Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (9): 1-17    DOI: 10.11868/j.issn.1001-4381.2021.000485
  综述 本期目录 | 过刊浏览 | 高级检索 |
高镍三元锂离子电池低温放电性能研究进展
韩富娟1,2,3, 常增花1,2, 赵金玲1,2, 王仁念1,2, 丁海洋1,2,3,*(), 卢世刚4,*()
1 有研科技集团有限公司 国家动力电池创新中心, 北京 100088
2 国联汽车动力电池研究院有限责任公司, 北京 100088
3 北京有色金属研究总院, 北京 100088
4 上海大学 材料基因组工程研究院, 上海 200444
Research progress in low-temperature discharge performance of Ni-rich ternary lithium-ion batteries
Fujuan HAN1,2,3, Zenghua CHANG1,2, Jinling ZHAO1,2, Rennian WANG1,2, Haiyang DING1,2,3,*(), Shigang LU4,*()
1 National Power Battery Innovation Center, GRINM Group Co., Ltd., Beijing 100088, China
2 China Automotive Battery Research Institute Co., Ltd., Beijing 100088, China
3 General Research Institute for Nonferrous Metals, Beijing 100088, China
4 Materials Genome Institute, Shanghai University, Shanghai 200444, China
全文: PDF(1271 KB)   HTML ( 13 )  
输出: BibTeX | EndNote (RIS)      
摘要 

随着新能源汽车产业的迅速发展,消费者对电动汽车续航里程的要求不断提高。高镍三元锂离子电池因其比能量高成为电动汽车中最具应用前景的动力电池,但该电池体系依然面临着低温性能差的问题。本文综述近年来高镍三元锂离子电池低温性能的研究进展,重点总结高镍三元锂离子电池低温性能的影响因素,一方面从热力学角度分析低温下高镍三元正极材料和石墨负极材料的结构变化、电解液相态和溶剂化结构变化以及黏结剂玻璃化转变对电池低温性能的影响;另一方面从动力学角度分析高镍三元电池低温放电过程中的速率控制步骤。归纳目前高镍三元锂离子电池低温性能的主要改善措施,其中低温电解液的设计包括优化溶剂、改善锂盐及使用新型添加剂三个方面,对电极材料低温性能的改善主要是通过体相掺杂、表面包覆及材料颗粒粒径降低的方式。总结电池中低温性能研究中存在的对电池低温热力学特性研究不够明确、对电池低温动力学过程研究方式单一以及对电池中的反应顺序存在的影响认识不足等问题。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩富娟
常增花
赵金玲
王仁念
丁海洋
卢世刚
关键词 高镍三元锂离子电池低温热力学动力学电解液    
Abstract

With the rapid development of the new energy automotive industry, consumers' requirements for the range of electric vehicles have been increasing. The Ni-rich ternary lithium-ion battery has become the most promising power battery in electric vehicles due to its high specific energy, but the battery system still faces the problem of poor performance at low temperature.The research progress on low temperature performance of Ni-rich ternary power battery in recent years was summarized in this review. The influence factors on the low temperature performance of Ni-rich ternary power battery were summarized emphatically. On the one hand, the effects of low temperature performance from thermodynamics were analyzed, including the structural change of the Ni-rich ternary cathode materials and graphite anode materials, electrolytic phase transformation and solvation structure changes, and glass transition of binder. On the other hand, rate controlling step in the low temperature discharge process in the Ni-rich ternary lithium-ion battery was summed up. According to this, main modification measures of low-temperature performance in Ni-rich ternary power battery were summarized. Low temperature electrolyte was designed by optimizing solvents, improving lithium salts and applying new additives. In order to improve the low temperature performance of electrode materials, three methods were mainly employed: substitution, surface modification and smaller material particle size. The remaining shortcomings of the research on low-temperature performance of the battery were summarized, and the research on the low temperature thermodynamic characteristics of batteries is not clear enough. In addition, the research methods for the low temperature kinetic process of batteries are single, and the influence of the reaction sequence in batteries is insufficiently understood.

Key wordsNi-rich ternary lithium-ion battery    low temperature    thermodynamic    dynamics    electrolyte
收稿日期: 2021-05-24      出版日期: 2022-09-20
中图分类号:  O613.7  
  O646.21  
  TM912  
基金资助:国家重点研发计划(2018YFB0104401);国家自然科学基金项目(21903067)
通讯作者: 丁海洋,卢世刚     E-mail: dhyhit@163.com;lusg8867@163.com
作者简介: 卢世刚(1966—),男,教授级高级工程师,博士,主要从事锂离子电池相关研究,联系地址: 上海市宝山区南陈路333号上海大学材料基因组工程研究院(200444),E-mail: lusg8867@163.com
丁海洋(1978—),男,教授级高级工程师,博士,主要从事锂离子电池相关研究,联系地址: 北京市西城区新街口外大街2号北京有色金属研究总院(100088),E-mail: dhyhit@163.com
引用本文:   
韩富娟, 常增花, 赵金玲, 王仁念, 丁海洋, 卢世刚. 高镍三元锂离子电池低温放电性能研究进展[J]. 材料工程, 2022, 50(9): 1-17.
Fujuan HAN, Zenghua CHANG, Jinling ZHAO, Rennian WANG, Haiyang DING, Shigang LU. Research progress in low-temperature discharge performance of Ni-rich ternary lithium-ion batteries. Journal of Materials Engineering, 2022, 50(9): 1-17.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000485      或      http://jme.biam.ac.cn/CN/Y2022/V50/I9/1
Fig.1  键合模型预测LiTMO2 (TM=Ni, Co, Mn)相三角的混合能[14]
Fig.2  在30 ℃(a)和-10 ℃(b)下NCM622正极首周充放电过程结构变化[16]
(1)首周充放电过程原位XRD谱图; (2)充放电曲线; (3)充放电过程I(003)/I(104)
Fig.3  LiC6 (1),LiC12 (2),石墨(3)的晶格参数随温度变化[13]
(a)晶格参数a;(b)晶格参数c;(c)晶胞体积
Fig.4  在不同温度放电过程的中子衍射图放大截面[20]
Sample Temperature/℃ Reference
PVDF -42.84 [25]
CMC -42.18 [26]
SBR -4.45 [25]
Table 1  PVDF,CMC及SBR玻璃化转变温度
Fig.5  有无DTA的电解液中SEI膜表面反应对比[107]
Solvent Lithium salt Additive Temperature/℃ Discharge capacity retention/%
EC∶DMC∶Bn(1∶1∶1, volume ratio) 1 mol·L-1 LiPF6 -20 83[73]
1, 3-dioxane 0.75 mol·L-1 LiTFSI -40 80[74]
MTFP∶FEC(9∶1, volume ratio) 1 mol·L-1 LiPF6 -40 79.4[133]
EC/EMC 1 mol·L-1 LiPF6 5%(mass fraction, the same below) LiFSI -20 84.95[99]
EC∶DEC∶DMS(1∶2∶1, volume ratio) 0.4 mol·L-1 LiODFB+0.4 mol·L-1 LiBF4 -25 76[85]
EC∶EMC∶PC(4∶7∶1, mass ratio) 1 mol·L-1 LiPF6 1% LiPO2F2 -20 71.9[94]
EC∶EMC (1∶2, mass ratio) 1 mol·L-1 LiPF6 1% EMI-BF4 -20 71.51[132]
EC∶PC∶EMC∶DEC∶VC∶FEC(20∶5∶55∶20∶2∶5, volume ratio) 1 mol·L-1 LiPF6 1% PDMS-A -20 81[127]
EC/EMC(1∶2,mass ratio) 1 mol·L-1 LiPF6 0.5% DMS -20 74.28[115]
Table 2  低温电解液配比和性能
1 XU J , DING J N , ZHU W J , et al. Nano-structured red phosphorus/porous carbon as a superior anode for lithium and sodium-ion batteries[J]. Science China Materials, 2017, 61 (3): 371- 381.
2 LYU Y C , WU X , WANG K , et al. An overview on the advances of LiCoO2 cathodes for lithium-ion batteries[J]. Advanced Energy Materials, 2020, 11 (2): 2000982.
3 OHZUKU T , MAKIMURA Y . Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries[J]. Chemistry Letters, 2001, 1 (7): 642- 643.
4 CHOI J W , AURBACH D . Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nature Reviews Materials, 2016, 1 (4): 1- 16.
5 MÄRKER K , REEVES P J , XU C , et al. Evolution of structure and lithium dynamics in LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes during electrochemical cycling[J]. Chemistry of Materials, 2019, 31 (7): 2545- 2554.
doi: 10.1021/acs.chemmater.9b00140
6 BERCKMANS G , MESSAGIE M , SMEKENS J , et al. Cost projection of state of the art lithium-ion batteries for electric vehicles up to 2030[J]. Energies, 2017, 10 (9): 1314.
doi: 10.3390/en10091314
7 CHOI K H , LIU X Y , DING X H , et al. Design strategies for development of nickel-rich ternary lithium-ion battery[J]. Ionics, 2020, 26 (3): 1063- 1080.
doi: 10.1007/s11581-019-03429-z
8 ZHANG L J , MU Z Q , GAO X Y . Coupling analysis and performance study of commercial 18650 lithium-ion batteries under conditions of temperature and vibration[J]. Energies, 2018, 11 (10): 2856.
doi: 10.3390/en11102856
9 YANG Y , LI P , WANG N , et al. Fluorinated carboxylate ester-based electrolyte for lithium ion batteries operated at low temperature[J]. Chemical Communications, 2020, 56 (67): 9640- 9643.
doi: 10.1039/D0CC04049E
10 RODRIGUES M T F , BABU G , GULLAPALLI H , et al. A materials perspective on Li-ion batteries at extreme temperatures[J]. Nature Energy, 2017, 2 (8): 17108.
doi: 10.1038/nenergy.2017.108
11 YAMADA A , TANAKA M . Jahn-Teller structural phase transition around 280 K in LiMn2O4[J]. Materials Research Bulletin, 1995, 30 (6): 715- 721.
doi: 10.1016/0025-5408(95)00048-8
12 PISZORA P , DARUL J , NOWICKI W , et al. Synchrotron X-ray powder diffraction studies on the phase transitions in LiMn2O4[J]. Journal of Alloys and Compounds, 2004, 362 (1/2): 231- 235.
13 BARAN V , DOLOTKO O , MVHLBAUER M J , et al. Thermal structural behavior of electrodes in Li-ion battery studied in operando[J]. Journal of the Electrochemical Society, 2018, 165 (9): 1975- 1982.
doi: 10.1149/2.1441809jes
14 LIANG C P , KONG F T , LONGO R C , et al. Unraveling the origin of instability in Ni-rich LiNi1-2xCoxMnxO2 (NCM) cathode materials[J]. The Journal of Physical Chemistry C, 2016, 120 (12): 6383- 6393.
doi: 10.1021/acs.jpcc.6b00369
15 HONG C Y , LENG Q Y , ZHU J P , et al. Revealing the correlation between structural evolution and Li+ diffusion kinetics of nickel-rich cathode materials in Li-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8 (17): 8540- 8547.
doi: 10.1039/D0TA00555J
16 MENG F B , HU R N , CHEN Z W , et al. Plasma assisted synthesis of LiNi0.6Co0.2Mn0.2O2 cathode materials with good cyclic stability at subzero temperatures[J]. Journal of Energy Chemistry, 2021, 56, 46- 55.
doi: 10.1016/j.jechem.2020.07.044
17 RYU H H , PARK K J , YOON C S , et al. Capacity fading of Ni-rich Li[NixCoyMn1-x-y]O2 (0.6≤x≤0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation?[J]. Chemistry of Materials, 2018, 30 (3): 1155- 1163.
doi: 10.1021/acs.chemmater.7b05269
18 CAMPAGNOLI G , TOSATTI E , CHEN C D , et al. Possible metal-metal phase transitions, particularly in LiC6[J]. Synthetic Metals, 1985, 12 (1/2): 39- 44.
19 MATADI B P , GENIèS S , DELAILLE A , et al. Irreversible capacity loss of Li-ion batteries cycled at low temperature due to an untypical layer hindering Li diffusion into graphite electrode[J]. Journal of the Electrochemical Society, 2017, 164 (12): 2374- 2389.
doi: 10.1149/2.0491712jes
20 SENYSHYN A , MVHLBAUER M J , DOLOTKO O , et al. Low-temperature performance of Li-ion batteries: the behavior of lithiated graphite[J]. Journal of Power Sources, 2015, 282, 235- 240.
doi: 10.1016/j.jpowsour.2015.02.008
21 KWON T W , CHOI J W , COSKUN A . The emerging era of supramolecular polymeric binders in silicon anodes[J]. Chemical Society Reviews, 2018, 47 (6): 2145- 2164.
doi: 10.1039/C7CS00858A
22 CHEN H , WU Z Z , SU Z , et al. A mechanically robust self-healing binder for silicon anode in lithium ion batteries[J]. Nano Energy, 2021, 81, 105654.
doi: 10.1016/j.nanoen.2020.105654
23 LIU F Q , HU Z Y , XUE J X , et al. Stabilizing cathode structure via the binder material with high resilience for lithium-sulfur batteries[J]. RSC Advances, 2019, 9 (69): 40471- 40477.
doi: 10.1039/C9RA08238G
24 CHONG J , XUN S D , ZHENG H H , et al. A comparative study of polyacrylic acid and poly(vinylidene difluoride) binders for spherical natural graphite/LiFePO4 electrodes and cells[J]. Journal of Power Sources, 2011, 196 (18): 7707- 7714.
doi: 10.1016/j.jpowsour.2011.04.043
25 YEN J P , CHANG C C , LIN Y R , et al. Effects of styrene-butadiene rubber/carboxymethylcellulose (SBR/CMC) and polyvinylidene difluoride (PVDF) binders on low temperature lithium ion batteries[J]. Journal of the Electrochemical Society, 2013, 160 (10): 1811- 1818.
doi: 10.1149/2.083310jes
26 高蕾, 程广玉, 顾洪汇, 等. 碳负极黏结剂对于动力锂离子电池性能的影响[J]. 储能科学与技术, 2019, 8 (1): 131- 137.
26 GAO L , CHENG G Y , GU H H , et al. Influence of graphite anode binder on the high power Li-ion battery performance[J]. Energy Storage Science and Technology, 2019, 8 (1): 131- 137.
27 CHOU S L , PAN Y , WANG J Z , et al. Small things make a big difference: binder effects on the performance of Li and Na batteries[J]. Physical Chemistry Chemical Physics, 2014, 16 (38): 20347- 20359.
doi: 10.1039/C4CP02475C
28 LI J T , WU Z Y , LU Y Q , et al. Water soluble binder, an electrochemical performance booster for electrode materials with high energy density[J]. Advanced Energy Materials, 2017, 7 (24): 1701185.
doi: 10.1002/aenm.201701185
29 XU Z X , YANG J , ZHANG T , et al. Silicon microparticle anodes with self-healing multiple network binder[J]. Joule, 2018, 2 (5): 950- 961.
doi: 10.1016/j.joule.2018.02.012
30 JIAO X X , YIN J Q , XU X Y , et al. Highly energy-dissipative, fast self-healing binder for stable Si anode in lithium-ion batteries[J]. Advanced Functional Materials, 2020, 31 (3): 2005699.
31 JIANG S , HU B , SHI Z X , et al. Re-engineering poly(acrylic acid) binder toward optimized electrochemical performance for silicon lithium-ion batteries: branching architecture leads to balanced properties of polymeric binders[J]. Advanced Functional Materials, 2019, 30 (10): 1908558.
32 SHIEH Y T , LIN P Y , CHEN T , et al. Temperature-, pH- and CO2-sensitive poly(N-isopropylacryl amide-co-acrylic acid) copolymers with high glass transition temperatures[J]. Polymers, 2016, 8 (12): 434.
doi: 10.3390/polym8120434
33 YANG L , XIAO A , LUCHT B L . Investigation of solvation in lithium ion battery electrolytes by NMR spectroscopy[J]. Journal of Molecular Liquids, 2010, 154 (2/3): 131- 133.
34 NYMAN A , ZAVALIS T G , ELGER R , et al. Analysis of the polarization in a Li-ion battery cell by numerical simulations[J]. Journal of the Electrochemical Society, 2010, 157 (11): 1236- 1246.
doi: 10.1149/1.3486161
35 PARK G , GUNAWARDHANA N , NAKAMURA H , et al. The study of electrochemical properties and lithium deposition of graphite at low temperature[J]. Journal of Power Sources, 2012, 199, 293- 299.
doi: 10.1016/j.jpowsour.2011.10.058
36 XU K , CRESCE A V W . Li+-solvation/desolvation dictates interphasial processes on graphitic anode in Li ion cells[J]. Journal of Materials Research, 2012, 27 (18): 2327- 2341.
doi: 10.1557/jmr.2012.104
37 LI Q , LU D , ZHENG J , et al. Li+-desolvation dictating lithium-ion battery's low-temperature performances[J]. ACS Applied Materials & Interfaces, 2017, 9 (49): 42761- 42768.
38 SMART M C , RATNAKUMAR B V , WHITCANACK L , et al. Performance characteristics of lithium-ion cells for NASA's Mars 2001 Lander application[J]. IEEE Aerospace & Electronic Systems Magazine, 1999, 14 (11): 36- 42.
39 JOW T R , MARX M B , ALLEN J L . Distinguishing Li+ charge transfer kinetics at NCA/electrolyte and graphite/electrolyte interfaces, and NCA/electrolyte and LFP/electrolyte interfaces in Li-ion cells[J]. Journal of the Electrochemical Society, 2012, 159 (5): 604- 612.
doi: 10.1149/2.079205jes
40 HUANG C K , SAKAMOTO J S , WOLFENSTINE J , et al. The limits of low-temperature performance of Li-ion cells[J]. Journal of the Electrochemical Society, 2000, 147 (8): 2893- 2896.
doi: 10.1149/1.1393622
41 GE H , AOKI T , IKEDA N , et al. Investigating lithium plating in lithium-ion batteries at low temperatures using electrochemical model with NMR assisted parameterization[J]. Journal of the Electrochemical Society, 2017, 164 (6): 1050- 1060.
doi: 10.1149/2.0461706jes
42 JOW T R , DELP S A , ALLEN J L , et al. Factors limiting Li+ charge transfer kinetics in Li-ion batteries[J]. Journal of the Electrochemical Society, 2018, 165 (2): 361- 367.
doi: 10.1149/2.1221802jes
43 VASSILIEV S Y , SENTYURIN V V , LEVIN E E , et al. Diagnostics of lithium-ion intercalation rate-determining step: distinguishing between slow desolvation and slow charge transfer[J]. Electrochimica Acta, 2019, 302, 316- 326.
doi: 10.1016/j.electacta.2019.02.043
44 SMART M C , RATNAKUMAR B V , SURAMPUDI S . Electrolytes for low-temperature lithium batteries based on ternary mixtures of aliphatic carbonates[J]. Journal of the Electrochemical Society, 1999, 146 (2): 486- 492.
doi: 10.1149/1.1391633
45 SMART M C , RATNAKUMAR B V , WHITCANACK L D , et al. Improved low-temperature performance of lithium-ion cells with quaternary carbonate-based electrolytes[J]. Journal of Power Sources, 2003, 119, 349- 358.
46 JI Y , ZHANG Y C , WANG C Y . Li-ion cell operation at low temperatures[J]. Journal of the Electrochemical Society, 2013, 160 (4): 636- 649.
doi: 10.1149/2.047304jes
47 AZEEZ F , FEDKIW P S . Conductivity of libob-based electrolyte for lithium-ion batteries[J]. Journal of Power Sources, 2010, 195 (22): 7627- 7633.
doi: 10.1016/j.jpowsour.2010.06.021
48 QU H , KAFLE J , HARRIS J , et al. Application of ac impedance as diagnostic tool-low temperature electrolyte for a Li-ion battery[J]. Electrochimica Acta, 2019, 322, 134755.
doi: 10.1016/j.electacta.2019.134755
49 ABE T , FUKUDA H , IRIYAMA Y , et al. Solvated Li-ion transfer at interface between graphite and electrolyte[J]. Journal of the Electrochemical Society, 2004, 151 (8): 1120- 1123.
doi: 10.1149/1.1763141
50 ABE T , SAGANE F , OHTSUKA M , et al. Lithium-ion transfer at the interface between lithium-ion conductive ceramic electrolyte and liquid electrolyte-a key to enhancing the rate capability of lithium-ion batteries[J]. Journal of the Electrochemical Society, 2005, 152 (11): 2151- 2154.
doi: 10.1149/1.2042907
51 ISHIHARA Y , MIYAZAKI K , FUKUTSUKA T , et al. Kinetics of lithium-ion transfer at the interface between Li4Ti5O12 thin films and organic electrolytes[J]. ECS Electrochemistry Letters, 2014, 3 (8): 83- 86.
doi: 10.1149/2.0011408eel
52 STEINHAUER M , RISSE S , WAGNER N , et al. Investigation of the solid electrolyte interphase formation at graphite anodes in lithium-ion batteries with electrochemical impedance spectroscopy[J]. Electrochimica Acta, 2017, 228, 652- 658.
doi: 10.1016/j.electacta.2017.01.128
53 ADAMS R A , VARMA A , POL V G . Temperature dependent electrochemical performance of graphite anodes for K-ion and Li-ion batteries[J]. Journal of Power Sources, 2019, 410/411, 124- 131.
doi: 10.1016/j.jpowsour.2018.11.007
54 XU K , VON CRESCE A , LEE U . Differentiating contributions to "ion transfer" barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface[J]. Langmuir, 2010, 26 (13): 11538- 11543.
doi: 10.1021/la1009994
55 RUI X H , JIN Y , FENG X Y , et al. A comparative study on the low-temperature performance of LiFePO4/C and Li3V2(PO4)3/C cathodes for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196 (4): 2109- 2114.
doi: 10.1016/j.jpowsour.2010.10.063
56 RANGARAJAN S P , BARSUKOV Y , MUKHERJEE P P . In operando impedance based diagnostics of electrode kinetics in li-ion pouch cells[J]. Journal of the Electrochemical Society, 2019, 166 (10): 2131- 2141.
doi: 10.1149/2.1191910jes
57 YAQUB A , LEE Y J , HWANG M J , et al. Low temperature performance of graphite and LiNi0.6Co0.2Mn0.2O2 electrodes in Li-ion batteries[J]. Journal of Materials Science, 2014, 49 (22): 7707- 7714.
doi: 10.1007/s10853-014-8479-6
58 MIN W Y . Intrinsic kinetic properties of ternary material for lithium ion batteries assessed by single particle microelectrode[J]. Journal of Electrochemistry, 2018, 24 (1): 81- 88.
59 杨夕馨, 常增花, 邵泽超, 等. 富锂锰基正极材料在不同温度下的极化行为[J]. 材料工程, 2021, 49 (9): 69- 78.
59 YANG X X , CHANG Z H , SHAO Z C , et al. Polarization behavior of lithium-rich manganese-based cathode materials at different temperatures[J]. Journal of Materials Engineering, 2021, 49 (9): 69- 78.
60 STUART T A , HANDE A . HEV battery heating using AC currents[J]. Journal of Power Sources, 2004, 129 (2): 368- 378.
doi: 10.1016/j.jpowsour.2003.10.014
61 张承宁, 雷治国, 董玉刚. 电动汽车锂离子电池低温加热方法研究[J]. 北京理工大学学报, 2012, 32 (9): 45- 49.
61 ZHANG C N , LEI Z G , DONG Y G . Method for heating low-temperature lithium battery in electric vehicle[J]. Journal of Beijing Institute of Technology, 2012, 32 (9): 45- 49.
62 ZHANG J B , GE H , LI Z , et al. Internal heating of lithium-ion batteries using alternating current based on the heat generation model in frequency domain[J]. Journal of Power Sources, 2015, 273, 1030- 1037.
doi: 10.1016/j.jpowsour.2014.09.181
63 WANG C Y , ZHANG G , GE S , et al. Lithium-ion battery structure that self-heats at low temperatures[J]. Nature, 2016, 529 (7587): 515- 518.
doi: 10.1038/nature16502
64 LI C F , HUA N , WANG C Y , et al. Effect of Mn2+-doping in LiFePO4 and the low temperature electrochemical performances[J]. Journal of Alloys and Compounds, 2011, 509 (5): 1897- 1900.
doi: 10.1016/j.jallcom.2010.10.083
65 HUANG G L , LI W , SUN H Z , et al. Polyvinylpyrrolidone (PVP) assisted synthesized nano-LiFePO4/C composite with enhanced low temperature performance[J]. Electrochimica Acta, 2013, 97, 92- 98.
doi: 10.1016/j.electacta.2013.02.066
66 SHI S J , TU J P , TANG Y Y , et al. Enhanced electrochemical performance of LiF-modified LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries[J]. Journal of Power Sources, 2013, 225, 338- 346.
doi: 10.1016/j.jpowsour.2012.10.065
67 HERREYRE S , HUCHET O , BARUSSEAU S , et al. New Li-ion electrolytes for low temperature applications[J]. Journal of Power Sources, 2001, 97, 576- 580.
68 KAFLE J , HARRIS J , CHANG J , et al. Development of wide temperature electrolyte for graphite/LiNiMnCoO2 Li-ion cells: high throughput screening[J]. Journal of Power Sources, 2018, 392, 60- 68.
doi: 10.1016/j.jpowsour.2018.04.102
69 SMART M C , RATNAKUMAR B V , CHIN K B , et al. Lithium-ion electrolytes containing ester cosolvents for improved low temperature performance[J]. Journal of the Electrochemical Society, 2010, 157 (12): 1361- 1374.
doi: 10.1149/1.3501236
70 DONG X L , GUO Z W , GUO Z Y , et al. Organic batteries operated at -70 ℃[J]. Joule, 2018, 2 (5): 902- 913.
doi: 10.1016/j.joule.2018.01.017
71 ZHU C J , LV W X , CHEN J , et al. Butyl acrylate (BA) and ethylene carbonate (EC) electrolyte additives for low-temperature performance of lithium ion batteries[J]. Journal of Power Sources, 2020, 476, 228697.
doi: 10.1016/j.jpowsour.2020.228697
72 XU G J , HUANG S Q , CUI Z L , et al. Functional additives assisted ester-carbonate electrolyte enables wide temperature operation of a high-voltage (5 V-class) Li-ion battery[J]. Journal of Power Sources, 2019, 416, 29- 36.
doi: 10.1016/j.jpowsour.2019.01.085
73 CHO Y G , KIM Y S , SUNG D G , et al. Nitrile-assistant eutectic electrolytes for cryogenic operation of lithium ion batteries at fast charges and discharges[J]. Energy & Environmental Science, 2014, 7 (5): 1737- 1743.
74 XU J , WANG X , YUAN N Y , et al. Extending the low temperature operational limit of Li-ion battery to -80 ℃[J]. Energy Storage Materials, 2019, 23, 383- 389.
doi: 10.1016/j.ensm.2019.04.033
75 FAN X L , JI X , CHEN L , et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents[J]. Nature Energy, 2019, 4 (10): 882- 890.
doi: 10.1038/s41560-019-0474-3
76 RUSTOMJI C S , YANG Y , KIM T K , et al. Liquefied gas electrolytes for electrochemical energy storage devices[J]. Science, 2017, 356 (6345): 4263.
doi: 10.1126/science.aal4263
77 YAMAKI J I , SHINJO Y , DOI T , et al. The rate equation of decomposition for electrolytes with LiPF6 in Li-ion cells at elevated temperatures[J]. Journal of the Electrochemical Society, 2015, 162 (4): 520- 530.
doi: 10.1149/2.0161504jes
78 ZHANG S S , XU K , JOW T R . A new approach toward improved low temperature performance of Li-ion battery[J]. Electrochemistry Communications, 2002, 4, 928- 932.
doi: 10.1016/S1388-2481(02)00490-3
79 ZHANG S S , XU K , JOW T R . Low-temperature performance of Li-ion cells with a LiBF4-based electrolyte[J]. Journal of Solid State Electrochemistry, 2003, 7 (3): 147- 151.
doi: 10.1007/s10008-002-0300-9
80 JOW T R , DING M S , XU K , et al. Nonaqueous electrolytes for wide-temperature-range operation of Li-ion cells[J]. Journal of Power Sources, 2003, 110, 343- 348.
81 XU M Q , ZHOU L , DONG Y N , et al. Improving the performance of graphite/LiNi0. 5Mn1. 5O4 cells at high voltage and elevated temperature with added lithium bis (oxalato) borate (LiBOB)[J]. Journal of the Electrochemical Society, 2013, 160 (11): 2005- 2013.
doi: 10.1149/2.053311jes
82 ZHANG S S , XU K , JOW T R . Enhanced performance of Li-ion cell with LiBF4-PC based electrolyte by addition of small amount of LiBOB[J]. Journal of Power Sources, 2006, 156 (2): 629- 633.
doi: 10.1016/j.jpowsour.2005.04.023
83 XU M Q , ZHOU L , HAO L S , et al. Investigation and application of lithium difluoro(oxalate)borate (LiDFOB) as additive to improve the thermal stability of electrolyte for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196 (16): 6794- 6801.
doi: 10.1016/j.jpowsour.2010.10.050
84 LI S Y , LI X P , LIU J L , et al. A low-temperature electrolyte for lithium-ion batteries[J]. Ionics, 2014, 21 (4): 901- 907.
85 ZHAO Q P , ZHANG Y , TANG F J , et al. Mixed salts of lithium difluoro (oxalate) borate and lithium tetrafluorobotate electrolyte on low-temperature performance for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2017, 164 (9): 1873- 1880.
doi: 10.1149/2.0851709jes
86 KRAUSE F C , HWANG C , RATNAKUMAR B V , et al. The use of methyl butyrate-based electrolytes with additives to enable the operation of Li-ion cells with high voltage cathodes over a wide temperature range[J]. ECS Transactions, 2014, 58 (48): 97- 107.
doi: 10.1149/05848.0097ecst
87 ZHOU H M , XIAO K W , LI J . Lithium difluoro(oxalate)borate and LiBF4 blend salts electrolyte for LiNi0.5Mn1.5O4 cathode material[J]. Journal of Power Sources, 2016, 302, 274- 282.
doi: 10.1016/j.jpowsour.2015.10.073
88 ANDERSSON A , ABRAHAM D , HAASCH R , et al. Surface characterization of electrodes from high power lithium-ion batteries[J]. Journal of the Electrochemical Society, 2002, 149 (10): 1358- 1369.
doi: 10.1149/1.1505636
89 YANG G H , SHI J L , SHEN C , et al. Improving the cyclability performance of lithium-ion batteries by introducing lithium difluorophosphate (LiPO2F2) additive[J]. RSC Advances, 2017, 7 (42): 26052- 26059.
doi: 10.1039/C7RA03926C
90 VERMA P , MAIRE P , NOVÁK P . A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries[J]. Electrochimica Acta, 2010, 55 (22): 6332- 6341.
doi: 10.1016/j.electacta.2010.05.072
91 CHOI Y K , CHUNG K I , KIM W S , et al. Suppressive effect of Li2CO3 on initial irreversibility at carbon anode in Li-ion batteries[J]. Journal of Power Sources, 2002, 104 (1): 132- 139.
doi: 10.1016/S0378-7753(01)00911-9
92 LEI Q F , YANG T X , ZHAO X Y , et al. Lithium difluorophosphate as a multi-functional electrolyte additive for 4.4 V LiNi0.5Co0.2Mn0.3O2/graphite lithium ion batteries[J]. Journal of Electroanalytical Chemistry, 2019, 846, 113141.
doi: 10.1016/j.jelechem.2019.05.023
93 SHANGGUAN X , XU G , CUI Z , et al. Additive-assisted novel dual-salt electrolyte addresses wide temperature operation of lithium-metal batteries[J]. Small, 2019, 15 (16): 1900269.
doi: 10.1002/smll.201900269
94 YANG B W , ZHANG H , YU L , et al. Lithium difluorophosphate as an additive to improve the low temperature performance of LiNi0.5Co0.2Mn0.3O2/graphite cells[J]. Electrochimica Acta, 2016, 221, 107- 114.
doi: 10.1016/j.electacta.2016.10.037
95 HAN H B , ZHOU S S , ZHANG D J , et al. Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: physicochemical and electrochemical properties[J]. Journal of Power Sources, 2011, 196 (7): 3623- 3632.
doi: 10.1016/j.jpowsour.2010.12.040
96 LI L F , ZHOU S S , HAN H B , et al. Transport and electrochemical properties and spectral features of non-aqueous electrolytes containing LiFSI in linear carbonate solvents[J]. Journal of the Electrochemical Society, 2011, 158 (2): 74- 82.
doi: 10.1149/1.3514705
97 KERNER M , PLYLAHAN N , SCHEERS J , et al. Thermal stability and decomposition of lithium bis(fluorosulfonyl)imide (LiFSI) salts[J]. RSC Advances, 2016, 6 (28): 23327- 23334.
doi: 10.1039/C5RA25048J
98 MANDAL B K , PADHI A K , SHI Z , et al. New low temperature electrolytes with thermal runaway inhibition for lithium-ion rechargeable batteries[J]. Journal of Power Sources, 2006, 162 (1): 690- 695.
doi: 10.1016/j.jpowsour.2006.06.053
99 HAN S Y , LIU S L , GAO J X , et al. Enhancement of operating voltage and temperature range by adding lithium bis(fluorosulfonyl)imide as electrolyte additive[J]. Chemistry Select, 2020, 5 (44): 14008- 14016.
100 PHAM H Q , CHUNG G J , HAN J , et al. Interface stabilization via lithium bis(fluorosulfonyl)imide additive as a key for promoted performance of graphite‖LiCoO2 pouch cell under -20 ℃[J]. The Journal of Chemical Physics, 2020, 152 (9): 094709.
doi: 10.1063/1.5144280
101 YANG G J , LI Y J , LIU S , et al. LiFSI to improve lithium deposition in carbonate electrolyte[J]. Energy Storage Materials, 2019, 23, 350- 357.
doi: 10.1016/j.ensm.2019.04.041
102 杨春巍, 吴锋, 吴伯荣, 等. 含FEC电解液的锂离子电池低温性能研究[J]. 电化学, 2011, 17 (1): 63- 66.
102 YANG C W , WU F , WU B R , et al. Low-temperature performance of Li-ion battery with fluoroethylene carbonate electrolyte[J]. Journal of Electrochemistry, 2011, 17 (1): 63- 66.
103 REN Y H , YANG C W , WU B R , et al. Novel low-temperature electrolyte for Li-ion battery[J]. Advanced Materials Research, 2011, 287/290, 1283- 1289.
doi: 10.4028/www.scientific.net/AMR.287-290.1283
104 PARK S J , RYU J H , OH S M . The roles of electrolyte additives on low-temperature performances of graphite negative electrode[J]. Journal of the Korean Electrochemical Society, 2012, 15 (1): 19- 26.
doi: 10.5229/JKES.2012.15.1.019
105 LIU B X , LI B , GUAN S Y . Effect of fluoroethylene carbonate additive on low temperature performance of Li-ion batteries[J]. Electrochemical and Solid-State Letters, 2012, 15 (6): 77- 79.
doi: 10.1149/2.027206esl
106 LIAO L X , CHENG X Q , MA Y L , et al. Fluoroethylene carbonate as electrolyte additive to improve low temperature performance of LiFePO4 electrode[J]. Electrochimica Acta, 2013, 87, 466- 472.
doi: 10.1016/j.electacta.2012.09.083
107 ZUO W Q , LI C Y , CHAO Z Q , et al. Effect of N-N dimethyltrifluoroacetamide additive on low temperature performance of graphite anode[J]. International Journal of Electrochemical Science, 2020, 15, 382- 393.
108 WRODNIGG G H , JVRGEN O , BESENHARD M W . Cyclic and acyclic sulfites: new solvents and electrolyte additives for lithium ion batteries with graphitic anodes?[J]. Journal of Power Sources, 2001, 97, 592- 594.
109 WU Z , LI S G , ZHENG Y Z , et al. The roles of sulfur-containing additives and their working mechanism on the temperature-dependent performances of Li-ion batteries[J]. Journal of the Electrochemical Society, 2018, 165 (11): 2792- 2800.
doi: 10.1149/2.0331811jes
110 WAGNER R , BROX S , KASNATSCHEEW J , et al. Vinyl sulfones as SEI-forming additives in propylene carbonate based electrolytes for lithium-ion batteries[J]. Electrochemistry Communications, 2014, 40, 80- 83.
doi: 10.1016/j.elecom.2014.01.004
111 WOTANGO A S , SU W N , HAREGEWOIN A M , et al. Designed synergetic effect of electrolyte additives to improve interfacial chemistry of MCMB electrode in propylene carbonate-based electrolyte for enhanced low and room temperature performance[J]. ACS Applied Materials & Interfaces, 2018, 10 (30): 25252- 25262.
112 LIN Y C , YUE X P , ZHANG H , et al. Using phenyl methanesulfonate as an electrolyte additive to improve performance of LiNi0.5Co0.2Mn0.3O2/graphite cells at low temperature[J]. Electrochimica Acta, 2019, 300, 202- 207.
doi: 10.1016/j.electacta.2019.01.120
113 JUNG Y , KANG B . Understanding abnormal potential behaviors at the 1st charge in Li2S cathode material for rechargeable Li-S batteries[J]. Physical Chemistry Chemical Physics, 2016, 18 (31): 21500- 21507.
doi: 10.1039/C6CP03146C
114 吴则利, 郑烨珍, 张忠如, 等. 含硫添加剂对石墨负极低温性能的研究[J]. 电化学, 2018, 24 (5): 529- 537.
114 WU Z L , ZHNEG Y Z , ZHANG Z R , et al. Effects of sulfur-containing additive on low temperature performance of graphite anode[J]. Journal of Electrochemistry, 2018, 24 (5): 529- 537.
115 GUO R D , CHE Y X , LAN G Y , et al. Tailoring low-temperature performance of a lithium-ion battery via rational designing interphase on an anode[J]. ACS Applied Materials & Interfaces, 2019, 11 (41): 38285- 38293.
116 KOREPP C , KERN W , LANZER E A , et al. Ethyl isocyanate—an electrolyte additive from the large family of isocyanates for PC-based electrolytes in lithium-ion batteries[J]. Journal of Power Sources, 2007, 174 (2): 628- 631.
doi: 10.1016/j.jpowsour.2007.06.140
117 KOREPP C , KERN W , LANZER E A , et al. Isocyanate compounds as electrolyte additives for lithium-ion batteries[J]. Journal of Power Sources, 2007, 174 (2): 387- 393.
doi: 10.1016/j.jpowsour.2007.06.141
118 WANG R H , LI X H , WANG Z X , et al. Electrochemical analysis graphite/electrolyte interface in lithium-ion batteries: p-toluenesulfonyl isocyanate as electrolyte additive[J]. Nano Energy, 2017, 34, 131- 140.
doi: 10.1016/j.nanoen.2017.02.037
119 SHI J L , EHTESHAMI N , MA J L , et al. Improving the graphite/electrolyte interface in lithium-ion battery for fast charging and low temperature operation: fluorosulfonyl isocyanate as electrolyte additive[J]. Journal of Power Sources, 2019, 429, 67- 74.
doi: 10.1016/j.jpowsour.2019.04.113
120 PELED E . The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model[J]. Journal of the Electrochemical Society, 1979, 126 (12): 2047- 2051.
doi: 10.1149/1.2128859
121 WINTER M . The solid electrolyte interphase-the most important and the least understood solid electrolyte in rechargeable Li batteries[J]. Zeitschrift für physikalische Chemie, 2009, 223 (10/11): 1395- 1406.
122 SONG Y M , HAN J G , PARK S , et al. A multifunctional phosphite-containing electrolyte for 5 V-class LiNi0.5Mn1.5O4 cathodes with superior electrochemical performance[J]. Journal of Materials Chemistry A, 2014, 2 (25): 9506- 9513.
doi: 10.1039/C4TA01129E
123 HAN J G , LEE S J , LEE J , et al. Tunable and robust phosphite-derived surface film to protect lithium-rich cathodes in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7 (15): 8319- 8329.
124 SONG Y M , KIM C K , KIM K E , et al. Exploiting chemically and electrochemically reactive phosphite derivatives for high-voltage spinel LiNi0.5Mn1.5O4 cathodes[J]. Journal of Power Sources, 2016, 302, 22- 30.
doi: 10.1016/j.jpowsour.2015.10.043
125 YIM T , HAN Y K . Tris(trimethylsilyl) phosphite as an efficient electrolyte additive to improve the surface stability of graphite anodes[J]. ACS Applied Materials & Interfaces, 2017, 9 (38): 32851- 32858.
126 OH B , VISSERS D , ZHANG Z , et al. New interpenetrating network type poly(siloxane-g-ethylene oxide) polymer electrolyte for lithium battery[J]. Journal of Power Sources, 2003, 119/121, 442- 447.
doi: 10.1016/S0378-7753(03)00187-3
127 KIM K M , LY N V , WON J H , et al. Improvement of lithium-ion battery performance at low temperature by adopting polydimethylsiloxane-based electrolyte additives[J]. Electrochimica Acta, 2014, 136, 182- 188.
doi: 10.1016/j.electacta.2014.05.054
128 GERBALDI C , NAIR J R , MELIGRANA G , et al. UV-curable siloxane-acrylate gel-copolymer electrolytes for lithium-based battery applications[J]. Electrochimica Acta, 2010, 55 (4): 1460- 1467.
doi: 10.1016/j.electacta.2009.05.055
129 HAMENU L , LEE H S , LATIFATU M , et al. Lithium-silica nanosalt as a low-temperature electrolyte additive for lithium-ion batteries[J]. Current Applied Physics, 2016, 16 (6): 611- 617.
doi: 10.1016/j.cap.2016.03.012
130 WON J H , LEE H S , HAMENU L , et al. Improvement of low-temperature performance by adopting polydimethylsiloxane-g-polyacrylate and lithium-modified silica nanosalt as electrolyte additives in lithium-ion batteries[J]. Journal of Industrial and Engineering Chemistry, 2016, 37, 325- 329.
doi: 10.1016/j.jiec.2016.03.045
131 LI Y , WONG K W , DOU Q Q , et al. Improvement of lithium-ion battery performance at low temperature by adopting ionic liquid-decorated PMMA Nanoparticles as electrolyte Component[J]. ACS Applied Energy Materials, 2018, 1 (6): 2664- 2670.
doi: 10.1021/acsaem.8b00355
132 WANG W L , YANG T X , LI S , et al. 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI-BF4) as an ionic liquid-type electrolyte additive to enhance the low-temperature performance of LiNi0.5Co0.2Mn0.3O2/graphite batteries[J]. Electrochimica Acta, 2019, 317, 146- 154.
doi: 10.1016/j.electacta.2019.05.027
133 HOLOUBEK J , YU M Y , YU S C , et al. An all-fluorinated ester electrolyte for stable high-voltage Li metal batteries capable of ultra-low-temperature operation[J]. ACS Energy Letters, 2020, 5 (5): 1438- 1447.
doi: 10.1021/acsenergylett.0c00643
134 LAN G Y , XING L D , BEDROV D , et al. Enhanced cyclic stability of Ni-rich lithium ion battery with electrolyte film-forming additive[J]. Journal of Alloys and Compounds, 2020, 821, 153236.
doi: 10.1016/j.jallcom.2019.153236
135 ZHENG Y Z , XU N B , CHEN S J , et al. Construction of a stable LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode interface by a multifunctional organosilicon electrolyte additive[J]. ACS Applied Energy Materials, 2020, 3 (3): 2837- 2845.
doi: 10.1021/acsaem.9b02486
136 LI G , LIAO Y , LI Z , et al. Constructing a low-impedance interface on a high-voltage LiNi0.8Co0.1Mn0.1O2 cathode with 2, 4, 6-triphenyl boroxine as a film-forming electrolyte additive for Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12 (33): 37013- 37026.
137 TAN S Y , WANG L , BIAN L , et al. Highly enhanced low temperature discharge capacity of LiNi1/3Co1/3Mn1/3O2 with lithium boron oxide glass modification[J]. Journal of Power Sources, 2015, 277, 139- 146.
doi: 10.1016/j.jpowsour.2014.11.149
138 LV D D , WANG L , HU P F , et al. Li2O-B2O3-Li2SO4 modified LiNi1/3Co1/3Mn1/3O2 cathode material for enhanced electrochemical performance[J]. Electrochimica Acta, 2017, 247, 803- 811.
doi: 10.1016/j.electacta.2017.07.068
139 LI G Y , HUANG Z L , ZUO Z C , et al. Understanding the trace Ti surface doping on promoting the low temperature performance of LiNi1/3Co1/3Mn1/3O2 cathode[J]. Journal of Power Sources, 2015, 281, 69- 76.
doi: 10.1016/j.jpowsour.2015.01.173
140 LI G Y , ZHANG Z J , WANG R N , et al. Effect of trace Al surface doping on the structure, surface chemistry and low temperature performance of LiNi0.5Co0.2Mn0.3O2 cathode[J]. Electrochimica Acta, 2016, 212, 399- 407.
doi: 10.1016/j.electacta.2016.07.033
141 LIU Q , ZHAO Z K , WU F , et al. The effects of molybdenum doping on LiNi0.6Co0.2Mn0.2O2 cathode material[J]. Solid State Ionics, 2019, 337, 107- 114.
doi: 10.1016/j.ssi.2019.04.020
142 HUANG Z J , WANG Z X , JING Q , et al. Investigation on the effect of Na doping on structure and Li-ion kinetics of layered LiNi0.6Co0.2Mn0.2O2 cathode material[J]. Electrochimica Acta, 2016, 192, 120- 126.
doi: 10.1016/j.electacta.2016.01.139
143 NOBILI F , MANCINI M , DSOKE S , et al. Low-temperature behavior of graphite-tin composite anodes for Li-ion batteries[J]. Journal of Power Sources, 2010, 195 (20): 7090- 7097.
doi: 10.1016/j.jpowsour.2010.05.001
144 LEE M J , LEE K , LIM J , et al. Outstanding low-temperature performance of structure-controlled graphene anode based on surface-controlled charge storage mechanism[J]. Advanced Functional Materials, 2021, 31 (14): 2009397.
doi: 10.1002/adfm.202009397
145 MARKEVICH E , SALITRA G , AURBACH D . Low temperature performance of amorphous monolithic silicon anodes: comparative study of silicon and graphite electrodes[J]. Journal of the Electrochemical Society, 2016, 163 (10): 2407- 2412.
doi: 10.1149/2.1291610jes
146 YUAN T , YU X , CAI R , et al. Synthesis of pristine and carbon-coated Li4Ti5O12 and their low-temperature electrochemical performance[J]. Journal of Power Sources, 2010, 195 (15): 4997- 5004.
doi: 10.1016/j.jpowsour.2010.02.020
147 MARINARO M , NOBILI F , BIRROZZI A , et al. Improved low-temperature electrochemical performance of Li4Ti5O12 composite anodes for Li-ion batteries[J]. Electrochimica Acta, 2013, 109, 207- 213.
doi: 10.1016/j.electacta.2013.07.093
[1] 郗森良, 王晓军, 张同环, 韩宗盈, 高猛, 周仕学, 于昊. 过渡金属氟化物改善2NaBH4+MgH2储氢体系的放氢热力学性能[J]. 材料工程, 2022, 50(9): 97-104.
[2] 孟倩, 李东阳, 杨江仁, 刘天增. 310S耐热钢的高温氧化行为[J]. 材料工程, 2022, 50(9): 137-149.
[3] 李鹏, 邹存柱, 董红刚, 吴宝生, 李超, 杨跃森, 闫德俊. Fe/Al异质金属接头界面组织演变、生长动力学及力学性能[J]. 材料工程, 2022, 50(5): 43-51.
[4] 杨珺, 林元华, 廖丽, 陈杨阳, 冯炫杰, 李佩, 纪洪江, 王明珊, 陈俊臣, 李星. 电解液化学保护锂金属电池负极的研究进展[J]. 材料工程, 2021, 49(7): 35-45.
[5] 白银, 刘正东, 包汉生, 何西扣, 陈正宗. 锅炉用马氏体钢蒸汽氧化行为研究进展[J]. 材料工程, 2021, 49(6): 77-84.
[6] 崔静轩, 吕东风, 张学凤, 郭鑫鑫, 刘洁, 张澳寒, 崔帅, 魏恒勇, 卜景龙. 电解液添加剂NaHCO3对多孔氮化铌纤维电化学性能的影响[J]. 材料工程, 2021, 49(6): 122-131.
[7] 杨鑫, 王犇, 谷文萍, 张兆洋, 刘世锋, 武涛. 金属激光3D打印过程数值模拟应用及研究现状[J]. 材料工程, 2021, 49(4): 52-62.
[8] 何沐, 王宇, 徐樑华. 低温炭化温度梯度对聚丙烯腈预氧纤维结构演变及碳纤维性能的影响[J]. 材料工程, 2021, 49(4): 120-127.
[9] 郭世柏, 易正翼, 段晓云, 王南川, 廖景冰. 低温燃烧法制备(W,Mo)C/Al2O3/La2O3复合粉末及性能[J]. 材料工程, 2021, 49(3): 133-140.
[10] 曾静, 武东政, 庄奕超, 赵金保. 镁电池正极材料性能提升策略的研究进展[J]. 材料工程, 2021, 49(2): 10-20.
[11] 虞兮凡, 赵伶玲. 热电材料β-Cu2-xSe热传导性能模拟研究[J]. 材料工程, 2021, 49(2): 121-126.
[12] 张福明, 王静, 张鹏, 时志强. 有机电解液在钠离子电池中的研究进展[J]. 材料工程, 2021, 49(1): 11-22.
[13] 冯昊, 符殿宝, 程佳乐, 唐寅林, 陈俊锋, 王晨, 邹林池. 压缩预变形对7050铝合金非等温时效析出行为的影响[J]. 材料工程, 2020, 48(9): 107-114.
[14] 张成林, 董抒华, 李丽君, 田龙雨, 谭洪生. E-玻纤/环氧树脂预浸料固化动力学及其动态热力学性能[J]. 材料工程, 2020, 48(9): 152-157.
[15] 杨泽南, 李赛, 于俊杰, 谢强, 王祯, 张明达, 董浩凯, 张强, 杨志刚. 合金元素配分对珠光体相变热动力学及其奥氏体化影响的研究进展[J]. 材料工程, 2020, 48(7): 61-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn