Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (6): 117-123    DOI: 10.11868/j.issn.1001-4381.2021.000527
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
聚碳酸酯/聚(1, 4-环己烷二甲酸- 1, 4-环己烷二甲醇酯)共混物的光学特性及机理分析
陈宇宏1,*(), 李曦2, 詹茂盛2, 赵朋3
1 中国航发北京航空材料研究院 透明件研究所, 北京 100095
2 北京航空航天大学 材料科学与工程学院, 北京 100083
3 浙江大学 机械工程学院, 杭州 310027
Optical characteristics and mechanism analysis of polycarbonate/poly(1, 4-cyclohexanedimethyl- 1, 4-cyclohexanedicarboxylate) blends
Yuhong CHEN1,*(), Xi LI2, Maosheng ZHAN2, Peng ZHAO3
1 Institute of Transparencies, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
2 School of Material Science and Engineering, Beihang University, Beijing 100083, China
3 College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
全文: PDF(6893 KB)   HTML ( 1 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用熔融共混法制备一系列聚碳酸酯(PC)与聚(1, 4-环己烷二甲酸-1, 4-环己烷二甲醇酯)(PCCD)形成的共混物。光学性能测试表明,PC/PCCD共混物具有高透光率、低雾度的光学特征。采用SEM、TEM、DSC、红外光谱及核磁共振等多种手段对PC/PCCD进行研究,以揭示共混物呈现光学透明性的内在机理。结果表明:PC/PCCD在几十纳米尺度下具有均相结构,均相结构是其在宏观上表现高透明性的直接原因; 不同PCCD含量的PC/PCCD共混物均表现出单一玻璃化温度,表明PC和PCCD完全相容。这种均相结构的完全相容,是PC/PCCD共混物呈现高透明性的内在原因。通过进一步分析PCCD和PC相容的机理,发现PC与PCCD熔融共混过程中未发生酯交换反应,PC和PCCD的相容源于结构相似,与是否发生酯交换反应无关。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈宇宏
李曦
詹茂盛
赵朋
关键词 聚碳酸酯聚(1, 4-环己烷二甲酸-1, 4-环己烷二甲醇酯)光学性能相容均相    
Abstract

PC/PCCD blends with different PCCD contents were prepared by melt blending. The optical performance test results show that PC/PCCD blends have high light transmittance and low haze. SEM, TEM, DSC, FTIR, 1H NMR and 13C NMR spectra test have been used to investigate PC/PCCD to reveal the internal mechanism of the optical transparency of the blends. The results show that PC/PCCD has a homogeneous structure at the scale of tens of nanometers, which is the direct reason for its high optical properties. All PC/PCCD blends with different PCCD contents show a single glass transition temperature, indicating that PCCD and PC are completely compatible. This complete compatibility leading to the homogeneous structure is the inherent reason for the high transparency of PC/PCCD blends. The mechanism of compatibility between PCCD and PC was further analyzed, and the results show that no transesterification reaction occurs during the melt blending of PC and PCCD. The compatibility of PC and PCCD results from the similarity between their molecular structure, and has nothing to do with whether the transesterification reaction occurs.

Key wordspolycarbonate    poly (1, 4-cyclohexanedimethyl-1, 4-cyclohexanedicarboxylate)    optical property    compatibility    homogeneous
收稿日期: 2021-06-03      出版日期: 2022-06-20
中图分类号:  TQ322.3  
通讯作者: 陈宇宏     E-mail: cyhcdj@163.com
作者简介: 陈宇宏(1969—),男,研究员,博士,研究方向为航空透明材料及透明件制造技术研究,联系地址:北京市81信箱83分箱(100095),E-mail: cyhcdj@163.com
引用本文:   
陈宇宏, 李曦, 詹茂盛, 赵朋. 聚碳酸酯/聚(1, 4-环己烷二甲酸- 1, 4-环己烷二甲醇酯)共混物的光学特性及机理分析[J]. 材料工程, 2022, 50(6): 117-123.
Yuhong CHEN, Xi LI, Maosheng ZHAN, Peng ZHAO. Optical characteristics and mechanism analysis of polycarbonate/poly(1, 4-cyclohexanedimethyl- 1, 4-cyclohexanedicarboxylate) blends. Journal of Materials Engineering, 2022, 50(6): 117-123.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000527      或      http://jme.biam.ac.cn/CN/Y2022/V50/I6/117
Fig.1  PCCD含量对PC/PCCD共混物透光率的影响
Fig.2  PCCD含量对PC/PCCD共混物雾度的影响
Fig.3  PCCD含量对PC/PCCD应力光学系数的影响
Fig.4  不同PCCD含量PC/PCCD共混物的SEM照片
(a)30%;(b)50%;(c)70%
Fig.5  不同PCCD含量PC/PCCD共混物的TEM照片
(a)30%;(b)50%;(c)70%
Fig.6  不同PCCD含量的PC/PCCD的DSC曲线
Fig.7  PCCD,PC以及PC/PCCD共混物的红外光谱图
Fig.8  PCCD,PC以及PC/PCCD共混物的13C核磁共振谱
Fig.9  PCCD,PC以及PC/PCCD共混物的1H核磁共振谱
1 CLEEVELY S T , DAY F . Living it large—injection moulding aircraft canopies[J]. Materials World, 2003, 11 (8): 18- 20.
2 EVANS B . Space shuttle challenger[M]. New York: Springer, 2007: 1- 44.
3 KNIGHTS M . Window of opportunity for molders[J]. Plastics Technology, 2006, 52 (4): 52- 73.
4 MAAN-SHⅡ S W . Intrinsic birefringence of amorphous poly(bisphenol-A carbonate)[J]. Journal of Applied Polymer Science, 2010, 32 (1): 3263- 3275.
5 杨柏, 吕长利, 沈家骢. 高性能聚合物光学材料[M]. 北京: 化学工业出版社, 2005: 8- 10.
5 YANG B , LU C L , SHEN J C . High performance optical materials[M]. Beijing: Chemical Industry Press, 2005: 8- 10.
6 WIMBERGER-FRIEDL R , BRUIN J G D . Birefringence in polycarbonate: molecular orientation induced by cooling stresses Ⅱ effects of sectioning[J]. Journal of Polymer Science: Part B, 1993, 31 (8): 1051- 1060.
doi: 10.1002/polb.1993.090310815
7 BRUNELLE D J , JANG T . Optimization of poly(1, 4-cyclohexylidene cyclohexane-1, 4-dicarboxylate) (PCCD) preparation for increased crystallinity[J]. Polymer, 2006, 47 (11): 4094- 4104.
doi: 10.1016/j.polymer.2006.02.070
8 BERTI C , BINASSI E , CELLI A , et al. Poly(1, 4-cyclohexylenedimethylene 1, 4-cyclohexanedicarboxylate): influence of stereochemistry of 1, 4-cyclohexylene units on the thermal properties[J]. Journal of Polymer Science: Part B, 2010, 46 (6): 619- 630.
9 陈宇宏, 李曦, 袁渊. 一种具有低应力光学系数的透明脂环族聚酯的制备方法: ZL 200910181019. X[P]. 2011-10-19.
9 CHEN Y H, LI X, YUAN Y. Method for preparing transparent alicyclic polyester with low stress optical coefficient: ZL 200910181019. X[P]. 2011-10-19.
10 HONIGFORT P, HOOGLAND G, LAURIN M M. Insert molded article: US 6458913 B1[P]. 2002-10-01.
11 ROBERT R G, FRANK A H, STEVEN F H, et al. Article for optical data storage device: US 6221556 B1[P]. 2001-04-24.
12 PENNING J P, WIT G D. Polycarbonate-polyester compositions with enhanced flow: US 6599966 B2[P]. 2003-07-29.
13 JAYAKANNAN M , ANILKUMAR P . Mechanistic aspects of ester-carbonate exchange in polycarbonate/cycloaliphatic polyester with model reactions[J]. Journal of Polymer Science: Part A, 2004, 42 (16): 3996- 4008.
doi: 10.1002/pola.20281
14 陈宇宏, 詹茂盛. 聚合条件对透明聚(1, 4-环己烷二甲酸-1, 4-环己烷二甲醇酯)分子量的影响[J]. 高分子学报, 2012, (9): 1021- 1028.
14 CHEN Y H , ZHAN M S . The effect of polymerization conditions on the molecular weight of transparent poly (1, 4-cyclohexanedimethyl-1, 4-cyclohexanedicarboxylate)[J]. Acta Polymerica Sinica, 2012, (9): 1021- 1028.
15 PENG S , HE M , YANG Z , et al. Fabrication of reinforced and toughened PC/PMMA composites by tuning the migration and selective location of graphenes during melt blending[J]. RSC Advances, 2020, 10 (48): 28527- 28535.
doi: 10.1039/D0RA04790B
16 BOHN L . Polymer handbook[M]. New York: Wiley Interscience, 1975: 111- 211.
17 MacKNIGHT J . Polymer blends[M]. New York: Academic Press, 1978: 185.
18 吴培熙, 张留城. 聚合物共混改性[M]. 北京: 中国轻工业出版社, 1998: 134- 135.
18 WU P X , ZHANG L C . Polymer blending modification[M]. Beijing: China Light Industry Press, 1998: 134- 135.
19 季薇芸. "反应型相容示踪剂"方法研究聚合物反应共混中的界面反应和形态演变[D]. 杭州: 浙江大学, 2016.
19 JI W Y. A concept of reactive compatibilizer-tracer for studying the interfacial reaction of morphology in reactive polymer blending[D]. Hangzhou: Zhejiang University, 2016.
20 FERREIRA A C , DINIZ M F , FERREIRA A C B , et al. FT-IR/UATR and FT-IR transmission quantitative analysis of PBT/PC blends[J]. Polymer Testing, 2020, 85, 1- 6.
21 AL-JABAREEN A , ILLESCAS S , MASPOCH M L , et al. Effects of composition and transesterification catalysts on the physico-chemical and dynamic properties of PC/PET blends rich in PC[J]. Journal of Materials Science, 2010, 45 (24): 6623- 6633.
doi: 10.1007/s10853-010-4753-4
22 ROBESON L M . Phase behavior of polyarylate blends[J]. Journal of Applied Polymer Science, 1985, 30 (10): 4081- 4098.
doi: 10.1002/app.1985.070301011
23 GOLOVOY A , CHEUNG M F , OENE H V . The phase behavior and mechanical properties of polyarylate and polycarbonate blends[J]. Polymer Engineering and Science, 1987, 27 (21): 1642- 1648.
doi: 10.1002/pen.760272111
24 HABIBELAHI M , EHSANI M , MORSHEDIAN J . Compatibilization of polycarbonate/poly (ethylene terephthalate) blends by addition of their trans-esterification product[J]. Polyolefins Journal, 2019, 6 (1): 75- 83.
25 ZHAO T , AI J , WANG P , et al. Research of the influence factors on transesterification reaction degree in PC/PBT blends[J]. Advanced Industrial and Engineering Polymer Research, 2019, 2 (4): 203- 208.
doi: 10.1016/j.aiepr.2019.09.005
26 陈宇宏, 詹茂盛. 聚碳酸酯和2, 2'-双(4-羟苯基)丙烷聚苯二甲酸酯的相容原理研究[J]. 功能材料, 2008, 39 (11): 1937- 1940.
doi: 10.3321/j.issn:1001-9731.2008.11.049
26 CHEN Y H , ZHAN M S . Miscibility of polycarbonate with polyarycarboxylate[J]. Journal of Functional Materials, 2008, 39 (11): 1937- 1940.
doi: 10.3321/j.issn:1001-9731.2008.11.049
[1] 余箫剑, 支云飞, 把明芳, 陕绍云, 倪永浩, 胡天丁. 纤维素负载金属基催化体系在有机反应中的研究进展[J]. 材料工程, 2022, 50(3): 81-89.
[2] 肖伟, 杨占旭, 乔庆东. 石墨电极表面聚丙烯腈纳米纤维膜的制备及性能[J]. 材料工程, 2021, 49(9): 60-68.
[3] 范泽文, 赵新宇, 邱帅, 王艳, 郭静, 权慧欣, 徐兰娟. 聚乳酸/聚乙二醇/羟基磷灰石多孔骨支架的3D打印制备及其生物相容性[J]. 材料工程, 2021, 49(4): 135-141.
[4] 毛龙, 刘小超, 谢斌, 吴慧青, 刘跃军. 植酸-金属离子螯合物改性层状黏土及其在聚己内酯中的增强与抗菌效应研究[J]. 材料工程, 2021, 49(2): 127-135.
[5] 孙文昕, 樊丽君, 郑钟印, 邹玉红, 田景睿, 曾荣昌. 医用金属表面含锶涂层耐蚀性和生物相容性研究进展[J]. 材料工程, 2021, 49(12): 72-82.
[6] 王博伦, 王韬, 相宁, 葛勇, 郎建林, 孙琦伟, 陈宇宏, 颜悦. 聚碳酸酯中应变率压缩力学特性研究[J]. 材料工程, 2021, 49(12): 147-155.
[7] 孙琦伟, 王韬, 陈宇宏, 葛勇, 郎建林, 王博伦, 颜悦. 紫外加速老化对聚碳酸酯力学和光学性能的影响[J]. 材料工程, 2021, 49(11): 83-89.
[8] 刘继涛, 钏定泽, 杨泽斌, 陈希亮, 颜廷亭, 陈庆华. 氨基酸/羟基磷灰石复合材料的制备与表征及其在酸蚀牛牙釉质体外再矿化中的应用[J]. 材料工程, 2020, 48(2): 100-107.
[9] 葛勇, 王博伦, 相宁, 王韬, 孙琦伟, 颜悦. 二次注射成型光学制件厚度截面的残余应力分析[J]. 材料工程, 2020, 48(10): 88-95.
[10] 万天, 宋述鹏, 王今朝, 周和荣, 毛雨旭, 熊少聪, 李梦君. 生物医用镁合金腐蚀行为的研究进展[J]. 材料工程, 2020, 48(1): 19-26.
[11] 魏泽昌, 蔡晨阳, 王兴, 付宇. 生物可降解高分子增韧聚乳酸的研究进展[J]. 材料工程, 2019, 47(5): 34-42.
[12] 杜宏艳, 戚宇帆, 吴晨雪, 刘玥君, 梁丽萍, 郭文英, 张子栋. SiO2光子晶体结构色薄膜的制备与光学性能研究[J]. 材料工程, 2019, 47(12): 111-117.
[13] 舒华金, 吴春萱, 杨康, 刘廷武, 李晨, 曹传亮. 快速膨胀海藻酸钠/二氧化硅纤维复合支架的制备及其快速止血功能的应用[J]. 材料工程, 2019, 47(12): 124-129.
[14] 梁家浩, 魏智强, 朱学良, 张旭东, 武晓娟, 姜金龙. 尖晶石结构Ni掺杂ZnFe2O4纳米颗粒的性能表征[J]. 材料工程, 2019, 47(10): 113-119.
[15] 陈义川, 胡跃辉, 胡克艳, 张效华, 童帆, 帅伟强, 劳子轩. 共掺浓度对Na-Al共掺杂ZnO薄膜微观结构和光电性能的影响[J]. 材料工程, 2018, 46(6): 51-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn