Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (4): 112-122    DOI: 10.11868/j.issn.1001-4381.2021.000520
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
连续制动条件下泡沫陶瓷/金属双连续相复合材料的摩擦磨损性能
惠阳1, 刘贵民1,*(), 兰海2, 杜建华3
1 陆军装甲兵学院 装备保障与再制造系, 北京 100072
2 中国北方车辆研究所 车辆传动重点实验室, 北京 100072
3 北京科技大学 材料科学与工程学院, 北京 100083
Friction and wear properties of foam ceramic/metal bi-continuous phase composites under continuous braking conditions
Yang HUI1, Guimin LIU1,*(), Hai LAN2, Jianhua DU3
1 Department of Equipment Maintenance and Remanufacturing Engineering, Army Academy of Armored Forces, Beijing 100072, China
2 Science and Technology on Vehicle Transmission Laboratory, China North Vehicle Research Institute, Beijing 100072, China
3 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(23879 KB)   HTML ( 1 )  
输出: BibTeX | EndNote (RIS)      
摘要 

为解决履带式特种车辆机械制动器过热失效问题, 采用挤压铸造法制备SiC/Cu和SiC/Fe双连续相复合材料, 研究两种材料在连续紧急制动工况和连续高温制动工况下的摩擦磨损性能。结合扫描电子显微镜(SEM)、X射线能谱分析(EDS)、三维形貌仪等手段分析摩擦因数、温度和磨损率的变化规律, 揭示相应的磨损机理。结果表明: 在连续紧急制动实验中, 接触表面经历了摩擦膜形成和层间断裂过程, 摩擦因数随接合次数增加略微下降, 并趋于稳定。在前40次接合中, SiC/Cu和SiC/Fe摩擦副的磨损率整体下降。在40~60次接合中, SiC/Cu摩擦副黏着磨损、氧化磨损和疲劳磨损加剧, 磨损率升高。而SiC/Fe摩擦副以磨粒磨损为主, 磨损率较低。在连续高温制动实验中, 摩擦因数在前6次接合中逐渐升高, 制动时间逐渐缩短。在第6次接合后, 摩擦副边缘区域出现的黏着磨损和疲劳磨损导致力矩下降, 摩擦因数和制动时间均呈先降后升趋势。连续高温制动过程中以严重的黏着磨损为主, SiC/Cu和SiC/Fe摩擦副的磨损率均随接合次数增加而升高。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
惠阳
刘贵民
兰海
杜建华
关键词 双连续相复合材料制动摩擦磨损磨损机理    
Abstract

In order to solve the overheating failure problem of mechanical brakes of special tracked vehicles, SiC/Cu and SiC/Fe bi-continuous composites were prepared by squeeze casting method. The friction and wear properties of the two composites under continuous emergency braking and continuous high temperature braking conditions were studied. The variation of friction coefficient, temperature and wear rate was analysed by means of scanning electron microscopy (SEM), X-ray energy dispersive spectrometry (EDS) and 3D profiler, and the wear mechanism was described. The results show that in the continuous emergency braking test, the contact surface experiences the process of tribo-film formation and interlayer fracture.Friction coefficient decreases slightly with the increase of joining times and tends to be stable. In the first 40 joining, the wear rates of SiC/Cu and SiC/Fe friction pairs decrease overall. During 40-60 joining, the adhesion wear, oxidation wear and fatigue wear of the SiC/Cu friction pair are aggravated, and the wear rate increases, while the wear rate of the SiC/Fe friction pair is mainly abrasive wear, and the wear rate is low. In the continuous high temperature braking test, the friction coefficient increases gradually and the braking time decreases gradually in the first six joining. After the sixth joining, the adhesion wear and fatigue wear in the edge area of the friction pair result in the decrease of the torque, and the friction coefficient and braking time both show a trend of decrease at first and then increase. In the process of continuous high temperature braking, severe adhesive wear is the main factor. The wear rates of SiC/Cu and SiC/Fe friction pairs increase with the increase of joining times.

Key wordsbi-continuous phase composites    braking    friction and wear    wear mechanism
收稿日期: 2021-06-02      出版日期: 2022-04-18
中图分类号:  TB333  
通讯作者: 刘贵民     E-mail: liuguimin1971@sina.com
作者简介: 刘贵民(1971—),男,教授,博士,主要研究方向为失效分析,联系地址:北京市丰台区杜家坎21号院(100072),E-mail: liuguimin1971@sina.com
引用本文:   
惠阳, 刘贵民, 兰海, 杜建华. 连续制动条件下泡沫陶瓷/金属双连续相复合材料的摩擦磨损性能[J]. 材料工程, 2022, 50(4): 112-122.
Yang HUI, Guimin LIU, Hai LAN, Jianhua DU. Friction and wear properties of foam ceramic/metal bi-continuous phase composites under continuous braking conditions. Journal of Materials Engineering, 2022, 50(4): 112-122.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000520      或      http://jme.biam.ac.cn/CN/Y2022/V50/I4/112
Friction component Technical requirement/mesh
SiO2 120-180
Co ≤300
Cr ≤300
Ni ≤300
Mo ≤300
Table 1  摩擦组元的技术要求
Fig.1  实验工况示意图
Fig.2  陶瓷/金属双连续相复合材料显微形貌
(a)SiC/Cu SEM形貌;(b)SiC/Fe SEM形貌;(c)SiC/Cu网格区域CBS形貌;(d)SiC/Fe网格区域CBS形貌
Area in fig. 2 Element Mass fraction/%
A Cu 90.02
Other 9.98
B Si 36.19
O 56.84
Other 6.97
C Fe 90.41
Other 9.59
D Co 56.87
Cr 25.52
Ni 4.32
Mo 6.01
Other 7.28
E Fe 91.53
Other 8.47
F C 79.79
Other 20.21
Table 2  陶瓷/金属双连续相复合材料EDS成分分析
Fig.3  连续紧急制动过程中的平均摩擦因数-最高温度曲线
Fig.4  连续紧急制动过程中SiC/Cu摩擦副(1)与SiC/Fe摩擦副(2)磨痕的三维形貌
(a)第10次接合;(b)第30次接合;(c)第50次接合
Fig.5  连续紧急制动过程中的平均力矩-制动时间曲线
Fig.6  连续紧急制动过程中摩擦副的磨损率
Fig.7  连续高温制动过程中的瞬时摩擦因数(a)与温度(b)曲线
Fig.8  连续高温制动过程中SiC/Cu摩擦副(1)与SiC/Fe摩擦副(2)磨痕的三维形貌
(a)第1次接合前;(b)第1次接合后;(c)第6次接合
Fig.9  连续高温制动过程中摩擦副的磨损率
Fig.10  连续紧急制动后SiC/Cu摩擦副磨痕的微观形貌
(a)内部区域;(b)外部区域;(c)中部区域
Fig.11  连续紧急制动后SiC/Fe摩擦副磨痕的微观形貌
(a)内部区域;(b)外部区域;(c)中部区域
Area Mass fraction/%
Cu Fe Si O C Other
G 5.54 10.84 28.08 47.36 7.33 0.85
H 5.60 4.26 33.54 23.89 31.94 0.77
Fig. 11(c) 27.85 30.50 8.29 10.62 19.34 3.40
Table 3  图 10图 11中选区EDS成分分析
Fig.12  连续高温制动后SiC/Cu摩擦副磨痕的微观形貌
(a)内部区域;(b)外部区域;(c)中部区域
Fig.13  连续高温制动后SiC/Fe摩擦副磨痕的微观形貌
(a)内部区域;(b)外部区域;(c)中部区域
Area Mass fraction/%
Cu Fe Si O C Other
I 8.13 4.78 28.26 44.41 13.03 1.39
J 35.75 18.98 11.57 15.93 14.73 3.04
K 7.41 53.30 15.08 5.23 12.89 6.09
Table 4  图 12图 13中选区EDS成分分析
1 BAO J S , YIN Y , LU L J , et al. Tribological characterization on friction brake in continuous braking[J]. Industrial Lubrication and Tribology, 2018, 70 (1): 172- 181.
doi: 10.1108/ILT-09-2016-0205
2 王喆. 电传动履带车辆机电联合制动控制策略与试验技术研究[D]. 杭州: 浙江大学, 2019.
2 WANG Z. Research on control strategy and test technology of electromechanical combined braking for electric drive tracked vehicle[D]. Hangzhou: Zhejiang University, 2019.
3 宁克焱, 李洪武, 张洪彦. 干片式制动器的研究与发展[J]. 车辆与动力技术, 2004, (1): 16- 22.
doi: 10.3969/j.issn.1009-4687.2004.01.004
3 NING K Y , LI H W , ZHANG H Y . Research and development of dry disk brake[J]. Vehicle & Power Technology, 2004, (1): 16- 22.
doi: 10.3969/j.issn.1009-4687.2004.01.004
4 孙玉豹. 某型履带车辆制动器磨损规律研究及寿命预测[J]. 价值工程, 2013, (6): 23- 24.
doi: 10.3969/j.issn.1006-4311.2013.06.013
4 SUN Y B . Wear rule research and life prediction of a certain tracked vehicle brake[J]. Value Engineering, 2013, (6): 23- 24.
doi: 10.3969/j.issn.1006-4311.2013.06.013
5 YEVTUSHENKO A A , GRZES P . Mutual influence of the velocity and temperature in the axisymmetric FE model of a disc brake[J]. International Communications in Heat and Mass Transfer, 2014, 57 (10): 341- 346.
6 BORAWSKI A , SZPICA D , MIECZKOWSKI G , et al. Simulation study of the vehicle braking process with temperature dependent coefficient of friction between brake pad and disc[J]. Heat Transfer Research, 2020, 52 (2): 1- 11.
7 王秀飞, 尹彩流. 粉末冶金摩擦材料的应用现状及对原材料的要求[J]. 粉末冶金工业, 2017, 27 (3): 1- 6.
7 WANG X F , YIN C L . Application situations of powder metallurgy friction materials and requests of raw materials[J]. Powder Metallurgy Industry, 2017, 27 (3): 1- 6.
8 王东, 刘英才. 摩擦材料研究进展[J]. 现代技术陶瓷, 2007, 28 (3): 15- 19.
doi: 10.3969/j.issn.1005-1198.2007.03.005
8 WANG D , LIU Y C . Present situation of friction materials[J]. Advanced Ceramics, 2007, 28 (3): 15- 19.
doi: 10.3969/j.issn.1005-1198.2007.03.005
9 RAMESH R , PRASANTH A S , RAGAVAN M , et al. SiC/aluminium co-continuous composite synthesized by reactive metal penetration[J]. Applied Mechanics & Materials, 2014, 592/594, 847- 853.
10 LIU Q , YE F , GAO Y , et al. Fabrication of a new SiC/2024Al co-continuous composite with lamellar microstructure and high mechanical properties[J]. Journal of Alloys & Compounds, 2014, 585, 146- 153.
11 WINZER J , WEILER L , POUQUET J , et al. Wear behaviour of interpenetrating alumina-copper composites[J]. Wear, 2011, 271 (11/12): 2845- 2851.
12 QI Y S , WANG Y B , DU L J , et al. Preparation and mechanical properties of ZL205A alloy-infiltrated SiC foam ceramic composites[J]. Rare Metal Materials and Engineering, 2020, 49 (11): 3741- 3747.
13 HOU L J , LIU T Y , LU A X . Red mud and fly ash-based ceramic foams using starch and manganese dioxide as foaming agent[J]. Transactions of Nonferrous Metals Society of China, 2017, 27 (3): 591- 598.
doi: 10.1016/S1003-6326(17)60066-9
14 TRIPATHY S , SAINI D S , BHATTACHARYA D . Synthesis and fabrication of MgAl2O4 ceramic foam via a simple, low-cost and eco-friendly method[J]. Journal of Asian Ceramic Societies, 2016, 4 (2): 149- 154.
doi: 10.1016/j.jascer.2016.01.008
15 LI Y , CHENG X D , GONG L L , et al. Fabrication and characte-rization of anorthite foam ceramics having low thermal conductivity[J]. Journal of the European Ceramic Society, 2015, 35 (1): 267- 275.
doi: 10.1016/j.jeurceramsoc.2014.08.045
16 CHANG H , BINNER J , HIGGINSON R . Dry sliding wear behaviour of Al(Mg)/Al2O3 interpenetrating composites produced by a pressureless infiltration technique[J]. Wear, 2010, 268, 166- 171.
doi: 10.1016/j.wear.2009.07.014
17 JING L , BINNER J , HIGGINSON R . Dry sliding wear behaviour of co-continuous ceramic foam/aluminium alloy interpenetrating composites produced by pressureless infiltration[J]. Wear, 2012, 276/277, 94- 104.
doi: 10.1016/j.wear.2011.12.008
18 DAN H , WU Z . Dry sliding tribological behaviour of continuous ceramic frames reinforced aluminium-based composites[J]. Advanced Materials Research, 2011, 213, 250- 254.
doi: 10.4028/www.scientific.net/AMR.213.250
19 李文静, 舒玲玲, 吴刚, 等. 网络结构增强金属基复合材料的研究进展[J]. 机械工程材料, 2012, 36 (7): 1- 6.
19 LI W J , SHU L L , WU G , et al. Research development of network structure reinforced metallic matrix composite[J]. Mate-rials for Mechanical Engineering, 2012, 36 (7): 1- 6.
20 冯胜山, 王泽建, 刘庆丰. 三维连续网络结构陶瓷/金属复合材料的研究进展[J]. 材料开发与应用, 2009, 24 (1): 60- 68.
doi: 10.3969/j.issn.1003-1545.2009.01.018
20 FENG S S , WANG Z J , LIU Q F . Research progress of ceramic/metal composites with three-dimensional continuous network structure[J]. Development and Application of Materials, 2009, 24 (1): 60- 68.
doi: 10.3969/j.issn.1003-1545.2009.01.018
21 MAJLINGER K . Wear properties of hybrid AlSi12 matrix syntactic foams[J]. International Journal of Materials Research, 2015, 106 (11): 1165- 1173.
doi: 10.3139/146.111290
22 MAJLINGER K , KALACSKA G , ORBULOV I N , et al. Global approach of tribomechanical development of hybrid aluminium matrix syntactic foams[J]. Tribology Letters, 2017, 65 (1): 16.
doi: 10.1007/s11249-016-0798-0
23 JANINA D A . Tribological properties of AlSi12-Al2O3 interpe-netrating composite layers in comparison with unreinforced matrix alloy[J]. Materials, 2017, 10 (9): 1045.
doi: 10.3390/ma10091045
24 SANG K , WENG Y , HUANG Z , et al. Preparation of interpenetrating alumina-copper composites[J]. Ceramics International, 2016, 42 (5): 6129- 6135.
doi: 10.1016/j.ceramint.2015.12.174
[1] 张家铭, 余伟, 张泽宇. 工业纯钛TA1的高温摩擦与磨损行为[J]. 材料工程, 2021, 49(3): 93-99.
[2] 杨阳, 吴宏, 刘伯威, 瞿辉, 刘咏. 紫铜纤维对汽车摩擦材料性能的影响[J]. 材料工程, 2021, 49(10): 96-103.
[3] 元云岗, 康嘉杰, 岳文, 付志强, 朱丽娜, 佘丁顺, 王成彪. 不同温度下等离子渗氮后TC4钛合金的摩擦磨损性能[J]. 材料工程, 2020, 48(2): 156-162.
[4] 张军, 刘崇宇. 粉末冶金法制备CNT和SiC混杂增强铝基复合材料的摩擦磨损性能[J]. 材料工程, 2020, 48(11): 131-139.
[5] 李新星, 王红侠, 施剑峰, 韩伯群. TC11钛合金表面保护性摩擦氧化层的形成及作用[J]. 材料工程, 2020, 48(10): 141-147.
[6] 马明星, 王志新, 梁存, 周家臣, 张德良, 朱达川. CeO2掺杂对AlCoCrCuFe高熵合金的组织结构与摩擦磨损性能的影响[J]. 材料工程, 2019, 47(7): 106-111.
[7] 陈海龙, 杨学锋, 王守仁, 鹿重阳, 吴元博. 改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能[J]. 材料工程, 2019, 47(6): 108-113.
[8] 王勇刚, 刘和剑, 回丽, 职山杰, 刘海青. 激光熔覆原位自生碳化物增强自润滑耐磨复合涂层的高温摩擦学性能[J]. 材料工程, 2019, 47(5): 72-78.
[9] 张欣悦, 张德坤, 陈凯, 徐寒冬. 聚醚醚酮与髌骨软骨间的生物摩擦学特性[J]. 材料工程, 2019, 47(2): 129-137.
[10] 黄凯, 蒋日鹏, 李晓谦, 李瑞卿, 张立华. 超声外场对原位TiB2/2A14铝基复合材料的摩擦磨损性能的影响[J]. 材料工程, 2019, 47(12): 78-84.
[11] 田晋, 高立, 蔡滨, 齐泽昊, 谭业发. 功能化纳米SiO2改性环氧树脂复合材料及其摩擦磨损行为与机制[J]. 材料工程, 2019, 47(11): 92-99.
[12] 江泽琦, 冯彦寒, 方建华, 刘坪, 陈波水, 谷科城, 吴江. 含硫代磷酸铵盐润滑油在电磁场作用下的摩擦学性能[J]. 材料工程, 2018, 46(9): 95-100.
[13] 徐祥, 杨明, 梁益龙, 张世伟, 龚乾江. 响应面法对一种新型摩擦材料的性能优化及其磨损机理[J]. 材料工程, 2018, 46(9): 101-108.
[14] 屈盛官, 杨章选, 赖福强, 和锐亮, 付志强, 李小强. 渗铜量对铁基粉末冶金气门座圈材料微动磨损性能的影响[J]. 材料工程, 2018, 46(7): 136-143.
[15] 杨伟华, 吴玉萍, 洪晟, 李佳荟, 李柏涛. 超音速火焰喷涂WC-10Co-4Cr涂层的微观组织与摩擦磨损性能[J]. 材料工程, 2018, 46(5): 120-125.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn