Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (4): 162-171    DOI: 10.11868/j.issn.1001-4381.2021.000556
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
低周疲劳变形过程中Fe-33Mn-4Si合金钢的微观组织演变
孙琦迪1,2, 杨蔚涛1,2, 郝庆国1,2, 关肖虎3, 章斌4, 杨旗1,2,*()
1 上海材料研究所, 上海 200437
2 上海市工程材料应用与评价重点实验室, 上海 200437
3 西安建筑科技大学 冶金工程学院, 西安 710055
4 岛津企业管理(中国)有限公司 分析中心,上海 200233
Microstructure evolution of Fe-33Mn-4Si steel during low-cycle fatigue deformation
Qidi SUN1,2, Weitao YANG1,2, Qingguo HAO1,2, Xiaohu GUAN3, Bin ZHANG4, Qi YANG1,2,*()
1 Shanghai Research Institute of Materials, Shanghai 200437, China
2 Shanghai Key Laboratory of Engineering Materials Application and Evaluation, Shanghai 200437, China
3 School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
4 Analytical Applications Center, Shimadzu (China) Co., Ltd.Shanghai Branch, Shanghai 200233, China
全文: PDF(29369 KB)   HTML ( 1 )  
输出: BibTeX | EndNote (RIS)      
摘要 

借助X射线衍射和电子背散射衍射, 研究低周疲劳变形过程中Fe-33Mn-4Si合金钢的微观组织演变及其对力学行为的影响。结果表明: 实验用钢的原始微观组织由奥氏体和热诱发ε马氏体两相组成。原始组织通过影响变形过程中ε马氏体相变来影响实验用钢的低周疲劳变形行为。在变形初期(100周次内), 随循环周次增加, ε马氏体含量迅速增加并且马氏体不同变体之间频繁相互交叉作用, 使实验用钢的平均峰值应力和循环加工硬化程度快速增加; 随后至疲劳断裂, ε马氏体成为变形微观组织中主要组成相, ε马氏体含量和马氏体不同变体的交叉频次随循环周次的增加而增速放缓, 导致平均峰值应力和循环加工硬化程度的增速也明显减缓。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙琦迪
杨蔚涛
郝庆国
关肖虎
章斌
杨旗
关键词 Fe-Mn-Si合金钢低周疲劳变形微观组织演变ε马氏体退火孪晶    
Abstract

The microstructure evolution and mechanical behavior of an Fe-33Mn-4Si alloy steel under low-cycle fatigue deformation were investigated by using the X-ray diffraction and electron backscatter diffraction techniques.Results show that the experimental steel has an initial microstructure consisting of austenite and thermally induced ε-martensite. The initial microstructure remarkably affects the low-cycle fatigue property of the experimental steel through influencing the ε-martensitic transformation during deformation. At the early stage of fatigue deformation (first 100 deformation cycles), with increasing deformation cycles, a rapid increase in the volume fraction of ε-martensite and the frequency of the intersection of ε-martensite with different variants result in a quick rise in cyclic average peak stress and work hardening degree. With the continuation of cyclic deformation up to fatigue fracture, the ε-martensite becomes the dominant constituent phase in the deformation microstructure, and the volume fraction of ε-martensite and the frequency of the intersection of ε-martensite increase at an appreciably slower rate, thereafter significantly slowing the increase in cyclic average peak stress and work hardening degree.

Key wordsFe-Mn-Si steel    low-cycle fatigue deformation    microstructure evolution    ε-martensite    annealing twin
收稿日期: 2021-06-14      出版日期: 2022-04-18
中图分类号:  TG142.1  
基金资助:上海市优秀学术/技术带头人计划资助项目(18XD1420700)
通讯作者: 杨旗     E-mail: m1866733474@163.com
作者简介: 杨旗(1974—),男,正高级工程师,博士,主要从事金属抗震阻尼材料的研制,联系地址:上海市邯郸路99号上海材料研究所1号楼806室(200437),E-mail: m1866733474@163.com
引用本文:   
孙琦迪, 杨蔚涛, 郝庆国, 关肖虎, 章斌, 杨旗. 低周疲劳变形过程中Fe-33Mn-4Si合金钢的微观组织演变[J]. 材料工程, 2022, 50(4): 162-171.
Qidi SUN, Weitao YANG, Qingguo HAO, Xiaohu GUAN, Bin ZHANG, Qi YANG. Microstructure evolution of Fe-33Mn-4Si steel during low-cycle fatigue deformation. Journal of Materials Engineering, 2022, 50(4): 162-171.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000556      或      http://jme.biam.ac.cn/CN/Y2022/V50/I4/162
Fig.1  低周疲劳试样尺寸
Fig.2  实验用钢的循环滞回曲线(a)以及平均峰值应力(b)、加工硬化程度(c)、塑性和弹性应变范围(d)随疲劳周次的变化曲线
Fig.3  实验用钢的初始微观组织
(a)组成相图;(b)XRD谱线
Fig.4  图 3(a)中选区的精细微观组织
(a)取向成像图;(b)组成相图;(c)菊池带衬度图;(d)局部取向差图;(e)图(a),(b)中白色箭头所示ε马氏体变体对应的{111}γ
Fig.5  实验用钢的相组成
(a)不同循环周次变形试样的XRD谱线;(b)ε马氏体相含量
Fig.6  实验用钢的变形微观组织(图(a)~(f)中水平方向为疲劳试样加载方向)
(a),(b)100周次变形试样组成相图及局部取向差图;(c),(d)1000周次变形试样组成相图及局部取向差图;(e),(f)疲劳断裂试样组成相图及局部取向差图;(g)ε马氏体取向差分布图;(h)ε马氏体中局部取向差分布图
Fig.7  图 6(f)中不同晶粒内部的微观结构(图中水平方向为试样的加载方向)
(a)晶粒Ⅰ;(b)晶粒Ⅱ;(c)晶粒Ⅲ;(d)~(f)所示依次为晶粒Ⅰ, Ⅱ, Ⅲ及其退火孪晶对应的{111}γ面(黑色直线表示该{111}γ面观察到ε马氏体变体,黑色虚线表示该{111}γ面未能观察到ε马氏体变体,绿色直线表示退火孪晶的孪生面); (1)菊池带衬底图;(2)组成相图;(3)取向成像图
1 GRÄSSEL O , KRVGER L , FROMMEYER G , et al. High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development-properties-application[J]. International Journal of Plasticity, 2000, 16 (10): 1391- 1409.
2 郭鹏程, 钱立和, 孟江英, 等. 高锰奥氏体TWIP钢的单向拉伸与拉压循环变形行为[J]. 金属学报, 2014, 50 (4): 415- 422.
2 GUO P C , QIAN L H , MENG J Y , et al. Monotonic tension and tension-compression cyclic deformation behaviors of high manganese austenitic TWIP steel[J]. Acta Metallurgica Sinica, 2014, 50 (4): 415- 422.
3 CLADERA A , WEBER B , LEINENBACH C , et al. Iron-based shape memory alloys for civil engineering structures: an overview[J]. Construction and Building Materials, 2014, 63, 281- 293.
doi: 10.1016/j.conbuildmat.2014.04.032
4 SAWAGUCHI T , NIKULIN I , OGAWA K , et al. Designing Fe-Mn-Si alloys with improved low-cycle fatigue lives[J]. Scripta Materialia, 2015, 99, 49- 52.
doi: 10.1016/j.scriptamat.2014.11.024
5 SHAO C W , ZHANG P , LIU R , et al. Low-cycle and extremely-low-cycle fatigue behaviors of high-Mn austenitic TRIP/TWIP alloys: property evaluation, damage mechanisms and life prediction[J]. Acta Materialia, 2016, 103, 781- 795.
doi: 10.1016/j.actamat.2015.11.015
6 SHAO C W , ZHANG P , LIU R , et al. A remarkable improvement of low-cycle fatigue resistance of high-Mn austenitic TWIP alloys with similar tensile properties: importance of slip mode[J]. Acta Materialia, 2016, 118, 196- 212.
doi: 10.1016/j.actamat.2016.07.034
7 NIKULIN I , SAWAGUCHI T , TSUZAKI K . Effect of alloying composition on low-cycle fatigue properties and microstructure of Fe-30Mn-(6-x)Si-xAl TRIP/TWIP alloys[J]. Materials Science and Engineering: A, 2013, 587, 192- 200.
doi: 10.1016/j.msea.2013.08.061
8 NIKULIN I , SAWAGUCHI T , OGAWA K , et al. Effect of γ to ε martensitic transformation on low-cycle fatigue behaviour and fatigue microstructure of Fe-15Mn-10Cr-8 Ni-xSi austenitic alloys[J]. Acta Materialia, 2016, 105, 207- 218.
doi: 10.1016/j.actamat.2015.12.002
9 NIKULIN I , SAWAGUCHI T , OGAWA K , et al. Microstructure evolution associated with a superior low-cycle fatigue resistance of the Fe-30Mn-4Si-2Al alloy[J]. Metallurgical and Materials Transactions A, 2015, 46 (11): 5103- 5113.
doi: 10.1007/s11661-015-3127-6
10 LU L , SHEN Y , CHEN X , et al. Ultrahigh strength and high electrical conductivity in copper[J]. Science, 2004, 304 (5669): 422- 426.
doi: 10.1126/science.1092905
11 CURTZE S , KUOKKALA V T , OIKARI A , et al. Thermodynamic modeling of the stacking fault energy of austenitic steels[J]. Acta Materialia, 2011, 59 (3): 1068- 1076.
doi: 10.1016/j.actamat.2010.10.037
12 LUTTEROTTI L . Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction[J]. Nuclear Instruments and Methods in Physics Research: Section B, 2010, 268 (3/4): 334- 340.
13 JIN J E , LEE Y K . Strain hardening behavior of a Fe-18Mn-0.6C-1.5Al TWIP steel[J]. Materials Science and Engineering: A, 2009, 527 (1/2): 157- 161.
14 JIANG B , TADAKI T , MORI H , et al. In-situ TEM observation of γ→ε martensitic transformation during tensile straining in an Fe-Mn-Si shape memory alloy[J]. Materials Transactions, 1997, 38 (12): 1072- 1077.
doi: 10.2320/matertrans1989.38.1072
15 MATSUMOTO S , SATO A , MORI T . Formation of h.c.p. and f.c.c. twins in an Fe-Mn-Cr-Si-Ni alloy[J]. Acta Metallurgica et Materialia, 1994, 42 (4): 1207- 1213.
doi: 10.1016/0956-7151(94)90137-6
16 PARTRIDGE P G . The crystallography and deformation modes of hexagonal close-packed metals[J]. Metallurgical Reviews, 1967, 12 (1): 169- 194.
doi: 10.1179/mtlr.1967.12.1.169
17 TASAKI W , SAWAGUCHI T , TSUCHIYA K . EBSD analysis of dual γ/ε phase microstructures in tensile-deformed Fe-Mn-Si shape memory alloy[J]. Journal of Alloys and Compounds, 2019, 797, 529- 536.
doi: 10.1016/j.jallcom.2019.04.307
18 鲁法云, 杨平, 孟利, 等. Fe-22Mn TRIP/TWIP钢拉伸过程组织、性能及晶体学行为分析[J]. 金属学报, 2013, 49 (1): 1- 9.
18 LU F Y , YANG P , MENG L , et al. Microstructure, mechanical properties and crystallography analysis of Fe-22Mn TRIP/TWIP steel after tensile deformation[J]. Acta Metallurgica Sinica, 2013, 49 (1): 1- 9.
19 MAHAJAN S , PANDE C S , IMAM M A , et al. Formation of annealing twins in f.c.c. crystals[J]. Acta Materialia, 1997, 45 (6): 2633- 2638.
doi: 10.1016/S1359-6454(96)00336-9
20 JU Y B , KOYAMA M , SAWAGUCHI T , et al. In situ microscopic observations of low-cycle fatigue-crack propagation in high-mn austenitic alloys with deformation-induced ε-martensitic transformation[J]. Acta Materialia, 2016, 112, 326- 336.
doi: 10.1016/j.actamat.2016.04.042
21 NISHIYAMA Z . Martensitic transformation[M]. New York: Academic Press, 1978.
22 SATO A , SOMA K , MORI T . Hardening due to pre-existing ε-martensite in an Fe-30Mn-1Si alloy single crystal[J]. Acta Metallurgica, 1982, 30 (10): 1901- 1907.
doi: 10.1016/0001-6160(82)90030-X
23 KIM J K , De COOMAN B C . Observation of dislocations with a burgers vector containing a〈c〉 component in martensitic hcp ε Fe-17%Mn[J]. Scripta Materialia, 2017, 128, 78- 82.
doi: 10.1016/j.scriptamat.2016.10.016
24 余永宁. 金属学原理[M]. 3版 北京: 冶金工业出版社, 2020.
24 YU Y N . Principle of metal[M]. 3rd ed Beijing: Metallurgical Industry Press, 2020.
25 WANG Y B , SUI M L , MA E . In situ observation of twin boundary migration in copper with nanoscale twins during tensile deformation[J]. Philosophical Magazine Letters, 2007, 87 (12): 935- 942.
doi: 10.1080/09500830701591493
26 KOYAMA M , SAWAGUCHI T , LEE T , et al. Work hardening associated with ε-martensitic transformation, deformation twinning and dynamic strain aging in Fe-17Mn-0.6C and Fe-17Mn-0.8C TWIP steels[J]. Materials Science and Engineering: A, 2011, 528 (24): 7310- 7316.
doi: 10.1016/j.msea.2011.06.011
[1] 刘敬勇, 卢磊, 钟政烨. 高应变速率下等径角挤压高纯粗晶铝中的形变孪晶与退火孪晶[J]. 材料工程, 2021, 49(4): 89-94.
[2] 朱怀沈, 聂义宏, 赵帅, 王宝忠. 镍基617合金动态再结晶微观组织演变与预测[J]. 材料工程, 2018, 46(6): 80-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn