Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (7): 165-175    DOI: 10.11868/j.issn.1001-4381.2021.000521
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
城轨列车制动盘SiCp/A356复合材料热疲劳裂纹扩展机理
杨智勇1,*(), 臧家俊1, 方丹琳2, 李翔3, 李志强1, 李卫京1
1 北京交通大学 机械与电子控制工程学院, 北京 100044
2 北京林业大学 工学院, 北京 100083
3 中国铁道科学研究院 金属及化学研究所, 北京 100081
Thermal fatigue crack propagation mechanism of SiCp/A356 composites for urban rail train brake disc
Zhiyong YANG1,*(), Jiajun ZANG1, Danlin FANG2, Xiang LI3, Zhiqiang LI1, Weijing LI1
1 School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
2 School of Technology, Beijing Forestry University, Beijing 100083, China
3 Metal & Chemistry Research Institute, China Academic of Railway Sciences, Beijing 100081, China
全文: PDF(45665 KB)   HTML ( 2 )  
输出: BibTeX | EndNote (RIS)      
摘要 

为研究制动盘服役温度载荷及材料微结构对SiCp/A356复合材料热疲劳裂纹扩展行为的影响,明确其热疲劳裂纹扩展微观机理,开展SiCp/A356复合材料热疲劳裂纹扩展实验。结果表明:裂纹扩展过程包括由SiC颗粒偏转作用和二次裂纹释放扩展驱动力导致的缓慢扩展阶段和主裂纹与裂纹扩展前端微损伤连接的快速扩展阶段;加热温度较低时,裂纹扩展的"台阶状"特征明显,整体扩展速率较低,裂纹宽度较小,裂纹扩展方式为颗粒断裂、轻量基体撕裂和沿界面开裂;加热温度较高时,"斜直线跃升"阶段更为明显,裂纹宽度较大且扩展速率较高,裂纹扩展以颗粒脱落以及大幅度基体撕裂为主;主裂纹总是通过选择沿SiC颗粒群或者直接穿过α-Al基体以阻力较小的方式向前扩展,Si相承载时极易发生断裂,成为裂纹扩展源,同时裂纹扩展前端的微损伤对其扩展具有引导作用。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨智勇
臧家俊
方丹琳
李翔
李志强
李卫京
关键词 SiCp/A356复合材料服役温度载荷热疲劳裂纹扩展微观机理    
Abstract

In order to study the influence of the service temperature load and material microstructure on the thermal fatigue crack growth behavior of SiCp/A356 composites, and to clarify the microscopic mechanism of thermal fatigue crack growth, the thermal fatigue crack growth test of SiCp/A356 composites was carried out. The results show that the crack growth process includes the slow growth stage caused by the deflection of SiC particles and the release of the driving force of the secondary crack growth, and the rapid growth stage where the main crack is connected with the micro-damage front end of the crack growth. When the heating temperature is low, the "step-like" feature of crack growth is obvious, the overall growth rate is slower, and the crack width is smaller, the crack propagation methods are particle fracture, light-mass matrix tearing and cracking along the interface. When the heating temperature is higher, the "oblique straight-line jump" stage is more obvious, the crack width is large and the growth rate is high, the crack growth is dominated by particle shedding and large-scale matrix tearing. Main crack always propagates forward with less resistance by choosing to follow the SiC particle group or directly pass through the α-Al matrix, when Si phase is loaded, it is easy to fracture and become the source of crack propagation. At the same time, the micro-damage at the front end of the crack propagation has a guiding effect on the crack propagation.

Key wordsSiCp/A356 composite    service temperature load    thermal fatigue    microscopic mechanism of crack propagation
收稿日期: 2021-06-02      出版日期: 2022-07-18
中图分类号:  TG146.2  
基金资助:中央高校基本科研业务费专项资金(2021YJS146);中央高校基本科研重点基金(2020JBZ113)
通讯作者: 杨智勇     E-mail: zhyyang@bjtu.edu.cn
作者简介: 杨智勇(1975—), 男, 教授, 博士, 研究方向为零部件质量控制及服役可靠性, 联系地址: 北京市海淀区北下关街道上园村3号北京交通大学机械与电子控制工程学院(100044), E-mail: zhyyang@bjtu.edu.cn
引用本文:   
杨智勇, 臧家俊, 方丹琳, 李翔, 李志强, 李卫京. 城轨列车制动盘SiCp/A356复合材料热疲劳裂纹扩展机理[J]. 材料工程, 2022, 50(7): 165-175.
Zhiyong YANG, Jiajun ZANG, Danlin FANG, Xiang LI, Zhiqiang LI, Weijing LI. Thermal fatigue crack propagation mechanism of SiCp/A356 composites for urban rail train brake disc. Journal of Materials Engineering, 2022, 50(7): 165-175.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000521      或      http://jme.biam.ac.cn/CN/Y2022/V50/I7/165
Material Temperature/℃ Yield strength/MPa Density/(g·cm-3) Specific heat/(J·kg-1·K-1) Thermal expansion coefficient/(10-6 K-1)
A356 100 180 2.67 897 23
200 87.5 2.67 921 24
300 36 2.67 1005 24.5
SiC Room temperature 450 3.20 790 4.7
Table 1  A356铝合金和SiC颗粒材料性能参数[16-17]
Fig.1  热疲劳试样尺寸
Fig.2  热疲劳试样V型缺口处金相组织
Fig.3  热疲劳实验
(a)实验设备工作原理;(b)温度加载曲线
Fig.4  不同循环温度下热疲劳裂纹长度(a)和宽度(b)随循环次数变化曲线
Cycle temperature/℃ Minimum number of cycles for rapid crack growth Average number of cycles for rapid crack growth
30-150 >4000 >4000
30-200 1188 1240
30-250 380 400
30-300 200 200
30-350 100 120
Table 2  不同循环温度下热疲劳裂纹快速扩展时所经循环次数
Fig.5  30~200 ℃循环温度下热疲劳裂纹扩展过程
(a)720次;(b)860次;(c)1000次;(d)1200次;(e)1480次;(f)1680次
Fig.6  30~250 ℃循环温度下热疲劳裂纹扩展过程
(a)180次;(b)350次;(c)420次;(d)480次;(e)600次
Fig.7  30~300 ℃循环温度下热疲劳裂纹扩展过程
(a)80次;(b)120次;(c)145次;(d)180次;(e)240次
Fig.8  30~350 ℃循环温度下热疲劳裂纹扩展过程
(a)40次;(b)50次;(c)70次;(d)140次;(e)230次
Fig.9  30~200 ℃循环温度下不同循环次数后热疲劳裂纹形貌
(a)1200次;(b)1250次
Fig.10  不同循环温度下热疲劳裂纹微观形貌
(a)30~200 ℃;(b)30~300 ℃
Fig.11  不同循环温度下热疲劳裂纹断口形貌
(a)30~200 ℃; (b)30~300 ℃
Fig.12  SiC颗粒分布与Al基体对主裂纹扩展的影响
(a)裂纹沿颗粒群扩展;(b)裂纹穿过α-Al基体扩展
Fig.13  Si相对主裂纹扩展的影响
Fig.14  裂纹前端微观形貌
(a)孔洞损伤引导裂纹穿过α-Al基体;(b)孔洞损伤引导裂纹沿颗粒界面扩展
1 杨智勇. 高速客车铝基复合材料制动盘热损伤和结构设计研究[D]. 北京: 北京交通大学, 2008.
1 YANG Z Y. Research on thermal damage and structure design of aluminum matrix composites brake disc for high-speed train[D]. Beijing: Beijing Jiaotong University, 2008.
2 滕杰. 高速列车用铝基复合材料制动盘及其闸片的制备、摩擦磨损性能及机理研究[D]. 长沙: 湖南大学, 2006.
2 TENG J. Preparation technology, friction and wear properties and mechanisms of aluminum matrix composite brake rotor and coupled pad used for high-speed train[D]. Changsha: Hunan University, 2006.
3 齐海波, 丁占来, 樊云昌, 等. SiC颗粒增强铝基复合材料制动盘的研究[J]. 复合材料学报, 2001, 18 (1): 62- 66.
3 QI H B , DING Z L , FAN Y C , et al. Research on automotive brake discs of SiCp/Al composite[J]. Acta Materiae Compositae Sinica, 2001, 18 (1): 62- 66.
4 陈春峰. 铝基复合材料制动盘的设计及制造研究[D]. 北京: 北京交通大学, 2007.
4 CHEN C F. Research on design and manufacturing of aluminum matrix composite brake discs[D]. Beijing: Beijing Jiaotong University, 2007.
5 ZEUNERT, 张彦. 高速列车使用铝基复合材料制动圆盘[J]. 国外机车车辆工艺, 1999, (2): 19- 21.
5 ZEUNER T , ZHANG Y . Brake disc made of composite materials used in high-speed train[J]. Foreign Locomotive & Rolling Stock Technology, 1999, (2): 19- 21.
6 李微, 安帅朋, 杨蕾, 等. SiC颗粒尺寸对喷射沉积铝硅复合材料高温疲劳性能的影响[J]. 材料热处理学报, 2021, 42 (1): 34- 43.
6 LI W , AN S P , YANG L , et al. Effect of SiC particle size on high temperature fatigue properties of spray-deposited Al-Si composites[J]. Transactions of Materials and Heat Treatment, 2021, 42 (1): 34- 43.
7 LI W , CHEN H T , ZUO L , et al. Thermomechanical fatigue behavior of spray-deposited SiCp/Al-Si composite applied in the high-speed railway brake disc[J]. International Journal of Photoenergy, 2020, (1): 1- 11.
8 AYYAR A , CHAWLA N . Microstructure-based modeling of crack growth in particle reinforced composites[J]. Composites Science and Technology, 2006, 66 (13): 1980- 1994.
doi: 10.1016/j.compscitech.2006.01.007
9 张俊清, 周素霞, 杨月, 等. 高速列车制动盘SiCp/A356颗粒增强铝基复合材料的热疲劳性能研究[J]. 工程力学, 2011, 28 (8): 252- 256.
9 ZHANG J Q , ZHOU S X , YANG Y , et al. Research on the thermal fatigue behaviors of the composites material SiCp/A356 used on the high-speed train[J]. Engineering Mechanics, 2011, 28 (8): 252- 256.
10 TEVATIA A , SRIVASTAVA S K . Influence of residual thermal stresses on fatigue crack growth life of discontinuous reinforcements in metal matrix composites[J]. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40 (1): 81- 88.
11 刘奋成, 熊其平, 刘强, 等. 搅拌摩擦加工碳纳米管增强7075铝基复合材料的疲劳性能[J]. 稀有金属材料与工程, 2015, 44 (7): 1786- 1790.
11 LIU F C , XIONG Q P , LIU Q , et al. Fatigue property of carbon nanotubes reinforced 7075 Al alloy composite prepared by friction stir processing[J]. Rare Metal Materials and Engineering, 2015, 44 (7): 1786- 1790.
12 LUO Y , WU S C , HU Y N , et al. Cracking evolution behaviors of lightweight materials based on in situ synchrotron X-ray tomography: a review[J]. Frontiers of Mechanical Engineering, 2018, 13 (4): 461- 481.
13 颜新宇, 王守仁, 温道胜, 等. HfC颗粒对WC/Co复合材料裂纹萌生和扩展行为的影响[J]. 西北工业大学学报, 2019, 37 (3): 628- 635.
13 YAN X Y , WANG S R , WEN D S , et al. Effects of HfC particles on crack initiation and propagation behavior of WC/Co compo-sites[J]. Journal of Northwestern Polytechnical University, 2019, 37 (3): 628- 635.
14 CHEN Z , PING H , CHEN L . The role of particles in fatigue crack propagation of aluminum matrix composites and casting aluminum alloys[J]. Journal of Materials Science & Technology, 2007, 23 (2): 213- 216.
15 QIAN L , TODA H , MORITA S , et al. In-situ observations of fracture processes in 0.6μm and 9.5μm SiCP/6061Al compo-sites[J]. Materials Transactions, 2005, 46 (1): 34- 41.
16 潘利科. 铝基复合材料摩擦制动服役特性及失效机制研究[D]. 北京: 北京交通大学, 2017.
16 PAN L K. Research on friction brake behavior and failure mecha-nism of aluminum matrix composite[D]. Beijing: Beijing Jiaotong University, 2017.
17 李翔. SiCp/A356复合材料裂纹扩展机理研究[D]. 北京: 北京交通大学, 2018.
17 LI X. Research on crack growth mechanism of SiCp/A356 composites[D]. Beijing: Beijing Jiaotong University, 2018.
18 ZHANG X X , XIAO B L , ANDRÄ H , et al. Multiscale modeling of macroscopic and microscopic residual stresses in metal matrix composites using 3D realistic digital microstructure models[J]. Composite Structures, 2016, 137, 18- 32.
19 SURESH S , SHENBAG N , MOORTHI V . Aluminium-titanium diboride (Al-TiB2)metal matrix composites: challenges and oppor-tunities[J]. Procedia Engineering, 2012, 38, 89- 97.
20 范映伟. 金属基复合材料微观损伤行为的研究进展[J]. 材料热处理学报, 2020, 41 (10): 1- 23.
20 FAN Y W . Research progress on micro-damage behavior of me-tal matrix composites[J]. Transactions of Materials and Heat Treatment, 2020, 41 (10): 1- 23.
21 张建云, 邹晋, 周贤良, 等. 颗粒对铝基复合材料热残余应力的影响[J]. 材料热处理学报, 2009, 30 (1): 197- 200.
21 ZHANG J Y , ZOU J , ZHOU X L , et al. Effect of particle on thermal residual stress in aluminum matrix composite[J]. Transactions of Materials and Heat Treatment, 2009, 30 (1): 197- 200.
22 孔亚茹, 郭强, 张荻. 颗粒增强铝基复合材料界面性能的研究[J]. 材料导报, 2015, 29 (9): 34- 43.
22 KONG Y R , GUO Q , ZHANG D . Review on interfacial properties of particle-reinforced aluminum matrix composites[J]. Materials Review, 2015, 29 (9): 34- 43.
23 杨月. 高速列车SiCp/A356复合材料制动盘热疲劳评价方法研究[D]. 北京: 北京交通大学, 2009.
23 YANG Y. Research on thermal fatigue evalution method of SiCp/A356 composite brake disc for high-speed train[D]. Beijing: Beijing Jiaotong University, 2009.
24 杨月, 谢基龙. 高速客车SiCp/A356铝基制动盘材料的热疲劳裂纹形成与扩展试验研究[J]. 铁道学报, 2007, (5): 43- 47.
24 YANG Y , XIE J L . The test research of thermal fatigue crack initiation and propagation of SiCp/A356 for brake discs of high-speed trains[J]. Journal of the China Railway Society, 2007, (5): 43- 47.
25 廖利, LAID. A356-SiCp铝基复合材料疲劳裂纹扩展机理的实验研究[J]. 武汉工业大学学报, 1997, (2): 24- 28.
25 LIAO L , LAI D . Study of fatigue growth mechanism of an aluminum alloy A356-SiCp composits[J]. Journal of Wuhan University of Technology, 1997, (2): 24- 28.
[1] 周航, 张峥. AlSi10Mg(Cu)铸铝合金的热疲劳裂纹萌生及早期扩展行为[J]. 材料工程, 2019, 47(3): 131-138.
[2] 山泉, 张亚峰, 张哲轩, 李祖来, 蒋业华, 王鹏飞. 钨含量对WCP/钢基表层复合材料压缩性能及热疲劳行为的影响[J]. 材料工程, 2019, 47(2): 115-121.
[3] 赵玲, 刘光磊, 张思源, 李茂军, 刘简宁, 李明辉. 固溶时效深冷复合处理对ZCuAl10Fe3Mn2合金微观组织和热疲劳性能的影响[J]. 材料工程, 2019, 47(12): 63-70.
[4] 齐红宇, 马立强, 李少林, 杨晓光, 王亚梅, 魏洪亮. 等离子热障涂层构件高温热疲劳寿命预测研究[J]. 材料工程, 2014, 0(7): 67-72.
[5] 韩增祥. 金属热疲劳a-N曲线测定方法的研究[J]. 材料工程, 2007, 0(11): 45-48,53.
[6] 李志军, 周兰章, 郭建亭, 姚俊. 返回料添加比例对K44合金热疲劳性能的影响[J]. 材料工程, 2005, 0(8): 24-27.
[7] 许珞萍, 吴晓春, 邵光杰, 闵永安. 4Cr5MoSiV1, 8407钢的热疲劳性能[J]. 材料工程, 2001, 0(2): 3-7.
[8] 周凤云, 熊惟皓, 明文龙, 肖建中. 无钴Ti(C,N)基金属陶瓷的热疲劳行为[J]. 材料工程, 1998, 0(4): 45-48.
[9] 赵爱国, 钟培道, 习年生, 陶春虎. 高压涡轮导向叶片裂纹分析[J]. 材料工程, 1998, 0(12): 35-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn