Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (10): 63-72    DOI: 10.11868/j.issn.1001-4381.2021.000475
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于μCT表征的SLM成形GH3536高温合金缺陷特征
高祥熙1,2,3,*(), 杨平华1,2,3, 乔海燕1,2,3, 张帅1
1 中国航发北京航空材料研究院, 北京 100095
2 航空材料检测与评价北京市重点实验室, 北京 100095
3 中国航空发动机集团 材料检测与评价重点实验室, 北京 100095
Defect characteristics within SLM-fabricated GH3536 superalloy dependence on μCT characterization
Xiangxi GAO1,2,3,*(), Pinghua YANG1,2,3, Haiyan QIAO1,2,3, Shuai ZHANG1
1 AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
2 Beijing Key Laboratory of Aeronautical Materials Testing and Evaluation, Beijing 100095, China
3 Key Laboratory of Aeronautical Materials Testing and Evaluation, Aero Engine Corporation of China, Beijing 100095, China
全文: PDF(23018 KB)   HTML ( 1 )  
输出: BibTeX | EndNote (RIS)      
摘要 

选择激光选区熔化(selective laser melting, SLM)工艺中不同激光功率和扫描速度的参数组合制备GH3536高温合金试样,采用μCT技术表征试样内部的孔隙率及缺陷特征,同时采用光学显微镜和扫描电镜验证缺陷类型,并分析熔池形貌。结果表明:SLM工艺参数与合金中缺陷特征和熔池形貌密切相关,优化参数组合时连续性熔池具有较大的长宽比、彼此搭接良好,同时成形试样的孔隙率远低于0.01%,存在随机分布、尺寸较小的气孔;偏离优化参数组合时不仅在间断性熔池界面形成了尺寸较大的孔洞,而且增加了SLM成形过程的不稳定性,形成了少量的未熔合,这两类缺陷均具有一定的各向异性;试样中还存在未能被μCT发现的微气孔和微裂纹。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高祥熙
杨平华
乔海燕
张帅
关键词 激光选区熔化GH3536合金缺陷各向异性熔池    
Abstract

GH3536 superalloy samples were made by selective laser melting (SLM) with a parameter combination of laser power and scanning speed. The porosity and defect characteristics within the samples were characterized by μCT technique, and the defect types as well as the morphologies of molten pool were analyzed using optical microscope and scanning electron microscope. The results show that process parameters are closely related with defect characteristics and the morphologies of molten pool. As the laser power and scanning speed are optimized, continuous molten pool with a higher aspect ratio overlaps well with each other. The porosity in the fabricated samples is far less than 0.01%, and with randomly distributed small pores. When the deviation from the optimized process parameters occurs, not only larger voids are formed at the interface of discontinuous molten pool, but also the process instability are increased, resulting in the formation of minor amounts of lamellar lack of fusion. The latter two types of defects present a certain anisotropy. Additionally, smaller micropores and microcracks are beyond the μCT detection ability.

Key wordsselective laser melting    GH3536 alloy    defect    anisotropy    molten pool
收稿日期: 2021-05-18      出版日期: 2022-10-24
中图分类号:  TG113.1  
  TG115.22  
基金资助:国家自然科学基金面上项目(51875541)
通讯作者: 高祥熙     E-mail: gaoxiangxi326@163.com
作者简介: 高祥熙(1986—), 男, 高级工程师, 硕士, 研究方向为增材制造材料的无损检测表征, 联系地址: 北京81信箱6分箱(100095), E-mail: gaoxiangxi326@163.com
引用本文:   
高祥熙, 杨平华, 乔海燕, 张帅. 基于μCT表征的SLM成形GH3536高温合金缺陷特征[J]. 材料工程, 2022, 50(10): 63-72.
Xiangxi GAO, Pinghua YANG, Haiyan QIAO, Shuai ZHANG. Defect characteristics within SLM-fabricated GH3536 superalloy dependence on μCT characterization. Journal of Materials Engineering, 2022, 50(10): 63-72.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000475      或      http://jme.biam.ac.cn/CN/Y2022/V50/I10/63
Designation Cr Mo Fe Co C W Mn Si Ni
Nominal value 20.5-23 8-10 17-20 0.5-2.5 0.05-0.1 0.2-1.0 ≤1.0 ≤0.5 Bal
Tested value 21.12 8.62 18.94 2.18 0.058 0.57 0.02 0.05 Bal
Table 1  GH3536粉末的化学成分(质量分数/%)
Sample P/W v/(mm·s-1) s/mm h/mm VED/(W·s·mm-3)
1# 335 1260 0.11 0.04 60.4
2# 285 1260 0.11 0.04 51.4
3# 235 1260 0.11 0.04 42.4
4# 185 1260 0.11 0.04 33.4
5# 285 800 0.11 0.04 81.0
6# 285 1700 0.11 0.04 38.1
Table 2  SLM成形工艺参数
Fig.1  SLM成形GH3536试样及工业CT检测示意图
(a)GH3536试样;(b)线切割小型试样的工业CT检测
Fig.2  试样近表面线性缺陷(a)和感兴趣区域(b)
Fig.3  SLM成形GH3536试样中缺陷的三维分布及二维CT切片
Fig.4  三维体积孔隙率和体积能量密度之间的关系
Fig.5  缺陷体积与等效直径的统计直方图
Fig.6  缺陷球度和长宽比的柱状图及累计频率
(a)~(c)球度;(d)长宽比
Fig.7  二维面积孔隙率沿Z向的变化曲线
(a)上部;(b)中部;(c)下部
Fig.8  二维CT切片的数据分析示意图
(a)6#试样;(b)单个缺陷
Fig.9  缺陷各向异性的柱状图和累计频率
Fig.10  孔洞(a)和未熔合(b)的二维及三维形貌
(1)XY面;(2)YZ面;(3)3D
Fig.11  金相照片中典型的缺陷形貌
(a)气孔;(b), (c)孔洞;(d)未熔合
Fig.12  微观缺陷形貌的SEM照片
(a)微气孔;(b)微裂纹
Fig.13  SLM成形GH3536试样中XY面的熔池形貌
(a)2#试样;(b)3#试样;(c)4#试样;(d)6#试样
1 刘浩, 王心美, 刘大顺, 等. 缺口对GH3536镍基高温合金蠕变性能的影响[J]. 稀有金属材料与工程, 2014, 43 (10): 2473- 2478.
1 LIU H , WANG X M , LIU D S , et al. Influence of notch on creep properties of GH3536 nickel-based superalloy[J]. Rare Metal Materials and Engineering, 2014, 43 (10): 2473- 2478.
2 KRUTH J P , MERCELIS P , VAERENBERGH J V , et al. Binding mechanisms in selective laser sintering and selective laser melting[J]. Rapid Prototyping Journal, 2005, 11 (1): 26- 36.
doi: 10.1108/13552540510573365
3 CHI C N , SAVALANI M , MAN H C . Fabrication of magnesium using selective laser melting technique[J]. Rapid Prototyping Journal, 2011, 17 (6): 479- 490.
doi: 10.1108/13552541111184206
4 SUN J F , YANG Y Q , WANG D . Mechanical properties of Ti6Al4V octahedral porous material unit formed by selective laser melting[J]. Advances in Mechanical Engineering, 2012, 4 (9): 742- 760.
5 张学军, 唐思熠, 肇恒跃, 等. 3D打印技术研究现状和关键技术[J]. 材料工程, 2016, 44 (2): 122- 128.
5 ZHANG X J , TANG S Y , ZHAO H Y , et al. Research status and key technologies of 3D printing[J]. Journal of Materials Engineering, 2016, 44 (2): 122- 128.
6 VRANCKEN B , THIJS L , KRUTH J , et al. Heat treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties[J]. Journal of Alloys and Compounds, 2012, 541, 177- 185.
doi: 10.1016/j.jallcom.2012.07.022
7 RAFI H K , STARR T L , STUCKER B E . A comparison of the tensile, fatigue and fracture behavior of Ti-6Al-4V and 15-5 PH stainless steel parts made by selective laser melting[J]. The International Journal of Advanced Manufacturing Technology, 2013, 69 (5): 1299- 1309.
8 BRANDL E , HECKENBERGER U , HOLZINGER V , et al. Additive manufactured AlSi10Mg samples using selective laser melting (SLM): microstructure, high cycle fatigue and fracture behavior[J]. Materials & Design, 2012, 34 (1): 159- 169.
doi: 10.3969/j.issn.1006-2890.2012.01.102
9 BEAN G E , MCLOUTH T D , WITKIN D B , et al. Build orientation effects on texture and mechanical properties of selective laser melting inconel 718[J]. Journal of Materials Engineering and Performance, 2019, 28 (4): 1942- 1949.
doi: 10.1007/s11665-019-03980-w
10 赵志国, 柏林, 李黎, 等. 激光选区熔化成形技术的发展现状及研究进展[J]. 航空制造技术, 2014, (19): 46- 49.
doi: 10.3969/j.issn.1671-833X.2014.19.005
10 ZHAO Z G , BAI L , LI L , et al. Status and process of selective laser melting forming technology[J]. Aviation Manufacturing Technology, 2014, (19): 46- 49.
doi: 10.3969/j.issn.1671-833X.2014.19.005
11 巩水利, 李怀学, 锁红波, 等. 高能束流加工技术的应用研究与发展[J]. 航空制造技术, 2009, (14): 34- 39.
doi: 10.3969/j.issn.1671-833X.2009.14.003
11 GONG S L , LI H X , SUO H B , et al. Application and development of high energy beam manufacturing technology[J]. Aviation Manufacturing Technology, 2009, (14): 34- 39.
doi: 10.3969/j.issn.1671-833X.2009.14.003
12 LEUDERS S , THONE M , RIEMER A , et al. On the mechanical behavior of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance[J]. International Journal of Fatigue, 2013, 48, 300- 307.
doi: 10.1016/j.ijfatigue.2012.11.011
13 MEZZETTA J , CHOI J P , MILLIGAN J , et al. Microstructure-properties relationships of Ti-6Al-4V parts fabricated by selective laser melting[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2018, 5 (5): 605- 612.
doi: 10.1007/s40684-018-0062-1
14 CAIN V , THIJS L , HUMBEECK J V , et al. Crack propagation and fracture toughness of Ti6Al4V alloy produced by selective laser melting[J]. Additive Manufacturing, 2015, 5, 68- 76.
doi: 10.1016/j.addma.2014.12.006
15 VILARO T , COLIN C , BARTOUT J D . As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting[J]. Metallurgical Materials Transactions A, 2011, 42 (10): 3190- 3199.
doi: 10.1007/s11661-011-0731-y
16 ZHANG L , SONG J , WU W H , et al. Effect of processing parameters on thermal behavior and related density in GH3536 alloy manufactured by selective laser melting[J]. Journal of Materials Research, 2019, 34 (8): 1- 10.
17 孙闪闪, 腾庆, 程坦, 等. 热处理对激光选区熔化GH3536合金组织演变规律的影响研究[J]. 机械工程学报, 2020, 56 (21): 208- 218.
17 SUN S S , TENG Q , CHENG T , et al. Influence of heat treatment on microstructure evolution of GH3536 superalloy fabricated by selective laser melting[J]. Journal of Mechanical Engineering, 2020, 56 (21): 208- 218.
18 石磊, 雷力明, 王威, 等. 热等静压/热处理工艺对激光选区熔化成形GH4169合金微观组织与拉伸性能的影响[J]. 材料工程, 2020, 48 (6): 148- 155.
18 SHI L , LEI L M , WANG W , et al. Effects of hot isostatic pressing and heat treatment process on microstructure and tensile properties of selective laser melting manufactured GH4169 alloy[J]. Journal of Materials Engineering, 2020, 48 (6): 148- 155.
19 宗学文, 刘文杰, 张树哲, 等. 激光选区熔化GH3536镍基高温合金的微观组织和晶体取向[J]. 稀有金属材料与工程, 2020, 49 (9): 3182- 3188.
19 ZONG X W , LIU W J , ZHANG S Z , et al. Microstructure and crystal orientation of nickel-based superalloy GH3536 by selective laser melting[J]. Rare Metal Materials and Engineering, 2020, 49 (9): 3182- 3188.
20 THOMPSON A , MASKERY I , LEACH R K . X-ray computed tomography for additive manufacturing: a review[J]. Measurement Science and Technology, 2016, 27, 1- 16.
21 ZIOLKOWSKI G , CHLEBUS E , SZYMCZYK P , et al. Application of X-ray CT method for discontinuity and porosity detection in 316L stainless steel parts produced with SLM technology[J]. Archives of Civil and Mechanical Engineering, 2014, 14, 608- 614.
doi: 10.1016/j.acme.2014.02.003
22 SIMCHI A , PETZOLDT F , POHL H . On the development of direct metal laser sintering for rapid tooling[J]. Journal of Materials Processing Technology, 2003, 141 (3): 319- 328.
doi: 10.1016/S0924-0136(03)00283-8
23 WANG D , WU S B , FU F , et al. Mechanisms and characteristics of spatter generation in SLM processing and its effect on the properties[J]. Materials & Design, 2017, 117, 121- 130.
24 YADROITSEV I , GUSAROV A , YADROITSAVA I , et al. Single track formation in selective laser melting of metal powders[J]. Journal of Materials Processing Technology, 2010, 210 (12): 1624- 1631.
doi: 10.1016/j.jmatprotec.2010.05.010
25 OSAKADA K , SHIOMI M . Flexible manufacturing of metallic products by selective laser melting of powder[J]. International Journal of Machine Tools and Manufacture, 2006, 46 (11): 1188- 1193.
doi: 10.1016/j.ijmachtools.2006.01.024
26 张国会, 郭绍庆, 黄帅, 等. 选区激光熔化技术制备GH4169合金的致密度研究[J]. 激光与光电子学进展, 2020, 57 (3): 1- 7.
26 ZHANG G H , GUO S Q , HUANG S , et al. Relative density of GH4169 superalloy prepared by selective laser melting[J]. Laser & Optoelectronics Progress, 2020, 57 (3): 1- 7.
27 MASKERY I , ABOULKHAIR N T , CORFIEL M R , et al. Quantification and characterization of porosity in selectively laser melted Al-Si10-Mg using X-ray computed tomography[J]. Materials Characterization, 2016, 111, 193- 204.
doi: 10.1016/j.matchar.2015.12.001
28 TAMMAS-WILLIAMS S , ZHAO H , LEONARD F , et al. XCT analysis of the influence of melt strategies on defect population in Ti-6Al-4V components manufactured by selective electron beam melting[J]. Materials Characterization, 2015, 102, 47- 61.
doi: 10.1016/j.matchar.2015.02.008
29 刘凯, 王荣, 祁海, 等. 选区激光熔化成型GH3536合金的显微组织与拉伸性能[J]. 理化检验-物理分册, 2019, 55 (1): 15- 18.
29 LIU K , WANG R , QI H , et al. Microstructure and tensile properties of GH3536 alloy formed by SLM[J]. Physical Testing and Chemical Analysis: Part A, 2019, 55 (1): 15- 18.
[1] 刘小辉, 刘允中. 激光选区熔化成形高强铝合金晶粒细化抑制裂纹研究现状[J]. 材料工程, 2022, 50(8): 1-16.
[2] 金士杰, 田鑫, 林莉. 铝合金搅拌摩擦焊超声检测研究进展[J]. 材料工程, 2022, 50(8): 45-59.
[3] 倪洪江, 邢宇, 戴霄翔, 李军, 张代军, 陈祥宝. 航空发动机用聚酰亚胺树脂基复合材料固化工艺及热稳定性能[J]. 材料工程, 2022, 50(7): 102-109.
[4] 彭斌意, 刘洋, 郑晓董, 李治国, 李国平, 胡建波, 王永刚. 激光选区熔化颗粒增强钛基复合材料的抗压性能[J]. 材料工程, 2022, 50(6): 36-48.
[5] 梁恩泉, 代宇, 白静, 周亚雄, 彭东剑, 王清正, 康楠, 林鑫. 退火态激光选区熔化成形AlSi10Mg合金组织与力学性能[J]. 材料工程, 2022, 50(5): 156-165.
[6] 韩启飞, 符瑞, 胡锦龙, 郭跃岭, 韩亚峰, 王俊升, 纪涛, 卢继平, 刘长猛. 电弧熔丝增材制造铝合金研究进展[J]. 材料工程, 2022, 50(4): 62-73.
[7] 唐鹏钧, 房立家, 王兴元, 李沛勇, 张学军. 人工时效对激光选区熔化AlMg4.5Sc0.55Mn0.5Zr0.2合金显微组织和力学性能的影响[J]. 材料工程, 2022, 50(2): 84-93.
[8] 王志成, 李嘉荣, 刘世忠, 赵金乾, 史振学, 王效光, 杨万鹏, 岳晓岱. 单晶高温合金雀斑研究进展[J]. 材料工程, 2021, 49(7): 1-9.
[9] 王桂玲, 赵泽军, 刘帅, 息剑峰, 李宝河. CoSiB/Pt多层膜垂直磁各向异性及热稳定性[J]. 材料工程, 2021, 49(6): 26-32.
[10] 詹强坤, 刘允中, 刘小辉, 周志光. 激光选区熔化成形含锆7×××系铝合金的显微组织与力学性能[J]. 材料工程, 2021, 49(6): 85-93.
[11] 杨鑫, 王犇, 谷文萍, 张兆洋, 刘世锋, 武涛. 金属激光3D打印过程数值模拟应用及研究现状[J]. 材料工程, 2021, 49(4): 52-62.
[12] 曹弘毅, 马蒙源, 丁国强, 姜明顺, 孙琳, 张雷, 贾磊, 田爱琴, 梁建英. 复合材料层压板分层缺陷超声相控阵检测与评估[J]. 材料工程, 2021, 49(2): 149-157.
[13] 曹弘毅, 姜明顺, 马蒙源, 张法业, 张雷, 隋青美, 贾磊. 复合材料层压板分层缺陷相控阵超声检测参数优化方法[J]. 材料工程, 2020, 48(9): 158-165.
[14] 段晓鸽, 江海涛, 米振莉, 王丽丽, 李萧. 轧制方式对6016铝合金薄板组织和塑性各向异性的影响[J]. 材料工程, 2020, 48(8): 134-141.
[15] 吴红亚, 杨云, 张光磊, 白洋, 周济. 双曲超材料及其传感器研究进展[J]. 材料工程, 2020, 48(6): 34-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn