3 s-1
0.5 90 2.78 50.47 4.68
95 2.72 30.30 4.01
100 2.47 27.15 4.41
105 2.36 14.42 3.61
110 2.65 18.6 3.46
1.0 90 2.65 31.00 4.19
95 2.60 23.33 3.86
100 2.54 19.94 3.74
105 2.35 14.36 3.62
110 2.53 9.61 2.82
115 2.74 7.27 2.34
1.5 90 3.06 13.82 2.65
95 2.84 26.93 3.62
100 2.69 16.51 3.24
105 2.47 14.96 3.46
110 2.36 11.37 3.26
115 2.40 3.81 2.03
120 2.53 1.75 1.42
2.0 90 2.79 5.28 2.05
95 2.60 38.16 4.66
100 2.52 60.86 5.90
105 2.73 45.32 4.62
110 2.81 12.23 2.77
115 2.93 4.61 1.90
Table 2  GO-g-PEG/PLLA复合材料的等温结晶动力学参数
Fig.6  GO-g-PEG/PLLA复合材料的结晶速率-温度曲线
Fig.7  GO,PLLA和GO-g-PEG的TG(a)和GO-g-PEG/PLLA,PLLA均聚物的DTG(b)曲线
1 RHIM J W , PARK H M , HA C S . Bio-nanocomposites for food packaging applications[J]. Progress in Polymer Science, 2013, 38 (10/11): 1629- 1652.
2 TYLER B , GULLOTTI D , MANGRAVITI A , et al. Polylactic acid (PLA) controlled delivery carriers for biomedical applications[J]. Advanced Drug Delivery Reviews, 2016, 107, 163- 175.
doi: 10.1016/j.addr.2016.06.018
3 丁跃, 卢波, 季君晖. 聚乳酸基生物可降解材料的相容性[J]. 化学进展, 2020, 32 (6): 738- 751.
3 DING Y , LU B , JI J H . Compatibilization strategies of PLA-based biodegradable materials[J]. Progress in Chemistry, 2020, 32 (6): 738- 751.
4 NOFAR M , SACLIGIL D , CARREAU P J , et al. Poly (lactic acid) blends: processing, properties and applications[J]. International Jouranl of Biological Macromolecules, 2019, 125, 307- 360.
doi: 10.1016/j.ijbiomac.2018.12.002
5 MAZZANTI V , MALAGUTTI L , MOLLICA F . Fdm 3D printing of polymers containing natural fillers: a review of their mechanical properties[J]. Polymers, 2019, 11 (7): 1- 22.
6 FARAH S , ANDERSON D G , LANGER R . Physical and mechanical properties of PLA, and their functions in widespread applications-a comprehensive review[J]. Advanced Drug Delivery Reviews, 2016, 107, 367- 392.
doi: 10.1016/j.addr.2016.06.012
7 HAMAD K , KASEEM M , YANG H W , et al. Properties and medical applications of polylactic acid: a review[J]. Express Polymer Letters, 2015, 9 (5): 435- 455.
doi: 10.3144/expresspolymlett.2015.42
8 罗春燕, 唐凤, 李守佳, 等. 多壁碳纳米管接枝聚己内酯对聚左旋乳酸结晶行为和热稳定性的影响[J]. 复合材料学报, 2020, 037 (1): 74- 81.
8 LUO C Y , TANG F , LI S J , et al. Effects of multi-walled carbon nanotubes grafted polycaprolactone on crystallization behavior and thermal stability of poly(l-lactic acid)[J]. Acta Materiae Compositae Sinica, 2020, 37 (1): 74- 81.
9 CHEN H M , WANG Y P , JIE C , et al. Hydrolytic degradation behavior of poly(l-lactide)/SiO2 composites[J]. Polymer Degradation & Stability, 2013, 98 (12): 2672- 2679.
10 KILIC N T , CAN B N , KODAL M , et al. Compatibilization of PLA/PBAT blends by using epoxy-poss[J]. Journal of Applied Polymer Science, 2019, 136 (12): 47217.
doi: 10.1002/app.47217
11 黄国家, 陈志刚, 李茂东, 等. 石墨烯和氧化石墨烯的表面功能化改性[J]. 化学学报, 2016, 74 (10): 789- 799.
11 HUANG G J , CHEN Z G , LI M D , et al. The quality supervision & inspection station of graphene & its functional products[J]. Acta Chimica Sinica, 2016, 74 (10): 789- 799.
12 DREYER D R , PARK S , BIELAWSKI C W , et al. The chemistry of graphene oxide[J]. Chemical Society Reviews, 2010, 39 (1): 228- 240.
doi: 10.1039/B917103G
13 ABRAHAM J , VASU K S , WILLIAMS C D , et al. Tunable sieving of ions using graphene oxide membranes[J]. Nature Nanotechnology, 2017, 12 (6): 546- 550.
doi: 10.1038/nnano.2017.21
14 WEI J , ZANG Z G , ZHANG Y B , et al. Enhanced performance of light-controlled conductive switching in hybrid cuprous oxide/reduced graphene oxide (Cu2O/rGO) nanocomposites[J]. Optics Letters, 2017, 42 (5): 911- 914.
doi: 10.1364/OL.42.000911
15 CHEN H M , ZHANG W B , DU X C , et al. Crystallization kinetics and melting behaviors of poly(l-lactide)/graphene oxides composites[J]. Thermochimica Acta, 2013, 566, 57- 70.
doi: 10.1016/j.tca.2013.05.018
16 WANG H , QIU Z . Crystallization behaviors of biodegradable poly(l-lactic acid)/graphene oxide nanocomposites from the amorphous state[J]. Thermochimica Acta, 2011, 526 (1/2): 229- 236.
17 SCAFFARO R , LOPRESTI F , MAIO A , et al. Electrospun PCL/GO-g-PEG structures: processing-morphology-properties relationships[J]. Composites: Part A, 2017, 92, 97- 107.
doi: 10.1016/j.compositesa.2016.11.005
18 SUN Y , HE C B . Synthesis and stereocomplex crystallization of poly(lactide)-graphene oxide nanocomposites[J]. ACS Macro Letters, 2012, 1 (6): 709- 713.
doi: 10.1021/mz300131u
19 余翠平, 石恒冲, 施德安, 等. 一种有效的制备聚乙二醇修饰氧化石墨烯的方法[J]. 高分子学报, 2012, (6): 653- 659.
19 YU C P , SHI H C , SHI D A , et al. An effective way to prepare polyethylene glycol-modified graphene oxide[J]. Acta Polymerica Sinica, 2012, (6): 653- 659.
20 HUI S , XUAN C , CHEN W , et al. Crystallization behavior, heat resistance, and mechanical performances of PLLA/myo-inositol blends[J]. Journal of Applied Polymer Science, 2017, 134, 44732.
[1] 倪洪江, 邢宇, 戴霄翔, 李军, 张代军, 陈祥宝. 航空发动机用聚酰亚胺树脂基复合材料固化工艺及热稳定性能[J]. 材料工程, 2022, 50(7): 102-109.
[2] 刘龙, 梁森, 王得盼, 周越松, 郑长升. 硅烷偶联剂及氧化石墨烯二次改性对芳纶纤维界面性能的影响[J]. 材料工程, 2022, 50(1): 145-153.
[3] 李颖, 雷蕊, 徐文凯, 朱小雪, 黄艳凤. 磁性氧化石墨烯基17β-雌二醇分子印迹复合膜的制备与性能[J]. 材料工程, 2021, 49(6): 170-177.
[4] 刘旭, 徐海, 徐立新, 张宏, 周琼. 改性碳纤维增强尼龙6复合材料的制备及性能[J]. 材料工程, 2021, 49(4): 128-134.
[5] 杜娟, 曹翔宇, 宋海鹏, 魏子明, 李香云, 杨涵清, 杨梓铭, 李伯阳, 李海龙. 氧化石墨烯在金属表面的应用及其机理研究进展[J]. 材料工程, 2021, 49(2): 32-41.
[6] 陈燕宁, 吴量, 陈勇花, 程苓, 姚文辉, 潘复生. 镁合金表面氧化石墨烯复合涂层的研究现状[J]. 材料工程, 2021, 49(12): 1-13.
[7] 周锋, 任向红, 强洪夫, 曾逸智, 樊苗苗. GO增强g-C3N4气凝胶的可见光响应及其光催化降解偏二甲肼废水[J]. 材料工程, 2021, 49(11): 171-178.
[8] 郭建强, 李炯利, 梁佳丰, 李岳, 朱巧思, 王旭东. 氧化石墨烯的化学还原方法与机理研究进展[J]. 材料工程, 2020, 48(7): 24-35.
[9] 孙莉莉, 吴南, 彭睿. 拉伸处理对碳纳米纤维/聚偏氟乙烯复合材料结晶行为和AC导电性能的影响[J]. 材料工程, 2020, 48(6): 106-111.
[10] 谢红梅, 蒋斌, 戴甲洪, 唐昌平, 李权, 潘复生. 石墨烯和氧化石墨烯水基润滑添加剂在镁合金冷轧中的摩擦学行为[J]. 材料工程, 2020, 48(3): 66-74.
[11] 宇文超, 刘秉国, 张立波, 郭胜惠, 彭金辉. 低温一步制备氧化石墨烯及微波还原研究[J]. 材料工程, 2019, 47(9): 21-28.
[12] 徐鹏, 王冠韬, 刘奎, 罗斯达. 石墨烯/碳纳米管嵌入式纤维传感器对树脂基复合材料原位监测的结构-性能关系对比[J]. 材料工程, 2019, 47(9): 29-37.
[13] 陈航, 弭光宝, 李培杰, 王旭东, 黄旭, 曹春晓. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(9): 38-45.
[14] 马敬玉, 杨凯淇, 张敏, 杨晗, 马晓燕. POSS-(PMMA46)8浸渍涂覆商业PP隔膜的结构与性能[J]. 材料工程, 2019, 47(9): 116-122.
[15] 刘红娟, 吴仁杰, 谢水波, 刘迎九. 氧化石墨烯及其复合材料对水中放射性核素的吸附[J]. 材料工程, 2019, 47(10): 22-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn