1 China Sino-European Institute of Aviation Engineering, Civil Aviation University, Tianjin 300300, China 2 Beijing Jingwei Hirain Technologies Co., Inc., Beijing 100191, China
In order to study the fatigue properties of 2024 aluminum alloy under different corrosion fatigue conditions, First, an in-situ corrosion fatigue platform was established, and then non-corrosion fatigue test, pre-corrosion fatigue test and in-situ corrosion fatigue test were used to comparatively study the fatigue life and fracture mechanism of 2024 aluminum alloy. Scanning electron microscopy(SEM) was used to characterize the macro and micro fracture characteristics and explore the failure mechanism. The results show that the samples with the same corrosion environment and corrosion time, the fatigue life in in-situ corrosion fatigue test and in pre-corrosion fatigue test is 92% and 42% of corrosion fatigue life, respectively. Under the condition of in-situ corrosion fatigue, the squeeze and the extrusion of slip zone leads to the increase of surface roughness, which adsorbs more corrosive medium, exacerbates pit evolution, accelerates the initiation of crack and forms multiple crack sources. The connection of cracks forms a larger size of damage, and rapidly expands inside the material. A lot of brittle fringes are observed in the fracture of the pre-corrosion and in-situ corrosion fatigue test specimens, and the average distance between the fringes under in-situ corrosion fatigue is about two times larger than that under non-corrosion fatigue, indicating the crack propagation rate is faster under the in-situ corrosion fatigue condition.
QIN J B , WANG S N , LIU Y L , et al. Experimental study on fatigue crack growth and residual strength of aluminium alloy 2024-T3 under mixed corrosive environments[J]. Journal of Materials Engineering, 2006, (3): 14- 17.
doi: 10.3969/j.issn.1001-4381.2006.03.004
3
CUI Z Y , LI X G , ZHANG H , et al. Atmospheric corrosion beha-vior of 2A12 aluminum alloy in a tropical marine environment[J]. Advances in Materials Science and Engineering, 2016, 26 (6): 1721- 1728.
4
CAO F H , ZHANG Z , SU J X , et al. Electrochemical noise analysis of LY12-T3 in exco solution by discrete wavelet transform technique[J]. Electrochimica Acta, 2006, 51 (7): 1359- 1364.
doi: 10.1016/j.electacta.2005.07.012
5
WANG Z Y , MA T , HAN W , et al. Corrosion behavior on aluminum alloy LY12 in simulated atmospheric corrosion process[J]. Transactions of Nonferrous Metals Society of China, 2007, 17 (2): 326- 334.
doi: 10.1016/S1003-6326(07)60093-4
6
SUN S Q , FANG Y , ZHANG L , et al. Effects of aging treatment and peripheral coarse grain on the exfoliation corrosion behaviour of 2024 aluminium alloy using SR-CT[J]. Journal of Materials Research and Technology, 2020, 9 (3): 3219- 3229.
doi: 10.1016/j.jmrt.2020.01.069
MA S H , HUI L , ZHOU S , et al. Influence of corrosion environments on corrosion fatigue property of pre-corroded aluminum alloy[J]. Journal of Materials Engineering, 2015, 43 (2): 91- 95.
ZHOU S , WANG L , MA C , et al. Fatigue properties and fracture mechanism of aluminum alloy with orifice chamfer and pre-corrosion damage[J]. Journal of Materials Engineering, 2016, 44 (6): 98- 103.
9
ADJEL S , MERAKEB N , BENCHOUIA S , et al. Effect of corrosion pit density on the fatigue life of aluminum 1050A[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97 (5/8): 3163- 3177.
10
ZHANG S , ZHANG T , HE Y T , et al. Effect of coastal atmospheric corrosion on fatigue properties of 2024-T4 aluminum alloy structures[J]. Journal of Alloys and Compounds, 2019, 802, 511- 521.
doi: 10.1016/j.jallcom.2019.06.235
11
FRÉDÉRIC M , GILBERT H . Synergistic action of fatigue and corrosion during crack growth in the 2024 aluminum alloy[J]. Procedia Engineering, 2010, 2 (1): 1441- 1450.
doi: 10.1016/j.proeng.2010.03.156
12
SHEN L , CHEN H , XU L D , et al. Stress corrosion cracking and corrosion fatigue cracking behavior of A7 N01P-T4 aluminum alloy[J]. Materials and Corrosion, 2018, 69 (2): 43- 59.
13
YANG H H , WANG Y L , WANG X S , et al. Synergistic effect of environmental media and stress on the fatigue fracture behaviour of aluminium alloys[J]. Fatigue and Fracture of Engineering Materials and Structures, 2016, 39, 1309- 1316.
doi: 10.1111/ffe.12457
LIU L L , JIANG F , WANG Y , et al. Fatigue fractography of 5A06 aluminum alloy under different stresses[J]. Aerospace Materials &Technology, 2015, (5): 70- 74.
15
CHEMIN A , SPINELLI D , BOSE W , et al. Corrosion fatigue crack growth of 7475-T7351 aluminum alloy under flight simulation loading[J]. Procedia Engineering, 2015, 101, 85- 92.
doi: 10.1016/j.proeng.2015.02.012
16
那顺桑, 李杰, 艾立群, 等. 金属材料力学性能[M]. 北京: 冶金工业出版社, 2011.
16
NA S S , LI J , AI L Q , et al. Mechanical properties of metal materials[M]. Beijing: Metallurgical Industry Press, 2011.
17
李旭东, 穆志韬. 飞机结构材料环境腐蚀与疲劳分析[M]. 北京: 国防工业出版社, 2014.
17
LI X D , MU Z T . Environmental corrosion and fatigue analysis of aircraft structural material[M]. Beijing: National Defense Industry Press, 2014.
18
CHEN Y Q , ZHANG H , PAN S P , et al. Effects of service environment and pre-deformation on the fatigue behaviour of 2524 aluminium alloy[J]. Archives of Civil and Mechanical Engineering, 2020, 20 (1): 1- 16.
doi: 10.1007/s43452-019-0008-6
LI X D , MU Z T , LIU Z G , et al. Corrosion fatigue fracture ana-lysis of LY12CZ aluminum alloy[J]. Equipment Environmental Engineering, 2013, (4): 9- 12.
20
王娟. 2A14合金疲劳行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.
20
WANG J. Study of fatigue behavior of 2A14 aluminum alloy[D]. Harbin: Harbin Institute of Technology, 2013.
21
杨东. 7A09合金疲劳行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
21
YANG D. Study of fatigue behavior of 7A09 alloy[D]. Harbin: Harbin Institute of Technology, 2014.
LI Y , LIN D Y , CHEN Y X , et al. Corrosion behavior of 2A12-T4 Al-alloy in salt-spray environment[J]. Corrosion Science and Protection Technology, 2016, (5): 454- 460.
23
WANG L , HUI L , ZHOU S , et al. Effect of corrosive environment on fatigue property and crack propagation behavior of Al 2024 friction stir weld[J]. Transactions of Nonferrous Metals Society of China, 2016, 26 (11): 2830- 2837.
doi: 10.1016/S1003-6326(16)64411-4