Please wait a minute...
2222材料工程  2022, Vol. 50 Issue (6): 107-116    DOI: 10.11868/j.issn.1001-4381.2021.000558
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
夏强, 向小倩, 廖小刚, 郑林, 李纲(), 胡学步
重庆理工大学 化学化工学院, 重庆 400054
Preparation of magnetically-separated porous CoFe2O4 and its performance in activating PMS for methylene blue degradation
Qiang XIA, Xiaoqian XIANG, Xiaogang LIAO, Lin ZHENG, Gang LI(), Xuebu HU
College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
全文: PDF(11775 KB)   HTML ( 1 )  
输出: BibTeX | EndNote (RIS)      

采用草酸盐热解法制得Fe2O3,Co3O4以及CoFe2O4三种过渡金属氧化物多孔材料。借助XRD,SEM,BET,VSM和XPS等测试手段对材料的晶体结构、微观形貌、比表面积、磁学性能以及表面化学状态进行分析。选择典型的阳离子型染料亚甲基蓝(MB)作为降解模型,对三种样品催化活化过一硫酸盐(PMS)降解处理模拟印染废水的性能进行评价。结果表明:三种材料均具有分级微/纳米纤维状多孔结构,CoFe2O4因具有最大的比表面积以及Fe,Co元素间的协同效应比Fe2O3和Co3O4表现出更为优异的催化PMS降解MB溶液的性能。通过单因素实验,确定出CoFe2O4/PMS体系降解500 mL浓度为10 mg·L-1MB溶液的优化条件为:PMS用量3 mL(0.1 mol·L-1),催化剂添加量0.07 g,反应时间50 min。在此条件下,MB的降解去除率为89.77%。考察几种阴离子对CoFe2O4/PMS催化氧化体系的影响,发现Cl-,PO43-,C2O42-的存在均对MB的降解有一定的抑制作用。活性物种猝灭实验和电子顺磁共振(EPR)鉴定结果证实,1O2是CoFe2O4/PMS催化氧化体系中产生的最主要活性物种。循环使用实验结果表明,CoFe2O4具有较好的稳定性,且可磁分离回收特性使其可作为活化PMS降解印染废水的候选催化材料。

E-mail Alert
关键词 草酸盐热解法CoFe2O4过一硫酸盐磁分离回收亚甲基蓝    

Three kinds of porous transition metal oxide materials, Fe2O3, Co3O4 and CoFe2O4, were successfully prepared by oxalate-routed pyrolysis method. The crystal structure, morphology, specific surface area, magnetic property and surface chemical state of those materials were characterized by XRD, SEM, BET, VSM and XPS, respectively. The catalytic performance towards PMS activation for degradation of simulated printing and dyeing wastewater were evaluated, taking a typical cationic dye methylene blue(MB) as the degradation model. The results show that all the three materials present hierarchical micro/nano porous fibrous structure, and a much higher PMS activation performance of CoFe2O4 is observed comparing with Fe2O3 and Co3O4 due to its highest specific surface area as well as the concerted catalytic effect between iron and cobalt elements. Through a series of single-factor experiments, the optimal process conditions for MB(10 mg·L-1, 500 mL) degradation in CoFe2O4/PMS system are determined as follows: PMS dosage of 3 mL(0.1 mol·L-1), catalyst dosage of 0.07 g and reaction time of 50 min. Under this reaction condition, MB removal rate of 89.77% can be achieved. Meanwhile, effect of common anions on CoFe2O4/PMS advanced oxidation system is also investigated. It is found that the presence of Cl-, PO43- and C2O42- all exhibit inhibition for MB degradation in different degrees. Besides, quenching experiments and electron paramagnetic resonance (EPR) identification results both confirm that 1O2 is the primary active specie in CoFe2O4/PMS advanced oxidation system. Furthermore, the recycling experiments indicate that CoFe2O4 presents a long-term stability. More importantly, CoFe2O4 can be easily separated from liquids after the reaction with an external magnet owing to its good magnetic property. The results demonstrate that CoFe2O4 is a promising catalyst candidate in activating PMS to degrade dyeing wastewater.

Key wordsoxalate-routed pyrolysis method    CoFe2O4    peroxymonosulfate    magnetic separation recovery    methylene blue
收稿日期: 2021-06-15      出版日期: 2022-06-20
中图分类号:  O614.8  
通讯作者: 李纲     E-mail:
作者简介: 李纲(1981—),男,副教授,博士,研究方向为水处理高级氧化技术,联系地址:重庆市巴南区红光大道69号重庆理工大学化学化工学院(400054),E-mail:
夏强, 向小倩, 廖小刚, 郑林, 李纲, 胡学步. 可磁分离回收多孔CoFe2O4的制备及其催化过一硫酸盐降解亚甲基蓝溶液的性能[J]. 材料工程, 2022, 50(6): 107-116.
Qiang XIA, Xiaoqian XIANG, Xiaogang LIAO, Lin ZHENG, Gang LI, Xuebu HU. Preparation of magnetically-separated porous CoFe2O4 and its performance in activating PMS for methylene blue degradation. Journal of Materials Engineering, 2022, 50(6): 107-116.
链接本文:      或
Fig.1  样品的XRD谱图
Fig.2  样品的SEM图
(a)Fe2O3; (b)CoFe2O4; (c)Co3O4
Fig.3  样品的N2吸附-脱附(a)和孔径分布(b)曲线
Sample Surface area/
Pore volume/
Average pore size/nm
CoFe2O4 67.99 0.20 11.92
Co3O4 31.87 0.12 15.03
Fe2O3 38.33 0.15 16.10
Table 1  样品的孔结构参数
Fig.4  样品的磁滞回线
Fig.5  不同催化剂/PMS体系下MB溶液的降解效果对比
(a)反应50 min后的降解率; (b)一级反应动力学拟合结果
Fig.6  不同工艺参数下CoFe2O4/PMS体系对MB溶液的降解效果
(a)催化剂添加量; (b)PMS用量; (c)MB溶液初始浓度; (d)不同MB初使浓度下的降解反应动力学曲线
Fig.7  阴离子对MB溶液降解效果的影响
Fig.8  催化剂CoFe2O4处理亚甲基蓝溶液的重复使用性能
(a)降解率; (b)一级反应动力学拟合结果
Fig.9  反应前后CoFe2O4催化剂的XPS分析
(a)全谱; (b)O1s;(c)Fe2p;(d)Co2p
Fig.10  氧化活性中间体的鉴定结果
(a)猝灭实验; (b)·OH & SO4-·EPR谱图; (c)·O2- EPR谱图; (d)1O2 EPR谱图
1 任钢锋. 我国工业印染废水处理状况研究[J]. 节能与环保, 2021, (4): 76- 78.
doi: 10.3969/j.issn.1009-539X.2021.04.028
1 REN G F . Study on the treatment of industrial printing and dyeing wastewater in China[J]. Energy Conservation & Environmental Protection, 2021, (4): 76- 78.
doi: 10.3969/j.issn.1009-539X.2021.04.028
2 TAOUFIK N , BOUMYAW , ACHAK M , et al. Comparative overview of advanced oxidation processes and biological approaches for the removal pharmaceuticals[J]. Journal of Environmental Ma-nagement, 2021, 288, 112404.
doi: 10.1016/j.jenvman.2021.112404
3 ANIPSITAKIS G P , DIONYSIOU D D . Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt[J]. Environmental Science & Technology, 2003, 37 (20): 4790- 4797.
4 WANG J L , WANG S Z . Reactive species in advanced oxidation processes: formation, identification and reaction mechanism[J]. Chemical Engineering Journal, 2020, 401, 126158.
doi: 10.1016/j.cej.2020.126158
5 HU P D , LONG M C . Cobalt-catalyzed sulfate radical-based advanced oxidation: a review on heterogeneous catalysts and applications[J]. Applied Catalysis: B, 2016, 181, 103- 117.
doi: 10.1016/j.apcatb.2015.07.024
6 YANG Q , MA Y H , CHEN F , et al. Recent advances in photo-activated sulfate radical-advanced oxidation process (SR-AOP) for refractory organic pollutants removal in water[J]. Chemical Engineering Journal, 2019, 378, 122149.
doi: 10.1016/j.cej.2019.122149
7 向小倩, 夏强, 廖小刚, 等. 多孔α-Mn2O3的制备及其催化过一硫酸盐降解亚甲基蓝溶液的性能[J]. 材料工程, 2022, 50 (2): 164- 172.
7 XIANG X Q , XIA Q , LIAO X G , et al. Synthesis of porous α-Mn2O3 and its catalytic performance for activating peroxymonosulfate to degrade methylene blue solution[J]. Journal of Materials Engineering, 2022, 50 (2): 164- 172.
8 张笑丛, 王琮, 吴松海. 不同形貌氧化钴活化过一硫酸盐降解硝基酚[J]. 化学工业与工程, 2020, 37 (6): 38- 47.
8 ZHANG X C , WANG C , WU S H . Degradation of nitrophenols in wastewater by peroxymonosulfate activated by cobalt oxide with different morphologies[J]. Chemical Industry and Engineering, 2020, 37 (6): 38- 47.
9 JIAN S Z , SUN S R , ZENG Y , et al. Highly efficient persulfate oxidation process activated with NiO nanosheets with dominantly exposed {1 1 0} reactive facets for degradation of RhB[J]. Applied Surface Science, 2020, 505, 144318.
doi: 10.1016/j.apsusc.2019.144318
10 ZUO S Y , XIA D S , GUAN Z Y , et al. The polarized electric field on Fe2O3/g-C3N4 for efficient peroxymonosulfate activation: a synergy of 1O2, electron transfer and pollutant oxidation[J]. Separation and Purification Technology, 2021, 269, 118717.
doi: 10.1016/j.seppur.2021.118717
11 LI Z S , TANG X K , HUANG G H , et al. Bismuth MOFs based hierarchical Co3O4-Bi2O3 composite: an efficient heterogeneous peroxymonosulfate activator for azo dyes degradation[J]. Separation and Purification Technology, 2020, 242, 116825.
doi: 10.1016/j.seppur.2020.116825
12 ZHANG H X , WANG J N , ZHANG X Y , et al. Enhanced remo-val of lomefloxacin based on peroxymonosulfate activation by Co3O4/δ-FeOOH composite[J]. Chemical Engineering Journal, 2019, 369, 834- 844.
doi: 10.1016/j.cej.2019.03.132
13 YUAN R X , JIANG Z Q , WANG Z H , et al. Hierarchical MnO2 nanoflowers blooming on 3D nickel foam: a novel micro-macro catalyst for peroxymonosulfate activation[J]. Journal of Colloid and Interface Science, 2020, 571, 142- 154.
doi: 10.1016/j.jcis.2020.03.041
14 LV C Z , LIANG H M , CHEN H J , et al. Hydroxyapatite supported Co3O4 catalyst for enhanced degradation of organic contaminants in aqueous solution: synergistic visible-light photo-catalysis and sulfate radical oxidation process[J]. Microchemical Journal, 2019, 149, 103959.
doi: 10.1016/j.microc.2019.05.059
15 HU L X , YANG F , ZOU L P , et al. CoFe/SBA-15 catalyst coupled with peroxymonosulfate for heterogeneous catalytic degradation of rhodamine B in water[J]. Chinese Journal of Catalysis, 2015, 36 (10): 1785- 1797.
doi: 10.1016/S1872-2067(15)60939-1
16 YANG L M , CHEN W D , SHENG C H , et al. Fe/N-codoped carbocatalysts loaded on carbon cloth (CC) for activating peroxy-monosulfate (PMS) to degrade methyl orange dyes[J]. Applied Surface Science, 2021, 549, 149300.
doi: 10.1016/j.apsusc.2021.149300
17 佘月城, 董正玉, 吴丽颖, 等. MnFe2O4活化过一硫酸盐降解废水中LAS[J]. 中国环境科学, 2019, 39 (8): 3323- 3331.
doi: 10.3969/j.issn.1000-6923.2019.08.025
17 SHE Y C , DONG Z Y , WU L Y , et al. Degradation of LAS in wastewater by peroxymonosulfate activated by MnFe2O4[J]. China Environmental Science, 2019, 39 (8): 3323- 3331.
doi: 10.3969/j.issn.1000-6923.2019.08.025
18 ZHOU Z G , DU H M , DAI Z H , et al. Degradation of organic pollutants by peroxymonosulfate activated by MnO2 with diffe-rent crystalline structures: catalytic performances and mechanisms[J]. Chemical Engineering Journal, 2019, 374, 170- 180.
doi: 10.1016/j.cej.2019.05.170
19 GONG C , CHEN F , YANG Q , et al. Heterogeneous activation of peroxymonosulfate by Fe-Co layered doubled hydroxide for efficient catalytic degradation of rhoadmine B[J]. Chemical Engineering Journal, 2017, 321, 222- 232.
doi: 10.1016/j.cej.2017.03.117
20 MIAO F , LIU Z H , KANG X , et al. Electro-enhanced heterogeneous activation of peroxymonosulfate via acceleration of Fe(Ⅲ)/Fe(Ⅱ) redox cycle on Fe-B catalyst[J]. Electrochimica Acta, 2021, 377, 138073.
doi: 10.1016/j.electacta.2021.138073
21 田东凡, 王玉如, 宋薇, 等. UV/PMS降解水中罗丹明B的动力学及反应机理[J]. 环境科学学报, 2018, 38 (5): 1868- 1876.
21 TIAN D F , WANG Y R , SONG W , et al. Degradation of rhodamine B in aqueous solution by UV/PMS system: kinetics and reaction mechanism[J]. Acta Scientiae Circumstantiae, 2018, 38 (5): 1868- 1876.
22 何勇, 陈瑛, 卢丽娟, 等. 基于UV/H2O2和UV/PS工艺降解水体中磺胺吡啶研究[J]. 应用化工, 2016, 45 (5): 815- 819.
22 HE Y , CHEN Y , LU L J , et al. Degradation of sulfapyridine in aqueous solution by UV/H2O2 and UV/PS technology[J]. Applied Chemical Industry, 2016, 45 (5): 815- 819.
23 WANG J L , WANG S Z . Activation of persulfate(PS) and pe-roxymonosulfate(PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334, 1502- 1517.
doi: 10.1016/j.cej.2017.11.059
24 ANIPSITAKIS G P , DIONYSIOU D D . Radical generation by the interaction of transition metals with common oxidants[J]. Environmental Science & Technology, 2004, 38 (13): 3705- 3712.
25 GHANBARI F , MORADI M . Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: review[J]. Chemical Engineering Journal, 2017, 310, 41- 62.
doi: 10.1016/j.cej.2016.10.064
26 GONG Y , ZHAO X , ZHANG H , et al. MOF-derived nitrogen doped carbon modified g-C3N4 heterostructure composite with enhanced photocatalytic activity for bisphenol A degradation with peroxymonosulfate under visible light irradiation[J]. App-lied Catalysis: B, 2018, 233, 35- 45.
doi: 10.1016/j.apcatb.2018.03.077
27 LIU N , LU N , YU H T , et al. Degradation of aqueous bisphenol A in the CoCN/Vis/PMS system: catalyst design, reaction kine-tic and mechanism analysis[J]. Chemical Engineering Journal, 2021, 407, 127228.
doi: 10.1016/j.cej.2020.127228
28 LI Y , LI D D , FAN S S , et al. Facile template synthesis of dum-bbell-like Mn2O3 with oxygen vacancies for efficient degradation of organic pollutants by activating peroxymonosulfate[J]. Cata-lysis Science & Technology, 2020, 10 (3): 864- 875.
[1] 向小倩, 夏强, 廖小刚, 郑林, 李纲, 胡学步. 多孔α-Mn2O3的制备及其催化过一硫酸盐降解亚甲基蓝溶液的性能[J]. 材料工程, 2022, 50(2): 164-172.
[2] 孙丽娟, 苏义平, 赵志成, 魏启亮, 李颖楷, 李顺. 光热协同增强氮化碳锚定FeOx纳米复合材料催化活化过一硫酸盐降解罗丹明B[J]. 材料工程, 2021, 49(6): 156-163.
[3] 李丹丹, 姚广铮, 梁桂琰, 荣旭发, 薛若雨, 付忠田. 氧化石墨烯复合二氧化钛光催化剂的制备及模拟染料废水处理[J]. 材料工程, 2019, 47(12): 104-110.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持