1 National Power Battery Innovation Center, GRINM Group Co., Ltd., Beijing 100088, China 2 China Automotive Battery Research Institute Co., Ltd., Beijing 100088, China 3 General Research Institute for Nonferrous Metals, Beijing 100088, China 4 Materials Genome Institute, Shanghai University, Shanghai 200444, China
With the rapid development of the new energy automotive industry, consumers' requirements for the range of electric vehicles have been increasing. The Ni-rich ternary lithium-ion battery has become the most promising power battery in electric vehicles due to its high specific energy, but the battery system still faces the problem of poor performance at low temperature.The research progress on low temperature performance of Ni-rich ternary power battery in recent years was summarized in this review. The influence factors on the low temperature performance of Ni-rich ternary power battery were summarized emphatically. On the one hand, the effects of low temperature performance from thermodynamics were analyzed, including the structural change of the Ni-rich ternary cathode materials and graphite anode materials, electrolytic phase transformation and solvation structure changes, and glass transition of binder. On the other hand, rate controlling step in the low temperature discharge process in the Ni-rich ternary lithium-ion battery was summed up. According to this, main modification measures of low-temperature performance in Ni-rich ternary power battery were summarized. Low temperature electrolyte was designed by optimizing solvents, improving lithium salts and applying new additives. In order to improve the low temperature performance of electrode materials, three methods were mainly employed: substitution, surface modification and smaller material particle size. The remaining shortcomings of the research on low-temperature performance of the battery were summarized, and the research on the low temperature thermodynamic characteristics of batteries is not clear enough. In addition, the research methods for the low temperature kinetic process of batteries are single, and the influence of the reaction sequence in batteries is insufficiently understood.
XU J , DING J N , ZHU W J , et al. Nano-structured red phosphorus/porous carbon as a superior anode for lithium and sodium-ion batteries[J]. Science China Materials, 2017, 61 (3): 371- 381.
2
LYU Y C , WU X , WANG K , et al. An overview on the advances of LiCoO2 cathodes for lithium-ion batteries[J]. Advanced Energy Materials, 2020, 11 (2): 2000982.
3
OHZUKU T , MAKIMURA Y . Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries[J]. Chemistry Letters, 2001, 1 (7): 642- 643.
4
CHOI J W , AURBACH D . Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nature Reviews Materials, 2016, 1 (4): 1- 16.
5
MÄRKER K , REEVES P J , XU C , et al. Evolution of structure and lithium dynamics in LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes during electrochemical cycling[J]. Chemistry of Materials, 2019, 31 (7): 2545- 2554.
doi: 10.1021/acs.chemmater.9b00140
6
BERCKMANS G , MESSAGIE M , SMEKENS J , et al. Cost projection of state of the art lithium-ion batteries for electric vehicles up to 2030[J]. Energies, 2017, 10 (9): 1314.
doi: 10.3390/en10091314
7
CHOI K H , LIU X Y , DING X H , et al. Design strategies for development of nickel-rich ternary lithium-ion battery[J]. Ionics, 2020, 26 (3): 1063- 1080.
doi: 10.1007/s11581-019-03429-z
8
ZHANG L J , MU Z Q , GAO X Y . Coupling analysis and performance study of commercial 18650 lithium-ion batteries under conditions of temperature and vibration[J]. Energies, 2018, 11 (10): 2856.
doi: 10.3390/en11102856
9
YANG Y , LI P , WANG N , et al. Fluorinated carboxylate ester-based electrolyte for lithium ion batteries operated at low temperature[J]. Chemical Communications, 2020, 56 (67): 9640- 9643.
doi: 10.1039/D0CC04049E
10
RODRIGUES M T F , BABU G , GULLAPALLI H , et al. A materials perspective on Li-ion batteries at extreme temperatures[J]. Nature Energy, 2017, 2 (8): 17108.
doi: 10.1038/nenergy.2017.108
11
YAMADA A , TANAKA M . Jahn-Teller structural phase transition around 280 K in LiMn2O4[J]. Materials Research Bulletin, 1995, 30 (6): 715- 721.
doi: 10.1016/0025-5408(95)00048-8
12
PISZORA P , DARUL J , NOWICKI W , et al. Synchrotron X-ray powder diffraction studies on the phase transitions in LiMn2O4[J]. Journal of Alloys and Compounds, 2004, 362 (1/2): 231- 235.
13
BARAN V , DOLOTKO O , MVHLBAUER M J , et al. Thermal structural behavior of electrodes in Li-ion battery studied in operando[J]. Journal of the Electrochemical Society, 2018, 165 (9): 1975- 1982.
doi: 10.1149/2.1441809jes
14
LIANG C P , KONG F T , LONGO R C , et al. Unraveling the origin of instability in Ni-rich LiNi1-2xCoxMnxO2 (NCM) cathode materials[J]. The Journal of Physical Chemistry C, 2016, 120 (12): 6383- 6393.
doi: 10.1021/acs.jpcc.6b00369
15
HONG C Y , LENG Q Y , ZHU J P , et al. Revealing the correlation between structural evolution and Li+ diffusion kinetics of nickel-rich cathode materials in Li-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8 (17): 8540- 8547.
doi: 10.1039/D0TA00555J
16
MENG F B , HU R N , CHEN Z W , et al. Plasma assisted synthesis of LiNi0.6Co0.2Mn0.2O2 cathode materials with good cyclic stability at subzero temperatures[J]. Journal of Energy Chemistry, 2021, 56, 46- 55.
doi: 10.1016/j.jechem.2020.07.044
17
RYU H H , PARK K J , YOON C S , et al. Capacity fading of Ni-rich Li[NixCoyMn1-x-y]O2 (0.6≤x≤0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation?[J]. Chemistry of Materials, 2018, 30 (3): 1155- 1163.
doi: 10.1021/acs.chemmater.7b05269
18
CAMPAGNOLI G , TOSATTI E , CHEN C D , et al. Possible metal-metal phase transitions, particularly in LiC6[J]. Synthetic Metals, 1985, 12 (1/2): 39- 44.
19
MATADI B P , GENIèS S , DELAILLE A , et al. Irreversible capacity loss of Li-ion batteries cycled at low temperature due to an untypical layer hindering Li diffusion into graphite electrode[J]. Journal of the Electrochemical Society, 2017, 164 (12): 2374- 2389.
doi: 10.1149/2.0491712jes
20
SENYSHYN A , MVHLBAUER M J , DOLOTKO O , et al. Low-temperature performance of Li-ion batteries: the behavior of lithiated graphite[J]. Journal of Power Sources, 2015, 282, 235- 240.
doi: 10.1016/j.jpowsour.2015.02.008
21
KWON T W , CHOI J W , COSKUN A . The emerging era of supramolecular polymeric binders in silicon anodes[J]. Chemical Society Reviews, 2018, 47 (6): 2145- 2164.
doi: 10.1039/C7CS00858A
22
CHEN H , WU Z Z , SU Z , et al. A mechanically robust self-healing binder for silicon anode in lithium ion batteries[J]. Nano Energy, 2021, 81, 105654.
doi: 10.1016/j.nanoen.2020.105654
23
LIU F Q , HU Z Y , XUE J X , et al. Stabilizing cathode structure via the binder material with high resilience for lithium-sulfur batteries[J]. RSC Advances, 2019, 9 (69): 40471- 40477.
doi: 10.1039/C9RA08238G
24
CHONG J , XUN S D , ZHENG H H , et al. A comparative study of polyacrylic acid and poly(vinylidene difluoride) binders for spherical natural graphite/LiFePO4 electrodes and cells[J]. Journal of Power Sources, 2011, 196 (18): 7707- 7714.
doi: 10.1016/j.jpowsour.2011.04.043
25
YEN J P , CHANG C C , LIN Y R , et al. Effects of styrene-butadiene rubber/carboxymethylcellulose (SBR/CMC) and polyvinylidene difluoride (PVDF) binders on low temperature lithium ion batteries[J]. Journal of the Electrochemical Society, 2013, 160 (10): 1811- 1818.
doi: 10.1149/2.083310jes
GAO L , CHENG G Y , GU H H , et al. Influence of graphite anode binder on the high power Li-ion battery performance[J]. Energy Storage Science and Technology, 2019, 8 (1): 131- 137.
27
CHOU S L , PAN Y , WANG J Z , et al. Small things make a big difference: binder effects on the performance of Li and Na batteries[J]. Physical Chemistry Chemical Physics, 2014, 16 (38): 20347- 20359.
doi: 10.1039/C4CP02475C
28
LI J T , WU Z Y , LU Y Q , et al. Water soluble binder, an electrochemical performance booster for electrode materials with high energy density[J]. Advanced Energy Materials, 2017, 7 (24): 1701185.
doi: 10.1002/aenm.201701185
29
XU Z X , YANG J , ZHANG T , et al. Silicon microparticle anodes with self-healing multiple network binder[J]. Joule, 2018, 2 (5): 950- 961.
doi: 10.1016/j.joule.2018.02.012
30
JIAO X X , YIN J Q , XU X Y , et al. Highly energy-dissipative, fast self-healing binder for stable Si anode in lithium-ion batteries[J]. Advanced Functional Materials, 2020, 31 (3): 2005699.
31
JIANG S , HU B , SHI Z X , et al. Re-engineering poly(acrylic acid) binder toward optimized electrochemical performance for silicon lithium-ion batteries: branching architecture leads to balanced properties of polymeric binders[J]. Advanced Functional Materials, 2019, 30 (10): 1908558.
32
SHIEH Y T , LIN P Y , CHEN T , et al. Temperature-, pH- and CO2-sensitive poly(N-isopropylacryl amide-co-acrylic acid) copolymers with high glass transition temperatures[J]. Polymers, 2016, 8 (12): 434.
doi: 10.3390/polym8120434
33
YANG L , XIAO A , LUCHT B L . Investigation of solvation in lithium ion battery electrolytes by NMR spectroscopy[J]. Journal of Molecular Liquids, 2010, 154 (2/3): 131- 133.
34
NYMAN A , ZAVALIS T G , ELGER R , et al. Analysis of the polarization in a Li-ion battery cell by numerical simulations[J]. Journal of the Electrochemical Society, 2010, 157 (11): 1236- 1246.
doi: 10.1149/1.3486161
35
PARK G , GUNAWARDHANA N , NAKAMURA H , et al. The study of electrochemical properties and lithium deposition of graphite at low temperature[J]. Journal of Power Sources, 2012, 199, 293- 299.
doi: 10.1016/j.jpowsour.2011.10.058
36
XU K , CRESCE A V W . Li+-solvation/desolvation dictates interphasial processes on graphitic anode in Li ion cells[J]. Journal of Materials Research, 2012, 27 (18): 2327- 2341.
doi: 10.1557/jmr.2012.104
37
LI Q , LU D , ZHENG J , et al. Li+-desolvation dictating lithium-ion battery's low-temperature performances[J]. ACS Applied Materials & Interfaces, 2017, 9 (49): 42761- 42768.
38
SMART M C , RATNAKUMAR B V , WHITCANACK L , et al. Performance characteristics of lithium-ion cells for NASA's Mars 2001 Lander application[J]. IEEE Aerospace & Electronic Systems Magazine, 1999, 14 (11): 36- 42.
39
JOW T R , MARX M B , ALLEN J L . Distinguishing Li+ charge transfer kinetics at NCA/electrolyte and graphite/electrolyte interfaces, and NCA/electrolyte and LFP/electrolyte interfaces in Li-ion cells[J]. Journal of the Electrochemical Society, 2012, 159 (5): 604- 612.
doi: 10.1149/2.079205jes
40
HUANG C K , SAKAMOTO J S , WOLFENSTINE J , et al. The limits of low-temperature performance of Li-ion cells[J]. Journal of the Electrochemical Society, 2000, 147 (8): 2893- 2896.
doi: 10.1149/1.1393622
41
GE H , AOKI T , IKEDA N , et al. Investigating lithium plating in lithium-ion batteries at low temperatures using electrochemical model with NMR assisted parameterization[J]. Journal of the Electrochemical Society, 2017, 164 (6): 1050- 1060.
doi: 10.1149/2.0461706jes
42
JOW T R , DELP S A , ALLEN J L , et al. Factors limiting Li+ charge transfer kinetics in Li-ion batteries[J]. Journal of the Electrochemical Society, 2018, 165 (2): 361- 367.
doi: 10.1149/2.1221802jes
43
VASSILIEV S Y , SENTYURIN V V , LEVIN E E , et al. Diagnostics of lithium-ion intercalation rate-determining step: distinguishing between slow desolvation and slow charge transfer[J]. Electrochimica Acta, 2019, 302, 316- 326.
doi: 10.1016/j.electacta.2019.02.043
44
SMART M C , RATNAKUMAR B V , SURAMPUDI S . Electrolytes for low-temperature lithium batteries based on ternary mixtures of aliphatic carbonates[J]. Journal of the Electrochemical Society, 1999, 146 (2): 486- 492.
doi: 10.1149/1.1391633
45
SMART M C , RATNAKUMAR B V , WHITCANACK L D , et al. Improved low-temperature performance of lithium-ion cells with quaternary carbonate-based electrolytes[J]. Journal of Power Sources, 2003, 119, 349- 358.
46
JI Y , ZHANG Y C , WANG C Y . Li-ion cell operation at low temperatures[J]. Journal of the Electrochemical Society, 2013, 160 (4): 636- 649.
doi: 10.1149/2.047304jes
47
AZEEZ F , FEDKIW P S . Conductivity of libob-based electrolyte for lithium-ion batteries[J]. Journal of Power Sources, 2010, 195 (22): 7627- 7633.
doi: 10.1016/j.jpowsour.2010.06.021
48
QU H , KAFLE J , HARRIS J , et al. Application of ac impedance as diagnostic tool-low temperature electrolyte for a Li-ion battery[J]. Electrochimica Acta, 2019, 322, 134755.
doi: 10.1016/j.electacta.2019.134755
49
ABE T , FUKUDA H , IRIYAMA Y , et al. Solvated Li-ion transfer at interface between graphite and electrolyte[J]. Journal of the Electrochemical Society, 2004, 151 (8): 1120- 1123.
doi: 10.1149/1.1763141
50
ABE T , SAGANE F , OHTSUKA M , et al. Lithium-ion transfer at the interface between lithium-ion conductive ceramic electrolyte and liquid electrolyte-a key to enhancing the rate capability of lithium-ion batteries[J]. Journal of the Electrochemical Society, 2005, 152 (11): 2151- 2154.
doi: 10.1149/1.2042907
51
ISHIHARA Y , MIYAZAKI K , FUKUTSUKA T , et al. Kinetics of lithium-ion transfer at the interface between Li4Ti5O12 thin films and organic electrolytes[J]. ECS Electrochemistry Letters, 2014, 3 (8): 83- 86.
doi: 10.1149/2.0011408eel
52
STEINHAUER M , RISSE S , WAGNER N , et al. Investigation of the solid electrolyte interphase formation at graphite anodes in lithium-ion batteries with electrochemical impedance spectroscopy[J]. Electrochimica Acta, 2017, 228, 652- 658.
doi: 10.1016/j.electacta.2017.01.128
53
ADAMS R A , VARMA A , POL V G . Temperature dependent electrochemical performance of graphite anodes for K-ion and Li-ion batteries[J]. Journal of Power Sources, 2019, 410/411, 124- 131.
doi: 10.1016/j.jpowsour.2018.11.007
54
XU K , VON CRESCE A , LEE U . Differentiating contributions to "ion transfer" barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface[J]. Langmuir, 2010, 26 (13): 11538- 11543.
doi: 10.1021/la1009994
55
RUI X H , JIN Y , FENG X Y , et al. A comparative study on the low-temperature performance of LiFePO4/C and Li3V2(PO4)3/C cathodes for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196 (4): 2109- 2114.
doi: 10.1016/j.jpowsour.2010.10.063
56
RANGARAJAN S P , BARSUKOV Y , MUKHERJEE P P . In operando impedance based diagnostics of electrode kinetics in li-ion pouch cells[J]. Journal of the Electrochemical Society, 2019, 166 (10): 2131- 2141.
doi: 10.1149/2.1191910jes
57
YAQUB A , LEE Y J , HWANG M J , et al. Low temperature performance of graphite and LiNi0.6Co0.2Mn0.2O2 electrodes in Li-ion batteries[J]. Journal of Materials Science, 2014, 49 (22): 7707- 7714.
doi: 10.1007/s10853-014-8479-6
58
MIN W Y . Intrinsic kinetic properties of ternary material for lithium ion batteries assessed by single particle microelectrode[J]. Journal of Electrochemistry, 2018, 24 (1): 81- 88.
YANG X X , CHANG Z H , SHAO Z C , et al. Polarization behavior of lithium-rich manganese-based cathode materials at different temperatures[J]. Journal of Materials Engineering, 2021, 49 (9): 69- 78.
60
STUART T A , HANDE A . HEV battery heating using AC currents[J]. Journal of Power Sources, 2004, 129 (2): 368- 378.
doi: 10.1016/j.jpowsour.2003.10.014
ZHANG C N , LEI Z G , DONG Y G . Method for heating low-temperature lithium battery in electric vehicle[J]. Journal of Beijing Institute of Technology, 2012, 32 (9): 45- 49.
62
ZHANG J B , GE H , LI Z , et al. Internal heating of lithium-ion batteries using alternating current based on the heat generation model in frequency domain[J]. Journal of Power Sources, 2015, 273, 1030- 1037.
doi: 10.1016/j.jpowsour.2014.09.181
63
WANG C Y , ZHANG G , GE S , et al. Lithium-ion battery structure that self-heats at low temperatures[J]. Nature, 2016, 529 (7587): 515- 518.
doi: 10.1038/nature16502
64
LI C F , HUA N , WANG C Y , et al. Effect of Mn2+-doping in LiFePO4 and the low temperature electrochemical performances[J]. Journal of Alloys and Compounds, 2011, 509 (5): 1897- 1900.
doi: 10.1016/j.jallcom.2010.10.083
65
HUANG G L , LI W , SUN H Z , et al. Polyvinylpyrrolidone (PVP) assisted synthesized nano-LiFePO4/C composite with enhanced low temperature performance[J]. Electrochimica Acta, 2013, 97, 92- 98.
doi: 10.1016/j.electacta.2013.02.066
66
SHI S J , TU J P , TANG Y Y , et al. Enhanced electrochemical performance of LiF-modified LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries[J]. Journal of Power Sources, 2013, 225, 338- 346.
doi: 10.1016/j.jpowsour.2012.10.065
67
HERREYRE S , HUCHET O , BARUSSEAU S , et al. New Li-ion electrolytes for low temperature applications[J]. Journal of Power Sources, 2001, 97, 576- 580.
68
KAFLE J , HARRIS J , CHANG J , et al. Development of wide temperature electrolyte for graphite/LiNiMnCoO2 Li-ion cells: high throughput screening[J]. Journal of Power Sources, 2018, 392, 60- 68.
doi: 10.1016/j.jpowsour.2018.04.102
69
SMART M C , RATNAKUMAR B V , CHIN K B , et al. Lithium-ion electrolytes containing ester cosolvents for improved low temperature performance[J]. Journal of the Electrochemical Society, 2010, 157 (12): 1361- 1374.
doi: 10.1149/1.3501236
70
DONG X L , GUO Z W , GUO Z Y , et al. Organic batteries operated at -70 ℃[J]. Joule, 2018, 2 (5): 902- 913.
doi: 10.1016/j.joule.2018.01.017
71
ZHU C J , LV W X , CHEN J , et al. Butyl acrylate (BA) and ethylene carbonate (EC) electrolyte additives for low-temperature performance of lithium ion batteries[J]. Journal of Power Sources, 2020, 476, 228697.
doi: 10.1016/j.jpowsour.2020.228697
72
XU G J , HUANG S Q , CUI Z L , et al. Functional additives assisted ester-carbonate electrolyte enables wide temperature operation of a high-voltage (5 V-class) Li-ion battery[J]. Journal of Power Sources, 2019, 416, 29- 36.
doi: 10.1016/j.jpowsour.2019.01.085
73
CHO Y G , KIM Y S , SUNG D G , et al. Nitrile-assistant eutectic electrolytes for cryogenic operation of lithium ion batteries at fast charges and discharges[J]. Energy & Environmental Science, 2014, 7 (5): 1737- 1743.
74
XU J , WANG X , YUAN N Y , et al. Extending the low temperature operational limit of Li-ion battery to -80 ℃[J]. Energy Storage Materials, 2019, 23, 383- 389.
doi: 10.1016/j.ensm.2019.04.033
75
FAN X L , JI X , CHEN L , et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents[J]. Nature Energy, 2019, 4 (10): 882- 890.
doi: 10.1038/s41560-019-0474-3
76
RUSTOMJI C S , YANG Y , KIM T K , et al. Liquefied gas electrolytes for electrochemical energy storage devices[J]. Science, 2017, 356 (6345): 4263.
doi: 10.1126/science.aal4263
77
YAMAKI J I , SHINJO Y , DOI T , et al. The rate equation of decomposition for electrolytes with LiPF6 in Li-ion cells at elevated temperatures[J]. Journal of the Electrochemical Society, 2015, 162 (4): 520- 530.
doi: 10.1149/2.0161504jes
78
ZHANG S S , XU K , JOW T R . A new approach toward improved low temperature performance of Li-ion battery[J]. Electrochemistry Communications, 2002, 4, 928- 932.
doi: 10.1016/S1388-2481(02)00490-3
79
ZHANG S S , XU K , JOW T R . Low-temperature performance of Li-ion cells with a LiBF4-based electrolyte[J]. Journal of Solid State Electrochemistry, 2003, 7 (3): 147- 151.
doi: 10.1007/s10008-002-0300-9
80
JOW T R , DING M S , XU K , et al. Nonaqueous electrolytes for wide-temperature-range operation of Li-ion cells[J]. Journal of Power Sources, 2003, 110, 343- 348.
81
XU M Q , ZHOU L , DONG Y N , et al. Improving the performance of graphite/LiNi0. 5Mn1. 5O4 cells at high voltage and elevated temperature with added lithium bis (oxalato) borate (LiBOB)[J]. Journal of the Electrochemical Society, 2013, 160 (11): 2005- 2013.
doi: 10.1149/2.053311jes
82
ZHANG S S , XU K , JOW T R . Enhanced performance of Li-ion cell with LiBF4-PC based electrolyte by addition of small amount of LiBOB[J]. Journal of Power Sources, 2006, 156 (2): 629- 633.
doi: 10.1016/j.jpowsour.2005.04.023
83
XU M Q , ZHOU L , HAO L S , et al. Investigation and application of lithium difluoro(oxalate)borate (LiDFOB) as additive to improve the thermal stability of electrolyte for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196 (16): 6794- 6801.
doi: 10.1016/j.jpowsour.2010.10.050
84
LI S Y , LI X P , LIU J L , et al. A low-temperature electrolyte for lithium-ion batteries[J]. Ionics, 2014, 21 (4): 901- 907.
85
ZHAO Q P , ZHANG Y , TANG F J , et al. Mixed salts of lithium difluoro (oxalate) borate and lithium tetrafluorobotate electrolyte on low-temperature performance for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2017, 164 (9): 1873- 1880.
doi: 10.1149/2.0851709jes
86
KRAUSE F C , HWANG C , RATNAKUMAR B V , et al. The use of methyl butyrate-based electrolytes with additives to enable the operation of Li-ion cells with high voltage cathodes over a wide temperature range[J]. ECS Transactions, 2014, 58 (48): 97- 107.
doi: 10.1149/05848.0097ecst
87
ZHOU H M , XIAO K W , LI J . Lithium difluoro(oxalate)borate and LiBF4 blend salts electrolyte for LiNi0.5Mn1.5O4 cathode material[J]. Journal of Power Sources, 2016, 302, 274- 282.
doi: 10.1016/j.jpowsour.2015.10.073
88
ANDERSSON A , ABRAHAM D , HAASCH R , et al. Surface characterization of electrodes from high power lithium-ion batteries[J]. Journal of the Electrochemical Society, 2002, 149 (10): 1358- 1369.
doi: 10.1149/1.1505636
89
YANG G H , SHI J L , SHEN C , et al. Improving the cyclability performance of lithium-ion batteries by introducing lithium difluorophosphate (LiPO2F2) additive[J]. RSC Advances, 2017, 7 (42): 26052- 26059.
doi: 10.1039/C7RA03926C
90
VERMA P , MAIRE P , NOVÁK P . A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries[J]. Electrochimica Acta, 2010, 55 (22): 6332- 6341.
doi: 10.1016/j.electacta.2010.05.072
91
CHOI Y K , CHUNG K I , KIM W S , et al. Suppressive effect of Li2CO3 on initial irreversibility at carbon anode in Li-ion batteries[J]. Journal of Power Sources, 2002, 104 (1): 132- 139.
doi: 10.1016/S0378-7753(01)00911-9
92
LEI Q F , YANG T X , ZHAO X Y , et al. Lithium difluorophosphate as a multi-functional electrolyte additive for 4.4 V LiNi0.5Co0.2Mn0.3O2/graphite lithium ion batteries[J]. Journal of Electroanalytical Chemistry, 2019, 846, 113141.
doi: 10.1016/j.jelechem.2019.05.023
93
SHANGGUAN X , XU G , CUI Z , et al. Additive-assisted novel dual-salt electrolyte addresses wide temperature operation of lithium-metal batteries[J]. Small, 2019, 15 (16): 1900269.
doi: 10.1002/smll.201900269
94
YANG B W , ZHANG H , YU L , et al. Lithium difluorophosphate as an additive to improve the low temperature performance of LiNi0.5Co0.2Mn0.3O2/graphite cells[J]. Electrochimica Acta, 2016, 221, 107- 114.
doi: 10.1016/j.electacta.2016.10.037
95
HAN H B , ZHOU S S , ZHANG D J , et al. Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: physicochemical and electrochemical properties[J]. Journal of Power Sources, 2011, 196 (7): 3623- 3632.
doi: 10.1016/j.jpowsour.2010.12.040
96
LI L F , ZHOU S S , HAN H B , et al. Transport and electrochemical properties and spectral features of non-aqueous electrolytes containing LiFSI in linear carbonate solvents[J]. Journal of the Electrochemical Society, 2011, 158 (2): 74- 82.
doi: 10.1149/1.3514705
97
KERNER M , PLYLAHAN N , SCHEERS J , et al. Thermal stability and decomposition of lithium bis(fluorosulfonyl)imide (LiFSI) salts[J]. RSC Advances, 2016, 6 (28): 23327- 23334.
doi: 10.1039/C5RA25048J
98
MANDAL B K , PADHI A K , SHI Z , et al. New low temperature electrolytes with thermal runaway inhibition for lithium-ion rechargeable batteries[J]. Journal of Power Sources, 2006, 162 (1): 690- 695.
doi: 10.1016/j.jpowsour.2006.06.053
99
HAN S Y , LIU S L , GAO J X , et al. Enhancement of operating voltage and temperature range by adding lithium bis(fluorosulfonyl)imide as electrolyte additive[J]. Chemistry Select, 2020, 5 (44): 14008- 14016.
100
PHAM H Q , CHUNG G J , HAN J , et al. Interface stabilization via lithium bis(fluorosulfonyl)imide additive as a key for promoted performance of graphite‖LiCoO2 pouch cell under -20 ℃[J]. The Journal of Chemical Physics, 2020, 152 (9): 094709.
doi: 10.1063/1.5144280
101
YANG G J , LI Y J , LIU S , et al. LiFSI to improve lithium deposition in carbonate electrolyte[J]. Energy Storage Materials, 2019, 23, 350- 357.
doi: 10.1016/j.ensm.2019.04.041
YANG C W , WU F , WU B R , et al. Low-temperature performance of Li-ion battery with fluoroethylene carbonate electrolyte[J]. Journal of Electrochemistry, 2011, 17 (1): 63- 66.
103
REN Y H , YANG C W , WU B R , et al. Novel low-temperature electrolyte for Li-ion battery[J]. Advanced Materials Research, 2011, 287/290, 1283- 1289.
doi: 10.4028/www.scientific.net/AMR.287-290.1283
104
PARK S J , RYU J H , OH S M . The roles of electrolyte additives on low-temperature performances of graphite negative electrode[J]. Journal of the Korean Electrochemical Society, 2012, 15 (1): 19- 26.
doi: 10.5229/JKES.2012.15.1.019
105
LIU B X , LI B , GUAN S Y . Effect of fluoroethylene carbonate additive on low temperature performance of Li-ion batteries[J]. Electrochemical and Solid-State Letters, 2012, 15 (6): 77- 79.
doi: 10.1149/2.027206esl
106
LIAO L X , CHENG X Q , MA Y L , et al. Fluoroethylene carbonate as electrolyte additive to improve low temperature performance of LiFePO4 electrode[J]. Electrochimica Acta, 2013, 87, 466- 472.
doi: 10.1016/j.electacta.2012.09.083
107
ZUO W Q , LI C Y , CHAO Z Q , et al. Effect of N-N dimethyltrifluoroacetamide additive on low temperature performance of graphite anode[J]. International Journal of Electrochemical Science, 2020, 15, 382- 393.
108
WRODNIGG G H , JVRGEN O , BESENHARD M W . Cyclic and acyclic sulfites: new solvents and electrolyte additives for lithium ion batteries with graphitic anodes?[J]. Journal of Power Sources, 2001, 97, 592- 594.
109
WU Z , LI S G , ZHENG Y Z , et al. The roles of sulfur-containing additives and their working mechanism on the temperature-dependent performances of Li-ion batteries[J]. Journal of the Electrochemical Society, 2018, 165 (11): 2792- 2800.
doi: 10.1149/2.0331811jes
110
WAGNER R , BROX S , KASNATSCHEEW J , et al. Vinyl sulfones as SEI-forming additives in propylene carbonate based electrolytes for lithium-ion batteries[J]. Electrochemistry Communications, 2014, 40, 80- 83.
doi: 10.1016/j.elecom.2014.01.004
111
WOTANGO A S , SU W N , HAREGEWOIN A M , et al. Designed synergetic effect of electrolyte additives to improve interfacial chemistry of MCMB electrode in propylene carbonate-based electrolyte for enhanced low and room temperature performance[J]. ACS Applied Materials & Interfaces, 2018, 10 (30): 25252- 25262.
112
LIN Y C , YUE X P , ZHANG H , et al. Using phenyl methanesulfonate as an electrolyte additive to improve performance of LiNi0.5Co0.2Mn0.3O2/graphite cells at low temperature[J]. Electrochimica Acta, 2019, 300, 202- 207.
doi: 10.1016/j.electacta.2019.01.120
113
JUNG Y , KANG B . Understanding abnormal potential behaviors at the 1st charge in Li2S cathode material for rechargeable Li-S batteries[J]. Physical Chemistry Chemical Physics, 2016, 18 (31): 21500- 21507.
doi: 10.1039/C6CP03146C
WU Z L , ZHNEG Y Z , ZHANG Z R , et al. Effects of sulfur-containing additive on low temperature performance of graphite anode[J]. Journal of Electrochemistry, 2018, 24 (5): 529- 537.
115
GUO R D , CHE Y X , LAN G Y , et al. Tailoring low-temperature performance of a lithium-ion battery via rational designing interphase on an anode[J]. ACS Applied Materials & Interfaces, 2019, 11 (41): 38285- 38293.
116
KOREPP C , KERN W , LANZER E A , et al. Ethyl isocyanate—an electrolyte additive from the large family of isocyanates for PC-based electrolytes in lithium-ion batteries[J]. Journal of Power Sources, 2007, 174 (2): 628- 631.
doi: 10.1016/j.jpowsour.2007.06.140
117
KOREPP C , KERN W , LANZER E A , et al. Isocyanate compounds as electrolyte additives for lithium-ion batteries[J]. Journal of Power Sources, 2007, 174 (2): 387- 393.
doi: 10.1016/j.jpowsour.2007.06.141
118
WANG R H , LI X H , WANG Z X , et al. Electrochemical analysis graphite/electrolyte interface in lithium-ion batteries: p-toluenesulfonyl isocyanate as electrolyte additive[J]. Nano Energy, 2017, 34, 131- 140.
doi: 10.1016/j.nanoen.2017.02.037
119
SHI J L , EHTESHAMI N , MA J L , et al. Improving the graphite/electrolyte interface in lithium-ion battery for fast charging and low temperature operation: fluorosulfonyl isocyanate as electrolyte additive[J]. Journal of Power Sources, 2019, 429, 67- 74.
doi: 10.1016/j.jpowsour.2019.04.113
120
PELED E . The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model[J]. Journal of the Electrochemical Society, 1979, 126 (12): 2047- 2051.
doi: 10.1149/1.2128859
121
WINTER M . The solid electrolyte interphase-the most important and the least understood solid electrolyte in rechargeable Li batteries[J]. Zeitschrift für physikalische Chemie, 2009, 223 (10/11): 1395- 1406.
122
SONG Y M , HAN J G , PARK S , et al. A multifunctional phosphite-containing electrolyte for 5 V-class LiNi0.5Mn1.5O4 cathodes with superior electrochemical performance[J]. Journal of Materials Chemistry A, 2014, 2 (25): 9506- 9513.
doi: 10.1039/C4TA01129E
123
HAN J G , LEE S J , LEE J , et al. Tunable and robust phosphite-derived surface film to protect lithium-rich cathodes in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7 (15): 8319- 8329.
124
SONG Y M , KIM C K , KIM K E , et al. Exploiting chemically and electrochemically reactive phosphite derivatives for high-voltage spinel LiNi0.5Mn1.5O4 cathodes[J]. Journal of Power Sources, 2016, 302, 22- 30.
doi: 10.1016/j.jpowsour.2015.10.043
125
YIM T , HAN Y K . Tris(trimethylsilyl) phosphite as an efficient electrolyte additive to improve the surface stability of graphite anodes[J]. ACS Applied Materials & Interfaces, 2017, 9 (38): 32851- 32858.
126
OH B , VISSERS D , ZHANG Z , et al. New interpenetrating network type poly(siloxane-g-ethylene oxide) polymer electrolyte for lithium battery[J]. Journal of Power Sources, 2003, 119/121, 442- 447.
doi: 10.1016/S0378-7753(03)00187-3
127
KIM K M , LY N V , WON J H , et al. Improvement of lithium-ion battery performance at low temperature by adopting polydimethylsiloxane-based electrolyte additives[J]. Electrochimica Acta, 2014, 136, 182- 188.
doi: 10.1016/j.electacta.2014.05.054
128
GERBALDI C , NAIR J R , MELIGRANA G , et al. UV-curable siloxane-acrylate gel-copolymer electrolytes for lithium-based battery applications[J]. Electrochimica Acta, 2010, 55 (4): 1460- 1467.
doi: 10.1016/j.electacta.2009.05.055
129
HAMENU L , LEE H S , LATIFATU M , et al. Lithium-silica nanosalt as a low-temperature electrolyte additive for lithium-ion batteries[J]. Current Applied Physics, 2016, 16 (6): 611- 617.
doi: 10.1016/j.cap.2016.03.012
130
WON J H , LEE H S , HAMENU L , et al. Improvement of low-temperature performance by adopting polydimethylsiloxane-g-polyacrylate and lithium-modified silica nanosalt as electrolyte additives in lithium-ion batteries[J]. Journal of Industrial and Engineering Chemistry, 2016, 37, 325- 329.
doi: 10.1016/j.jiec.2016.03.045
131
LI Y , WONG K W , DOU Q Q , et al. Improvement of lithium-ion battery performance at low temperature by adopting ionic liquid-decorated PMMA Nanoparticles as electrolyte Component[J]. ACS Applied Energy Materials, 2018, 1 (6): 2664- 2670.
doi: 10.1021/acsaem.8b00355
132
WANG W L , YANG T X , LI S , et al. 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI-BF4) as an ionic liquid-type electrolyte additive to enhance the low-temperature performance of LiNi0.5Co0.2Mn0.3O2/graphite batteries[J]. Electrochimica Acta, 2019, 317, 146- 154.
doi: 10.1016/j.electacta.2019.05.027
133
HOLOUBEK J , YU M Y , YU S C , et al. An all-fluorinated ester electrolyte for stable high-voltage Li metal batteries capable of ultra-low-temperature operation[J]. ACS Energy Letters, 2020, 5 (5): 1438- 1447.
doi: 10.1021/acsenergylett.0c00643
134
LAN G Y , XING L D , BEDROV D , et al. Enhanced cyclic stability of Ni-rich lithium ion battery with electrolyte film-forming additive[J]. Journal of Alloys and Compounds, 2020, 821, 153236.
doi: 10.1016/j.jallcom.2019.153236
135
ZHENG Y Z , XU N B , CHEN S J , et al. Construction of a stable LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode interface by a multifunctional organosilicon electrolyte additive[J]. ACS Applied Energy Materials, 2020, 3 (3): 2837- 2845.
doi: 10.1021/acsaem.9b02486
136
LI G , LIAO Y , LI Z , et al. Constructing a low-impedance interface on a high-voltage LiNi0.8Co0.1Mn0.1O2 cathode with 2, 4, 6-triphenyl boroxine as a film-forming electrolyte additive for Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12 (33): 37013- 37026.
137
TAN S Y , WANG L , BIAN L , et al. Highly enhanced low temperature discharge capacity of LiNi1/3Co1/3Mn1/3O2 with lithium boron oxide glass modification[J]. Journal of Power Sources, 2015, 277, 139- 146.
doi: 10.1016/j.jpowsour.2014.11.149
138
LV D D , WANG L , HU P F , et al. Li2O-B2O3-Li2SO4 modified LiNi1/3Co1/3Mn1/3O2 cathode material for enhanced electrochemical performance[J]. Electrochimica Acta, 2017, 247, 803- 811.
doi: 10.1016/j.electacta.2017.07.068
139
LI G Y , HUANG Z L , ZUO Z C , et al. Understanding the trace Ti surface doping on promoting the low temperature performance of LiNi1/3Co1/3Mn1/3O2 cathode[J]. Journal of Power Sources, 2015, 281, 69- 76.
doi: 10.1016/j.jpowsour.2015.01.173
140
LI G Y , ZHANG Z J , WANG R N , et al. Effect of trace Al surface doping on the structure, surface chemistry and low temperature performance of LiNi0.5Co0.2Mn0.3O2 cathode[J]. Electrochimica Acta, 2016, 212, 399- 407.
doi: 10.1016/j.electacta.2016.07.033
141
LIU Q , ZHAO Z K , WU F , et al. The effects of molybdenum doping on LiNi0.6Co0.2Mn0.2O2 cathode material[J]. Solid State Ionics, 2019, 337, 107- 114.
doi: 10.1016/j.ssi.2019.04.020
142
HUANG Z J , WANG Z X , JING Q , et al. Investigation on the effect of Na doping on structure and Li-ion kinetics of layered LiNi0.6Co0.2Mn0.2O2 cathode material[J]. Electrochimica Acta, 2016, 192, 120- 126.
doi: 10.1016/j.electacta.2016.01.139
143
NOBILI F , MANCINI M , DSOKE S , et al. Low-temperature behavior of graphite-tin composite anodes for Li-ion batteries[J]. Journal of Power Sources, 2010, 195 (20): 7090- 7097.
doi: 10.1016/j.jpowsour.2010.05.001
144
LEE M J , LEE K , LIM J , et al. Outstanding low-temperature performance of structure-controlled graphene anode based on surface-controlled charge storage mechanism[J]. Advanced Functional Materials, 2021, 31 (14): 2009397.
doi: 10.1002/adfm.202009397
145
MARKEVICH E , SALITRA G , AURBACH D . Low temperature performance of amorphous monolithic silicon anodes: comparative study of silicon and graphite electrodes[J]. Journal of the Electrochemical Society, 2016, 163 (10): 2407- 2412.
doi: 10.1149/2.1291610jes
146
YUAN T , YU X , CAI R , et al. Synthesis of pristine and carbon-coated Li4Ti5O12 and their low-temperature electrochemical performance[J]. Journal of Power Sources, 2010, 195 (15): 4997- 5004.
doi: 10.1016/j.jpowsour.2010.02.020
147
MARINARO M , NOBILI F , BIRROZZI A , et al. Improved low-temperature electrochemical performance of Li4Ti5O12 composite anodes for Li-ion batteries[J]. Electrochimica Acta, 2013, 109, 207- 213.
doi: 10.1016/j.electacta.2013.07.093