Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (9): 120-126    DOI: 10.11868/j.issn.1001-4381.2021.000554
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
羰基铁室温硫化硅橡胶复合材料的吸波性能
米玉洁1, 宋明明2, 张存瑞1,*(), 张贵恩1, 王月祥1, 常志敏1
1 中国电子科技集团公司第三十三研究所 材料部, 太原 030032
2 中国商飞上海飞机设计研究院 制造支持工程部, 上海 100029
Microwave absorbing properties of carbonyl iron room temperature vulcanized silicone rubber composites
Yujie MI1, Mingming SONG2, Cunrui ZHANG1,*(), Guien ZHANG1, Yuexiang WANG1, Zhimin CHANG1
1 Materials Department, No.33 Research Institute of China Electronics Technology Group, Taiyuan 030032, China
2 Production Support Engineering Department, COMAC Shanghai Aircraft Design & Research Institute, Shanghai 100029, China
全文: PDF(897 KB)   HTML ( 2 )  
输出: BibTeX | EndNote (RIS)      
摘要 

为制备兼具力学性能和电磁吸收性能的高带宽吸波材料,采用纳米粒子改性及物理共混法设计制备一种以聚二甲基硅氧烷为基体的羰基铁室温硫化硅橡胶复合材料,系统地分析了该复合材料的力学性能与吸波性能。结果表明: 当白炭黑质量分数为3%时,复合材料的综合力学性能最佳,便于材料加工;该复合材料为磁损耗型吸波材料,材料的衰减常数随羰基铁含量和频率呈正相关。根据仿真计算得出,在2~18 GHz下,随着复合材料厚度和羰基铁含量增加,电磁波的吸收峰都逐渐向低频移动,当复合材料的厚度为1.5 mm且羰基铁质量分数为75%时,吸波材料有效吸收带宽可以达到9.07 GHz,占目标带宽56.68%。在实际应用中可根据应用场景需求来优化配方和控制材料厚度,达到最佳的吸波效果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
米玉洁
宋明明
张存瑞
张贵恩
王月祥
常志敏
关键词 羰基铁聚二甲基硅氧烷吸波性能复合材料高带宽    
Abstract

In order to prepare a high-bandwidth absorbing material with both mechanical properties and electromagnetic absorption properties, a nano-particle modification and physical blending method were used to design and prepare a carbonyl iron room temperature vulcanized silicone rubber composite material based on polydimethylsiloxane. The mechanical properties and wave absorbing properties of the composite material were systematically analyzed. The results show that when the mass fraction of white carbon black is 3%, the composite material has the best comprehensive mechanical properties and is convenient for material processing; the composite material is a magnetic loss type wave absorbing material, and the attenuation constant of the material is positively correlated with the carbonyl iron content and frequency. According to simulation calculations, the absorption peak of electromagnetic waves gradually shifts to low frequency as the thickness of the composite material and the content of carbonyl iron are increased at 2-18 GHz. When the thickness of the composite material is 1.5 mm and the mass fraction of carbonyl iron is 75%, the effective absorption bandwidth of the absorbing material can reach 9.07 GHz, accounting for 56.68% of the target bandwidth. In practical applications, the formula can be optimized and the thickness of the material can be controlled according to the needs of the application scenario to achieve the best absorbing effect.

Key wordscarbonyl iron    polydimethylsiloxane    microwave absorbing property    composite materials    high bandwidth
收稿日期: 2021-06-15      出版日期: 2022-09-20
中图分类号:  TB332  
通讯作者: 张存瑞     E-mail: 15203466966@163.com
作者简介: 张存瑞(1983—), 男,高级工程师,研究方向为吸波材料,联系地址: 山西省太原市彩虹街1号中国电子科技集团公司第三十三研究所材料部(030032),E-mail: 15203466966@163.com
引用本文:   
米玉洁, 宋明明, 张存瑞, 张贵恩, 王月祥, 常志敏. 羰基铁室温硫化硅橡胶复合材料的吸波性能[J]. 材料工程, 2022, 50(9): 120-126.
Yujie MI, Mingming SONG, Cunrui ZHANG, Guien ZHANG, Yuexiang WANG, Zhimin CHANG. Microwave absorbing properties of carbonyl iron room temperature vulcanized silicone rubber composites. Journal of Materials Engineering, 2022, 50(9): 120-126.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000554      或      http://jme.biam.ac.cn/CN/Y2022/V50/I9/120
Fig.1  羰基铁改性机理图
Fig.2  羰基铁处理前后的SEM照片
(a)处理前;(b)处理后
Content of silica/% Hardness Tensile strength/MPa Elongation/% Leveling time/s
0 25 1.0 289.30 30
1 38 1.3 315.45 50
3 44 1.7 340.55 63
5 48 2.3 320.67 120
10 55 1.6 250.31
Table 1  不同白炭黑含量下羰基铁室温硫化硅橡胶复合材料的物理性能
Fig.3  羰基铁室温硫化硅橡胶复合材料的介电常数
(a)复数介电常数实部;(b)复数介电常数虚部
Fig.4  羰基铁室温硫化硅橡胶复合材料的磁导率
(a)复数磁导率实部;(b)复数磁导率虚部
Fig.5  羰基铁室温硫化硅橡胶复合材料的电损耗因子(a)和磁损耗因子(b)
Fig.6  羰基铁室温硫化硅橡胶复合材料的衰减常数
Fig.7  羰基铁室温硫化硅橡胶复合材料的吸波性能
(a)羰基铁含量为75%;(b)羰基铁含量为80%;(c)羰基铁含量为85%
Fig.8  羰基铁室温硫化硅橡胶复合材料有效吸收带宽
1 赵栋梁, 金銮含, 罗曦, 等. 纳米铁氧体基核壳结构复合吸波材料的制备方法及研究进展[J]. 吉林大学学报(理学版), 2021, 59 (2): 397- 406.
1 ZHAO D L , JIN L H , LUO X , et al. Preparation method and research progress of nano-ferrite based core-shell structured composite absorbing materials[J]. Journal of Jilin University (Science Edition), 2021, 59 (2): 397- 406.
2 葛超群, 汪刘应, 刘顾. 碳基/羰基铁复合吸波材料的研究进展[J]. 材料工程, 2019, 47 (12): 43- 54.
2 GE C Q , WANG L Y , LIU G . Research progress in carbon-based/carbonyl iron composite microwave absorption materials[J]. Journal of Materials Engineering, 2019, 47 (12): 43- 54.
3 DOMMETI V S , CHERUKU D R . Multi-layer composites shielding for electromagnetic radiation protection[J]. International Journal of Advanced Intelligence Paradigms, 2020, 17 (1/2): 139.
doi: 10.1504/IJAIP.2020.108772
4 孔静, 高鸿, 李岩, 等. 电磁屏蔽机理及轻质宽频吸波材料的研究进展[J]. 材料导报, 2020, 34 (5): 9055- 9063.
4 KONG J , GAO H , LI Y , et al. Research progress of electromagnetic shielding mechanism and lightweight and broadband wave-absorbing materials[J]. Materials Reports, 2020, 34 (5): 9055- 9063.
5 景红霞, 李巧玲, 叶云, 等. 羰基铁/钛酸钡复合材料的制备及吸波性能[J]. 材料工程, 2015, (7): 38- 42.
5 JING H X , LI Q L , YE Y , et al. Preparation and microwave absorbing properties of Fe(CO)5/BaTiO3composites[J]. Journal of Materials Engineering, 2015, (7): 38- 42.
6 WANG X X , ZHANG B Q , ZHANG W , et al. Super-light Cu@Ni nanowires/graphene oxide composites for significantly enhanced microwave absorption performance[J]. Scientific Reports, 2017, 7 (1): 1584.
doi: 10.1038/s41598-017-01529-2
7 WEN F S , ZHANG F , LIU Z Y . Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers[J]. The Journal of Physical Chemistry C, 2011, 115 (29): 14025- 14030.
doi: 10.1021/jp202078p
8 燕佳欣, 吴建华, 时君友, 等. 雷达吸波涂层材料的研究进展[J]. 表面技术, 2020, 49 (5): 166- 180.
8 YAN J X , WU J H , SHI J Y , et al. Research progress of radar absorbing coating materials[J]. Surface Technology, 2020, 49 (5): 166- 180.
9 LI J , FENG W J , WANG J S , et al. Impact of silica-coating on the microwave absorption properties of carbonyl iron powder[J]. Journal of Magnetism and Magnetic Materials, 2015, 393, 82- 87.
doi: 10.1016/j.jmmm.2015.05.049
10 KHANI O , SHOUSHTARI M Z , ACKLAND K , et al. The structural, magnetic and microwave properties of spherical and flake shaped carbonyl iron particles as thin multilayer microwave absorbers[J]. Journal of Magnetism and Magnetic Materials, 2017, 428, 28- 35.
doi: 10.1016/j.jmmm.2016.12.010
11 XU Y G , YUAN L M , WANG X B , et al. Two-step milling on the carbonyl iron particles and optimizing on the composite absorption[J]. Journal of Alloys and Compounds, 2016, 676, 251- 259.
doi: 10.1016/j.jallcom.2016.03.192
12 ZHOU Y Y , HUI X , ZHOU W C , et al. Enhanced antioxidation and microwave absorbing properties of SiO2-coated flaky carbonyl iron particles[J]. Journal of Magnetism and Magnetic Materials, 2018, 446, 143- 146.
doi: 10.1016/j.jmmm.2017.09.022
13 JAFARIAN M , AFGHAHI S S S , ATASSI Y , et al. Enhanced microwave absorption characteristics of nanocomposite based on hollow carbonyl iron microspheres and polyaniline decorated with MWCNTs[J]. Journal of Magnetism and Magnetic Materials, 2018, 462, 153- 159.
doi: 10.1016/j.jmmm.2018.04.061
14 DUAN Y P , LIU Y , CUI Y L , et al. Graphene to tune microwave absorption frequencies and enhance absorption properties of carbonyl iron/polyurethane coating[J]. Progress in Organic Coatings, 2018, 125, 89- 98.
doi: 10.1016/j.porgcoat.2018.08.030
15 黄琪惠, 张豹山, 唐东明, 等. 石墨烯-Fe@Fe3O4纳米复合材料的制备及其电磁性能研究[J]. 无机化学学报, 2012, 28 (10): 2077- 2082.
15 HUANG Q H , ZHANG B S , TANG D M , et al. Synthesis and characteristics of graphene-Fe@Fe3O4 nano-composites materials[J]. Chinese Journal of Inorganic Chemistry, 2012, 28 (10): 2077- 2082.
16 HE L L , ZHAO Y , XING L Y , et al. Preparation of reduced graphene oxide coated flaky carbonyl iron composites and their excellent microwave absorption properties[J]. RSC Advance, 2018, 8, 2971- 2977.
doi: 10.1039/C7RA12984J
17 李泽, 赵芳, 王建江, 等. PVP表面修饰羰基铁/CoFe2O4核壳纳米结构的制备及低频吸波机理[J]. 材料导报, 2020, 34 (7): 14027- 14033.
17 LI Z , ZHAO F , WANG J J , et al. Preparation and low frequency absorbing mechanism of PVP surface modified carbonyl iron/ CoFe2O4 core-shell nanostructure[J]. Materials Reports, 2020, 34 (7): 14027- 14033.
18 FOSTER K , LITTMANN M F . Factors affecting core losses in oriented electrical steels at moderate inductions (invited)[J]. Journal of Applied Physics, 1985, 57 (1): 4203- 4208.
19 MICHIELSSEN E , SAJER J M , RANJITHAN S , et al. Design of lightweight, broad-band microwave absorbers using genetic algorithms[J]. IEEE Transactions on Microwave Theory and Techniques, 1993, 41 (6): 1024- 1031.
doi: 10.1109/22.238519
[1] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[2] 孔国强, 安振河, 魏化震, 李莹, 邵蒙, 于秋兵, 纪校君, 李居影, 王康. 碳纤维丝束结构对碳纤维/酚醛复合材料烧蚀性能的影响[J]. 材料工程, 2022, 50(9): 113-119.
[3] 邢宇, 张代军, 王成博, 倪洪江, 李军, 陈祥宝. PEEK复合材料用碳纤维上浆剂研究进展[J]. 材料工程, 2022, 50(8): 70-81.
[4] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[5] 倪洪江, 邢宇, 戴霄翔, 李军, 张代军, 陈祥宝. 航空发动机用聚酰亚胺树脂基复合材料固化工艺及热稳定性能[J]. 材料工程, 2022, 50(7): 102-109.
[6] 吕双祺, 黄佳, 孙燕涛, 付尧明, 杨晓光, 石多奇. 莫来石纤维增强SiO2气凝胶复合材料压缩回弹性能实验与建模研究[J]. 材料工程, 2022, 50(7): 119-127.
[7] 杨智勇, 臧家俊, 方丹琳, 李翔, 李志强, 李卫京. 城轨列车制动盘SiCp/A356复合材料热疲劳裂纹扩展机理[J]. 材料工程, 2022, 50(7): 165-175.
[8] 彭斌意, 刘洋, 郑晓董, 李治国, 李国平, 胡建波, 王永刚. 激光选区熔化颗粒增强钛基复合材料的抗压性能[J]. 材料工程, 2022, 50(6): 36-48.
[9] 李军, 刘燕峰, 倪洪江, 张代军, 陈祥宝. 航空发动机用树脂基复合材料应用进展与发展趋势[J]. 材料工程, 2022, 50(6): 49-60.
[10] 刘晨阳, 李峰, 翟哲, 李慧. 聚硼硅氧烷的合成及其流变性能[J]. 材料工程, 2022, 50(6): 164-169.
[11] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[12] 于永涛, 刘元军. 原位聚合法制备铁氧体/聚苯胺吸波复合材料的研究进展[J]. 材料工程, 2022, 50(5): 90-99.
[13] 程子敬, 王凯峰, 张连洪. 基于微观尺度X射线断层扫描技术的短切碳纤维SMC复合材料失效分析[J]. 材料工程, 2022, 50(5): 130-138.
[14] 杜宗波, 时双强, 陈宇滨, 褚海荣, 杨程. 介电型石墨烯吸波复合材料研究进展[J]. 材料工程, 2022, 50(4): 74-84.
[15] 任美娟, 王淼, 吴芳辉, 贾虎, 叶明富, 文国强. 氮掺杂多孔碳负载铜钴纳米复合材料的制备及其电催化性能[J]. 材料工程, 2022, 50(4): 104-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn