Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (7): 139-148    DOI: 10.11868/j.issn.1001-4381.2021.000443
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
稀土Y和Sm对AZ91D镁合金组织与性能的影响
杨湘杰1,2,*(), 郑彬1,2, 付亮华1,2, 杨颜1,2
1 南昌大学 机电工程学院, 南昌 330031
2 南昌大学 江西省高性能精确成形重点实验室, 南昌 330031
Effect of Y and Sm on microstructure and properties of AZ91D magnesium alloy
Xiangjie YANG1,2,*(), Bin ZHENG1,2, Lianghua FU1,2, Yan YANG1,2
1 College of Mechanical and Electrical Engineering, Nanchang University, Nanchang 330031, China
2 Key Laboratory of Near Net Forming of Jiangxi Province, Nanchang University, Nanchang 330031, China
全文: PDF(26659 KB)   HTML ( 7 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用控制变量法研究单一稀土Y和复合稀土Y,Sm元素对AZ91D镁合金微观组织与力学性能的影响,分析稀土元素对AZ91D合金的细化机理。结果表明:复合添加稀土Y和Sm对AZ91D合金的作用效果明显好于单一添加稀土Y对AZ91D合金的作用效果,添加Y和Sm后,生成了块状相Al2Y相和针状相Al2Sm相,可以作为α-Mg的有效异质形核点。当加入量为0.8%(质量分数,下同)Y+1.0% Sm时,α-Mg晶粒尺寸最为细小,分布最为均匀,其合金的硬度、抗拉强度及伸长率分别为67.42HV,153.37 MPa和3.62%,改善了铸态AZ91D合金的室温力学性能,但是超过这个最佳添加量后,合金的室温力学性能开始下降。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨湘杰
郑彬
付亮华
杨颜
关键词 复合稀土镁合金晶粒细化力学性能    
Abstract

The effects of solo rare earth Y and combined rare earth Y and Sm elements on the microstructure and mechanical properties of AZ91D magnesium alloy were studied by controlling variable method.The grain refinement mechanism of rare earth elements on AZ91D alloy was analyzed. The results show that the effect of combined addition of rare earth Y and Sm on AZ91D alloy is better than that of solo addition of rare earth Y significantly. More effective heterogeneous nucleation sites for α-Mg are achieved by adding Y and Sm to AZ91D alloy produced bulk phase Al2Y and acicular phase Al2Sm. When the addition content is 0.8% (mass fraction) Y and 1.0%Sm, the α-Mg grain size is the smallest and most uniform. The hardness, tensile strength and elongation of the alloy are 67.42HV, 153.37 MPa and 3.62% respectively, the mechanical properties of as-cast AZ91D alloy at room temperature are improved. However, the mechanical properties of the AZ91D alloy at room temperature decrease after exceeding this optimum addition.

Key wordsmischmetal    magnesium alloy    grain refinement    mechanical property
收稿日期: 2021-05-10      出版日期: 2022-07-18
中图分类号:  TG146.2+2  
基金资助:高校与国家创新平台建设(13004204)
通讯作者: 杨湘杰     E-mail: yangxj@ncu.edu.cn
作者简介: 杨湘杰(1960—), 男, 教授, 研究方向为金属材料加工工艺, 联系地址: 江西省南昌市红谷滩新区学府大道999号南昌大学前湖校区机电工程学院(330031), E-mail: yangxj@ncu.edu.cn
引用本文:   
杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
Xiangjie YANG, Bin ZHENG, Lianghua FU, Yan YANG. Effect of Y and Sm on microstructure and properties of AZ91D magnesium alloy. Journal of Materials Engineering, 2022, 50(7): 139-148.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000443      或      http://jme.biam.ac.cn/CN/Y2022/V50/I7/139
Al Zn Mn Si Mg
10.01 0.79 0.30 0.064 Bal
Table 1  AZ91D镁合金化学成分(质量分数/%)
Master alloy Y Sm Mg Other impurity
Mg-30%Y 30 Bal ≤0.1
Mg-30%Sm 30 Bal ≤0.1
Table 2  中间合金的化学成分(质量分数/%)
Fig.1  不同Y含量AZ91D-x Y合金OM图
(a)x=0;(b)x=0.4;(c)x=0.8;(d)x=1.2;(e)x=1.6
Fig.2  铸态AZ91D-x Y合金扫描电镜图
(a)x=0;(b)x=0.8
Alloy Site Mg Al Zn Y
AZ91D A 95.27 4.46 0.27
B 63.57 34.94 1.49
AZ91D-0.8Y C 95.63 3.35 0.12 0.90
D 68.02 30.08 1.66 0.24
E 10.86 61.72 1.94 25.48
Table 3  铸态AZ91D-x Y合金的EDS分析结果(原子分数/%)
Fig.3  铸态合金的XRD图谱
Fig.4  AZ91D合金扫描电镜图及其面扫描元素分布
Fig.5  AZ91D-0.8Y合金扫描电镜图及其面扫描元素分布
Fig.6  铸态合金的XRD图谱
Fig.7  不同Y和Sm含量AZ91D-x Y-ySm合金OM图
(a)x=0, y=0;(b)x=0.8, y=0;(c)x=0.8, y=0.5;(d)x=0.8, y=1.0;(e)x=0.8, y=1.5;(f)x=0.8, y=2.0
Fig.8  铸态合金的SEM图
(a)AZ91D;(b)AZ91D-0.8Y;(c)AZ91D-0.8Y-0.5Sm; (d)AZ91D-0.8Y-1.0Sm; (e)AZ91D-0.8Y-1.5Sm; (f)AZ91D-0.8Y-2.0Sm
Fig.9  AZ91D-x Y-ySm合金β-Mg17Al12相体积分数
Fig.10  AZ91D-0.8Y-1.0Sm合金扫描电镜图及所表征相EDS分析
(a)SEM图;(b)β-Mg17Al12; (c)Al2Y+Al2Sm; (d)Al2Sm
Fig.11  AZ91D-0.8Y-1.0Sm合金SEM图及其面扫描元素分布
Fig.12  铸态AZ91D-x Y-ySm合金的硬度
Fig.13  铸态AZ91D-x Y-ySm合金的拉伸性能
Mismatch δ/%
(111)Al2Y//(0001)α-Mg 14.00
(110)Al2Y//(0001)α-Mg 8.60
(111)Al2Y//(1010)α-Mg 10.30
(111)Al2Sm//(0001)α-Mg 54.14
(111)Al2Sm//(1010)α-Mg 11.08
Table 4  Lattice mismatch of α-Mg, Al2Y and Al2Sm phases[19-20]
Fig.14  AZ91D-x Y-ySm合金晶粒细化机理示意图
(a)solidification process of AZ91D alloys; (b)AZ91D alloy melt contained Al2Y and Al2Sm particles; (c)solidification process of AZ91D alloys with Al2Y and Al2Sm particles
1 ALI Y , QIU D , JIANG B , et al. Current research progress in grain refinement of cast magnesium alloys: a review article[J]. Journal of Alloys and Compounds, 2015, 619, 639- 651.
doi: 10.1016/j.jallcom.2014.09.061
2 丁文江, 吴国华, 李中权, 等. 轻质高性能镁合金开发及其在航天航空领域的应用[J]. 上海航天, 2019, 36 (2): 5- 12.
2 DING W J , WU G H , LI Z Q , et al. Development of high-performance light-mass magnesium alloy and applications in aerospace and aviation fields[J]. Aerospace Shanghai, 2019, 36 (2): 5- 12.
3 GUSIEVA K , DAVIES C H J , SCULLY J R , et al. Corrosion of magnesium alloys: the role of alloying[J]. International Materials Reviews, 2015, 60 (3): 169- 194.
doi: 10.1179/1743280414Y.0000000046
4 KARAKULAK E . A review: past, present and future of grain refining of magnesium castings[J]. Journal of Magnesium and Alloys, 2019, 7 (3): 355- 369.
doi: 10.1016/j.jma.2019.05.001
5 邢清源, 孟令刚, 杨守杰, 等. 新型稀土镁合金的研究进展[J]. 铸造, 2018, 67 (4): 317- 322.
doi: 10.3969/j.issn.1001-4977.2018.04.006
5 XING Q Y , MENG L G , YANG S J , et al. Research progress of new magnesium-rare earth alloy[J]. Foundry, 2018, 67 (4): 317- 322.
doi: 10.3969/j.issn.1001-4977.2018.04.006
6 闫洪, 吴庆捷, 黄昕. 铒对Mg2Si/AM60镁基复合材料力学性能及耐蚀性能的影响[J]. 塑性工程学报, 2011, 18 (5): 110- 115.
doi: 10.3969/j.issn.1007-2012.2011.05.022
6 YAN H , WU Q J , HUANG X . Effect of Er on mechanical pro-perty and corrosion resistance of Mg2Si/AM60 magnesium matrix composites[J]. Journal of Plasticity Engineering, 2011, 18 (5): 110- 115.
doi: 10.3969/j.issn.1007-2012.2011.05.022
7 郭锋, 刘瑞霞, 李鹏飞, 等. 电解液中的稀土对AZ91D镁合金微弧氧化陶瓷层的影响[J]. 材料热处理学报, 2011, 32 (2): 134- 138.
7 GUO F , LIU R X , LI P F , et al. Effect of rare earth elements in electrolyte on ceramic coating prepared by micro-arc oxidation on AZ91D magnesium alloy[J]. Transactions of Materials and Heat Treatment, 2011, 32 (2): 134- 138.
8 WANG F , XIAO W , LIU M , et al. Effects of alloying composition on the microstructures and mechanical properties of Mg-Al-Zn-Ca-RE magnesium alloy[J]. Vacuum, 2019, 159, 400- 409.
doi: 10.1016/j.vacuum.2018.10.072
9 ROKHLIN L L , DOBATKINA T V , NIKITINA N I . Constitution and properties of the ternary magnesium alloys containing two rare-earth metals of different subgroups[J]. Materials Science Forum, 2003, 419/422, 291- 296.
doi: 10.4028/www.scientific.net/MSF.419-422.291
10 YIN D D , WANG Q D , BOEHLERT C J , et al. Creep and fracture behavior of as-cast Mg-11Y-5Gd-2Zn-0.5Zr (wt%)[J]. Journal of Materials Science, 2012, 47 (17): 6263- 6275.
doi: 10.1007/s10853-012-6546-4
11 LYU S , ZHENG R , XIAO W , et al. Abnormal extrusion texture and reversed yield asymmetry in a Mg-Y-Sm-Zn-Zr alloy[J]. Materials Science and Engineering: A, 2019, 760, 426- 430.
doi: 10.1016/j.msea.2019.06.029
12 XIE H B , LIU B S , BAI J Y , et al. Re-recognition of the aging precipitation behavior in the Mg-Sm binary alloy[J]. Journal of Alloys and Compounds, 2019, 814, 209- 214.
13 GUI Y W , LI Q N , CHEN J . Effects of Sm content on microstructures and mechanical properties of casting Mg-Y-Nd-Sm-Zr alloys[J]. Materials Research Express, 2018, 5 (7): 515- 529.
14 ZHANG J , MAO C , LONG C G , et al. Phase stability, elastic properties and electronic structures of Mg-Y intermetallics from first-principles calculations[J]. Journal of Magnesium and Alloys, 2015, 3 (2): 127- 133.
doi: 10.1016/j.jma.2015.03.003
15 BAI J , SUN Y , XUE F , et al. Microstructures and creep properties of Mg-4Al-(1-4)La alloys produced by different casting techniques[J]. Materials Science and Engineering: A, 2012, 552 (9): 472- 480.
16 REN Y P , SUN S N , WANG L Q , et al. Isothermal section of Mg-rich corner in Mg-Zn-Al ternary system at 335℃[J]. Transactions of Nonferrous Metals Society of China, 2014, 24 (11): 3405- 3412.
doi: 10.1016/S1003-6326(14)63483-X
17 BRAMFITT B L . The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron[J]. Metallurgical Transactions, 1970, 1 (10): 2958- 2959.
18 程昌学, 杨湘杰, 何毅. Ce对A356合金的影响及细化机制的研究[J]. 稀有金属, 2018, 42 (11): 1127- 1133.
18 CHENG C X , YANG X J , HE Y . Properties of A356 aluminum alloy with Ce addition and its refining mechanism[J]. Chinese Journal of Rare Metals, 2018, 42 (11): 1127- 1133.
19 任文亮. Bi、Y和Nd对AZ81镁合金力学性能的影响[D]. 洛阳: 河南科技大学, 2010.
19 REN W L. Effects of Bi, Y and Nd on mechanical properties of AZ81 magnesium alloy[D]. Luoyang: Henan University of Science and Technology, 2010.
20 李全安, 李克杰, 井晓天, 等. 稀土钐对AZ61合金组织和性能的影响[J]. 材料热处理学报, 2010, 31 (1): 100- 104.
20 LI Q A , LI K J , JING X T , et al. Effect of Sm on microstructure and mechanical properties of AZ61 alloys[J]. Transactions of Materials and Heat Treatment, 2010, 31 (1): 100- 104.
[1] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[2] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[3] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[4] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[5] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[6] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[7] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[8] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[9] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[10] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
[11] 陈帅, 陶凤和, 贾长治, 孙河洋. 成形角度对选区激光熔化4Cr5MoSiV1钢组织和性能的影响[J]. 材料工程, 2022, 50(3): 122-130.
[12] 李红, 闫维嘉, 张禹, 杜文博, 栗卓新, MARIUSZBober, SENKARAJacek. 先进航空材料焊接过程热裂纹研究进展[J]. 材料工程, 2022, 50(2): 50-61.
[13] 唐鹏钧, 房立家, 王兴元, 李沛勇, 张学军. 人工时效对激光选区熔化AlMg4.5Sc0.55Mn0.5Zr0.2合金显微组织和力学性能的影响[J]. 材料工程, 2022, 50(2): 84-93.
[14] 金启豪, 陈娟, 彭立明, 李子言, 阎熙, 李春曦, 侯城成, 袁铭扬. 碳纤维增强树脂基复合材料与铝/镁合金连接研究进展[J]. 材料工程, 2022, 50(1): 15-24.
[15] 邵震, 崔雷, 王东坡, 陈永亮, 胡正根, 王非凡. 几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响[J]. 材料工程, 2022, 50(1): 25-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn