Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (6): 149-156    DOI: 10.11868/j.issn.1001-4381.2021.000466
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
航空铝合金原位腐蚀疲劳性能及断裂机理
王付胜1, 孔繁淇1, 王文平2, 陈亚军1,*()
1 中国民航大学 中欧航空工程师学院,天津 300300
2 北京经纬恒润科技股份有限公司,北京 100191
In-situ corrosion fatigue performance and fracture mechanism of aviation aluminum alloy
Fusheng WANG1, Fanqi KONG1, Wenping WANG2, Yajun CHEN1,*()
1 China Sino-European Institute of Aviation Engineering, Civil Aviation University, Tianjin 300300, China
2 Beijing Jingwei Hirain Technologies Co., Inc., Beijing 100191, China
全文: PDF(20170 KB)   HTML ( 8 )  
输出: BibTeX | EndNote (RIS)      
摘要 

为了研究不同腐蚀条件下2024铝合金的疲劳性能,首先设计搭建原位腐蚀疲劳平台,然后分别进行无腐蚀疲劳、预腐蚀疲劳和原位腐蚀疲劳实验,分析不同腐蚀疲劳条件下2024铝合金的疲劳断裂行为,最后利用扫描电镜(SEM)表征宏、微观断口特征,探究失效机理。结果表明:相同腐蚀环境和时间下,预腐蚀和原位腐蚀疲劳寿命分别为无腐蚀疲劳寿命的92%和42%;在原位腐蚀疲劳条件下,滑移带挤入、挤出导致表面粗糙度增加,吸附较多腐蚀介质,加剧蚀坑演化,易于裂纹萌生并形成多个裂纹源。裂纹的连通形成更大尺寸的损伤,并在材料内部快速扩展。预腐蚀和原位腐蚀疲劳试件断口观察到大量脆性疲劳条带,并且原位腐蚀疲劳条带平均间距约为无腐蚀疲劳条带间距的2倍,说明原位腐蚀疲劳条件下裂纹扩展速率更快。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王付胜
孔繁淇
王文平
陈亚军
关键词 航空铝合金原位腐蚀疲劳疲劳寿命断裂机理    
Abstract

In order to study the fatigue properties of 2024 aluminum alloy under different corrosion fatigue conditions, First, an in-situ corrosion fatigue platform was established, and then non-corrosion fatigue test, pre-corrosion fatigue test and in-situ corrosion fatigue test were used to comparatively study the fatigue life and fracture mechanism of 2024 aluminum alloy. Scanning electron microscopy(SEM) was used to characterize the macro and micro fracture characteristics and explore the failure mechanism. The results show that the samples with the same corrosion environment and corrosion time, the fatigue life in in-situ corrosion fatigue test and in pre-corrosion fatigue test is 92% and 42% of corrosion fatigue life, respectively. Under the condition of in-situ corrosion fatigue, the squeeze and the extrusion of slip zone leads to the increase of surface roughness, which adsorbs more corrosive medium, exacerbates pit evolution, accelerates the initiation of crack and forms multiple crack sources. The connection of cracks forms a larger size of damage, and rapidly expands inside the material. A lot of brittle fringes are observed in the fracture of the pre-corrosion and in-situ corrosion fatigue test specimens, and the average distance between the fringes under in-situ corrosion fatigue is about two times larger than that under non-corrosion fatigue, indicating the crack propagation rate is faster under the in-situ corrosion fatigue condition.

Key wordsaviation aluminum alloy    in-situ corrosion fatigue    fatigue life    fracture mechanism
收稿日期: 2021-05-15      出版日期: 2022-06-20
中图分类号:  V250.2  
  V250.3  
基金资助:中央高校基本科研业务费(3122018Z003)
通讯作者: 陈亚军     E-mail: yjchen@cauc.edu.cn
作者简介: 陈亚军(1976—),男,教授,博士,研究方向为飞机结构与材料损伤评价,联系地址: 天津市东丽区中国民航大学(北院)中欧航空工程师学院(300300),E-mail: yjchen@cauc.edu.cn
引用本文:   
王付胜, 孔繁淇, 王文平, 陈亚军. 航空铝合金原位腐蚀疲劳性能及断裂机理[J]. 材料工程, 2022, 50(6): 149-156.
Fusheng WANG, Fanqi KONG, Wenping WANG, Yajun CHEN. In-situ corrosion fatigue performance and fracture mechanism of aviation aluminum alloy. Journal of Materials Engineering, 2022, 50(6): 149-156.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000466      或      http://jme.biam.ac.cn/CN/Y2022/V50/I6/149
Fig.1  试件尺寸示意图(mm)
Fig.2  原位腐蚀疲劳实验平台示意图
ConditionFatigue life/cycle
Specimen 1 Specimen 2 Specimen 3 Average
Non-corrosion 206861 197530 140198 181530
Pre-corrosion 101095 169585 233120 167933
In-situ corrosion 53598 95408 79684 76230
Table 1  不同腐蚀疲劳条件下的疲劳寿命
Fig.3  不同腐蚀疲劳条件下疲劳寿命分布
Fig.4  疲劳断口扫描电镜照片
(a)无腐蚀;(b)预腐蚀;(c)原位腐蚀
Fig.5  无腐蚀疲劳源微观形貌(1)及EDS分析(2)
(a)基体;(b)粒子
Fig.6  预腐蚀疲劳源处疏松腐蚀产物
Fig.7  原位腐蚀疲劳断口SEM图
(a)疲劳源间撕裂脊; (b)疲劳源处点蚀
Fig.8  预腐蚀疲劳试样表面点蚀坑形貌
(a)远离断口腐蚀产物; (b)断口附近腐蚀产物表面裂纹
Fig.9  原位腐蚀疲劳试件表面裂纹形貌
  无腐蚀(a)、预腐蚀(b)和原位腐蚀(c)疲劳解理形貌
Fig.11  无腐蚀(a)、预腐蚀(b)和原位腐蚀(c)疲劳条带形貌
Fig.12  疲劳条带间距测量
(a)无腐蚀;(b)预腐蚀;(c)原位腐蚀
1 TOLGA D , COSTAS S . Recent developments in advanced aircraft aluminium alloys[J]. Materials and Design, 2014, 56, 862- 871.
doi: 10.1016/j.matdes.2013.12.002
2 秦剑波, 王生楠, 刘亚龙, 等. 腐蚀环境下2024-T3铝合金疲劳裂纹扩展和剩余强度实验研究[J]. 材料工程, 2006, (3): 14- 17.
doi: 10.3969/j.issn.1001-4381.2006.03.004
2 QIN J B , WANG S N , LIU Y L , et al. Experimental study on fatigue crack growth and residual strength of aluminium alloy 2024-T3 under mixed corrosive environments[J]. Journal of Materials Engineering, 2006, (3): 14- 17.
doi: 10.3969/j.issn.1001-4381.2006.03.004
3 CUI Z Y , LI X G , ZHANG H , et al. Atmospheric corrosion beha-vior of 2A12 aluminum alloy in a tropical marine environment[J]. Advances in Materials Science and Engineering, 2016, 26 (6): 1721- 1728.
4 CAO F H , ZHANG Z , SU J X , et al. Electrochemical noise analysis of LY12-T3 in exco solution by discrete wavelet transform technique[J]. Electrochimica Acta, 2006, 51 (7): 1359- 1364.
doi: 10.1016/j.electacta.2005.07.012
5 WANG Z Y , MA T , HAN W , et al. Corrosion behavior on aluminum alloy LY12 in simulated atmospheric corrosion process[J]. Transactions of Nonferrous Metals Society of China, 2007, 17 (2): 326- 334.
doi: 10.1016/S1003-6326(07)60093-4
6 SUN S Q , FANG Y , ZHANG L , et al. Effects of aging treatment and peripheral coarse grain on the exfoliation corrosion behaviour of 2024 aluminium alloy using SR-CT[J]. Journal of Materials Research and Technology, 2020, 9 (3): 3219- 3229.
doi: 10.1016/j.jmrt.2020.01.069
7 马少华, 回丽, 周松, 等. 腐蚀环境对预腐蚀铝合金腐蚀疲劳性能的影响[J]. 材料工程, 2015, 43 (2): 91- 95.
7 MA S H , HUI L , ZHOU S , et al. Influence of corrosion environments on corrosion fatigue property of pre-corroded aluminum alloy[J]. Journal of Materials Engineering, 2015, 43 (2): 91- 95.
8 周松, 王磊, 马闯, 等. 孔边倒角和预腐蚀作用下航空铝合金疲劳性能及断裂机理研究[J]. 材料工程, 2016, 44 (6): 98- 103.
8 ZHOU S , WANG L , MA C , et al. Fatigue properties and fracture mechanism of aluminum alloy with orifice chamfer and pre-corrosion damage[J]. Journal of Materials Engineering, 2016, 44 (6): 98- 103.
9 ADJEL S , MERAKEB N , BENCHOUIA S , et al. Effect of corrosion pit density on the fatigue life of aluminum 1050A[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97 (5/8): 3163- 3177.
10 ZHANG S , ZHANG T , HE Y T , et al. Effect of coastal atmospheric corrosion on fatigue properties of 2024-T4 aluminum alloy structures[J]. Journal of Alloys and Compounds, 2019, 802, 511- 521.
doi: 10.1016/j.jallcom.2019.06.235
11 FRÉDÉRIC M , GILBERT H . Synergistic action of fatigue and corrosion during crack growth in the 2024 aluminum alloy[J]. Procedia Engineering, 2010, 2 (1): 1441- 1450.
doi: 10.1016/j.proeng.2010.03.156
12 SHEN L , CHEN H , XU L D , et al. Stress corrosion cracking and corrosion fatigue cracking behavior of A7 N01P-T4 aluminum alloy[J]. Materials and Corrosion, 2018, 69 (2): 43- 59.
13 YANG H H , WANG Y L , WANG X S , et al. Synergistic effect of environmental media and stress on the fatigue fracture behaviour of aluminium alloys[J]. Fatigue and Fracture of Engineering Materials and Structures, 2016, 39, 1309- 1316.
doi: 10.1111/ffe.12457
14 刘乐乐, 姜峰, 汪莹, 等. 不同应力水平下5A06铝合金的疲劳断口研究[J]. 宇航材料工艺, 2015, (5): 70- 74.
14 LIU L L , JIANG F , WANG Y , et al. Fatigue fractography of 5A06 aluminum alloy under different stresses[J]. Aerospace Materials &Technology, 2015, (5): 70- 74.
15 CHEMIN A , SPINELLI D , BOSE W , et al. Corrosion fatigue crack growth of 7475-T7351 aluminum alloy under flight simulation loading[J]. Procedia Engineering, 2015, 101, 85- 92.
doi: 10.1016/j.proeng.2015.02.012
16 那顺桑, 李杰, 艾立群, 等. 金属材料力学性能[M]. 北京: 冶金工业出版社, 2011.
16 NA S S , LI J , AI L Q , et al. Mechanical properties of metal materials[M]. Beijing: Metallurgical Industry Press, 2011.
17 李旭东, 穆志韬. 飞机结构材料环境腐蚀与疲劳分析[M]. 北京: 国防工业出版社, 2014.
17 LI X D , MU Z T . Environmental corrosion and fatigue analysis of aircraft structural material[M]. Beijing: National Defense Industry Press, 2014.
18 CHEN Y Q , ZHANG H , PAN S P , et al. Effects of service environment and pre-deformation on the fatigue behaviour of 2524 aluminium alloy[J]. Archives of Civil and Mechanical Engineering, 2020, 20 (1): 1- 16.
doi: 10.1007/s43452-019-0008-6
19 李旭东, 穆志韬, 刘治国, 等. LY12CZ航空铝合金腐蚀疲劳断口研究[J]. 装备环境工程, 2013, (4): 9- 12.
19 LI X D , MU Z T , LIU Z G , et al. Corrosion fatigue fracture ana-lysis of LY12CZ aluminum alloy[J]. Equipment Environmental Engineering, 2013, (4): 9- 12.
20 王娟. 2A14合金疲劳行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.
20 WANG J. Study of fatigue behavior of 2A14 aluminum alloy[D]. Harbin: Harbin Institute of Technology, 2013.
21 杨东. 7A09合金疲劳行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
21 YANG D. Study of fatigue behavior of 7A09 alloy[D]. Harbin: Harbin Institute of Technology, 2014.
22 李一, 林德源, 陈云翔, 等. 2A12-T4铝合金在盐雾环境下的腐蚀行为与腐蚀机理研究[J]. 腐蚀科学与防护技术, 2016, (5): 454- 460.
22 LI Y , LIN D Y , CHEN Y X , et al. Corrosion behavior of 2A12-T4 Al-alloy in salt-spray environment[J]. Corrosion Science and Protection Technology, 2016, (5): 454- 460.
23 WANG L , HUI L , ZHOU S , et al. Effect of corrosive environment on fatigue property and crack propagation behavior of Al 2024 friction stir weld[J]. Transactions of Nonferrous Metals Society of China, 2016, 26 (11): 2830- 2837.
doi: 10.1016/S1003-6326(16)64411-4
[1] 任素娥, 王雅娜, 杨程. 固体浮力材料用复合泡沫的研究进展[J]. 材料工程, 2022, 50(6): 86-96.
[2] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[3] 回丽, 刘思奇, 周松, 王磊, 马闯, 赵强. 载荷方向和焊缝余高对氩弧焊缝疲劳性能的影响[J]. 材料工程, 2018, 46(2): 122-127.
[4] 刘丽玉, 高翔宇, 杨宪锋, 何玉怀. DD6单晶高温合金振动疲劳性能及断裂机理[J]. 材料工程, 2018, 46(2): 128-133.
[5] 申颜团, 彭金方, 徐志彪, 刘建华, 蔡振兵, 朱旻昊. 18CrNiMo7-6合金钢的弯曲微动疲劳特性[J]. 材料工程, 2017, 45(7): 103-110.
[6] 冷建成, 张辉, 周国强, 吴泽民. 再制造抽油杆疲劳寿命评估的磁记忆检测实验研究[J]. 材料工程, 2016, 44(9): 103-108.
[7] 梁小林, 许希武, 林智育. 复合材料层板低速冲击后疲劳性能实验研究[J]. 材料工程, 2016, 44(12): 100-106.
[8] 童第华, 吴学仁, 刘建中, 胡本润, 陈勃. 基于小裂纹理论的铸造钛合金ZTC4疲劳寿命预测[J]. 材料工程, 2015, 43(6): 60-65.
[9] 周轶群, 佟文伟, 刘芳, 张开阔. 热障涂层对K417G合金高温低周疲劳行为的影响[J]. 材料工程, 2014, 0(1): 19-23.
[10] 杨金丽, 雷永平, 林健, 肖慧. 银含量对跌落条件下无铅焊点疲劳寿命和失效模式的影响[J]. 材料工程, 2013, 0(12): 74-79.
[11] 杨仕超, 王安强, 闫五柱, 元辛. 斜搭接连接件疲劳特性分析[J]. 材料工程, 2012, 0(9): 83-87.
[12] 王韶云, 李国禄, 王海斗, 刘金海, 徐滨士, 朴钟宇. 微缺陷对热喷涂涂层接触疲劳性能的影响[J]. 材料工程, 2012, 0(2): 72-76.
[13] 胡燕慧, 钟群鹏, 张峥, 韩邦成. 超声疲劳试验方法对S06钢疲劳性能及裂纹萌生机制的影响[J]. 材料工程, 2011, 0(2): 26-30.
[14] 龙宪海, 阳能军, 王汉功. 基于声发射技术的30CrMnSi钢断裂机理研究[J]. 材料工程, 2011, 0(1): 17-22.
[15] 高宗战, 何新党, 姜志峰, 岳珠峰. 有机玻璃边缘连接结构疲劳寿命可靠性分析[J]. 材料工程, 2010, 0(5): 20-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn