Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (6): 86-96    DOI: 10.11868/j.issn.1001-4381.2021.000566
  综述 本期目录 | 过刊浏览 | 高级检索 |
固体浮力材料用复合泡沫的研究进展
任素娥1, 王雅娜1, 杨程1,2,*()
1 中国航发北京航空材料研究院, 北京 100095
2 北京石墨烯技术研究院有限公司, 北京 100094
Research progress of syntactic foams used in solid buoyance material
Sue REN1, Yana WANG1, Cheng YANG1,2,*()
1 AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
2 Beijing Institute of Graphene & Technology, Beijing 100094, China
全文: PDF(3365 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

浮力材料作为深海装置中一种重要的配重材料,能够对水下作业的设备起到浮力补偿的作用。固体浮力材料因密度低、强度高、吸水率低等特性近年来在深海测量、石油勘测、深海开发等领域受到广泛关注。本文首先简述了固体浮力材料及其应用背景,围绕其分类主要阐述了化学泡沫材料和复合泡沫材料的特点,并基于未来发展方向和应用前景,重点介绍了复合泡沫材料。以复合泡沫类型的固体浮力材料为核心,根据其基本组成,分别介绍了金属基、陶瓷基、树脂基及其他类型复合泡沫材料,综述了其组成、表界面微结构、外界加载速率等影响因素对物理性能、力学性能的影响规律,借助扫描断层显微技术和有限元方法分析破坏模式,揭示材料在不同加载速率下的力学行为和失效机理。本文在提高复合泡沫材料整体力学性能及先进实验表征方法方面提出展望:可通过修饰填料和树脂基体官能团的方法或加入第二增强相,提高材料整体力学性能; 借助μ-CT和扫描电子显微镜,表征材料微观结构,揭示破坏机理。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
任素娥
王雅娜
杨程
关键词 固体浮力材料复合泡沫材料基体填料断裂机理    
Abstract

Buoyant materials, as an important counterweight material of the deep-sea devices, play an important role in providing the equipment with enough buoyance as much as possible. Solid buoyant materials (SBMs) have received extensively attention in deep-water surveying and development and petroleum exploration fields in recent years due to their low density, high strength and low water absorption characteristics.In this paper, the classification and the application of SBMs and their recent developments both at home and broad were firstly discussed. Typically, the SBMs can be mainly divided into the chemical and the composite syntactic foams according to their chemical composition and the composite syntactic foam was especially elaborated in this study. Secondly, four basic types of the composite syntactic foams, namely metal-, polymer-, and ceramic- matrix and other types of the syntactic foams, based on their chemical composition of the matrix and the reinforcement. The influence factors such as the essential composition, the surface microstructure, and the loading rate on the physical, mechanical, and the failure mode of the syntactic foams were summarized. The dynamical behavior and failure mechanism under different loading rates can be analyzed and revealed by the computed X-ray tomography technique combined with the finite element method. The prospects of improving overall mechanical performance and advanced experimental characterization methods of syntactic foams are summarized as follows: the overall mechanical performance can be improved by modifying functional groups of filler and resin matrix or adding a second reinforcement phase; the microstructure can be characterized and the failure mechanism revealed by means of μ-CT and scanning electron microscope.

Key wordssolid buoyant material    syntactic foam    matrix    filler    fracture mechanism
收稿日期: 2021-06-17      出版日期: 2022-06-20
中图分类号:  TB332  
通讯作者: 杨程     E-mail: chengyang_78@126.com
作者简介: 杨程(1978—),女,研究员,博士,主要从事石墨烯的制备和应用研究,联系地址:北京市81信箱72分箱(100095),E-mail: chengyang_78@126.com
引用本文:   
任素娥, 王雅娜, 杨程. 固体浮力材料用复合泡沫的研究进展[J]. 材料工程, 2022, 50(6): 86-96.
Sue REN, Yana WANG, Cheng YANG. Research progress of syntactic foams used in solid buoyance material. Journal of Materials Engineering, 2022, 50(6): 86-96.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000566      或      http://jme.biam.ac.cn/CN/Y2022/V50/I6/86
Material Density/
(kg·m-3)
Compressive strength/
MPa
Specific compressive strength/
103 m
Compressive modulus/
MPa
Specific compressive modulus/
104 m
Shear strength/
MPa
Specific shear strength/
103 m
Shear modulus/
MPa
Specific shear modulus/
104
Chemical foam 30-400 30-400 0.2-12 0.7-3.0 20-600 7-15 0.3-6.5 1.0-1.6 3.7-5
Syntactic foam 400-650 25-95 6.2-15 1000-3000 25-46 6-22 1.5-3.3 500-1300 12-20
Table 1  化学泡沫材料与复合泡沫材料物理性能[22]
Fig.1  复合泡沫材料结构示意图[8-9]
(a)微球随机分布的两相复合材料; (b)微球粒径均匀且呈六方紧密堆积的分布的两相复合材料; (c)含有微球、空隙和树脂的三相复合材料
Type of syntactic foam Composition Density/
(g·cm-3)
Compressive strength/MPa Reference
Metal matrix syntactic foam Matrix: aluminum
Filler: expanded clay agglomerate particles
1.38-1.53 19.0-27.2 [12]
Matrix: aluminum
Filler: cenospheres
1.62-2.11 106.5-143.0 [13]
Matrix: magnesium alloy
Filler: hollow silicon carbide particles
0.92 26.7 [25]
Matrix: aluminum
Filler: cenospheres
1.47-1.66 38.85-54.74 [26]
Matrix: aluminum
Filler: expanded glass-hollow alumina spheres
1.25-1.65 38.1-68.5 [27]
Matrix/Filler: sintered hollow glass microspheres 0.149-0.189 [28-29]
Ceramic matrix syntactic foam Matrix: Al(H2PO4)3
Filler: hollow glass microspheres
0.178-0.210 [30]
Matrix: aluminum-chrome-phosphate
Filler: hollow glass microspheres
0.41-0.42 5.0-10.5 [31]
Matrix: silicon resin
Filler: hollow glass microspheres
0.21-0.44 1.6-5.85 [32]
Matrix: soda borosilicate glass powder
Filler: glass micro-spheres
30-150 [33]
Polymer matrix syntactic foam Matrix: epoxy resin
Filler: expandable polystyrene beads
0.377 10.40 [18-19]
Matrix: high density polyethylene
Filler: cenospheres
0.8923 20.2 [14, 20]
Matrix: vinyl ester
Filler: hollow glass microballoon
0.95 85.1 [11]
Matrix: epoxy resin
Filler: hollow silicate microballoon
0.71 110.3 [15]
Table 2  常见的复合泡沫材料的物理特性
Fig.2  使用voxel model研究Al复合泡沫在不同体积分数的破坏行为[39]
Fig.3  空心玻璃微球不同体积分数时,环氧树脂复合泡沫材料体系的最大应力分布图(a)和环氧树脂基体的米塞斯应力分布图(b)[70]
1 方禹声, 朱吕民. 聚氨酯泡沫塑料[M]. 北京: 化学工业出版社, 1984: 40- 58.
1 FANG Y S , ZHU L M . Polyurethane foam[M]. Beijing: Chemical Industry Press, 1984: 40- 58.
2 HOBAICA E, COOK S. Composite buoyancy material: US 1971/3622437[P]. 1971-11-23.
3 VATH F , COLLETTI W . Development of buoyancy material for the deep submergence search vehicle evaluation of sympathetic implosion of buoyancy modules[J]. Ocean Engineering, 1968, 233 (10): 222- 250.
4 BAO S , HUI W , YI X , et al. High intensity deep sea buoyancy material made from polymer filled with hollow micro-glass ball[J]. Journal of Harbin Institute of Technology, 2006, 38 (11): 2000- 2002.
5 QIAO Y , HAN Z , CHEN J , et al. Investigation on the compression properties of resin matrix deep-water buoyancy materials[J]. Materials Science and Technology, 2012, 20 (3): 46- 50.
6 陈先, 周媛, 卢伟. 固体力材料[M]. 北京: 化学工业出版社, 2011.
6 CHEN X , ZHOU Y , LU W . Buoyance material[M]. Beijing: Chemical Industry Press, 2011.
7 SHUTOV F . Syntactic polymer foams[M]. Heidelberg: Springer-Verlag, 1986: 10- 20.
8 PUTERMAN M , NARKIS M , KENIG S . Syntactic foams Ⅰ. Preparation, structure and properties[J]. Journal of Cellular Plastics, 1980, 16 (4): 223- 229.
doi: 10.1177/0021955X8001600403
9 NARKIS M , PUTERMAN M , KENIG S . Syntactic foams Ⅱ. Preparation and characterization of three-phase systems[J]. Journal of Cellular Plastics, 1980, 16, 326- 330.
doi: 10.1177/0021955X8001600603
10 FERGUSON O , SHAVER R . Syntactic foams of hollow carbon microspheres in resin matrix[J]. Journal of Cellular Plastics, 1970, 6 (3): 125- 130.
doi: 10.1177/0021955X7000600304
11 GUPTA N , YE R , PORFIRI M . Comparison of tensile and compressive characteristics of vinyl ester/glass microballoon syntactic foams[J]. Composites Part B, 2010, 41 (3): 236- 245.
doi: 10.1016/j.compositesb.2009.07.004
12 ORBULOV N I , SZLANCSIK A , KEMENY , et al. Compressive mechanical properties of low-cost, aluminum matrix syntactic foams[J]. Composites Part A, 2020, 135, 105923.
doi: 10.1016/j.compositesa.2020.105923
13 LICITRA L , LUONG D D , OLIVER M , et al. Dynamic properties of alumina hollow particle filled aluminum alloy A356 matrix syntactic foams[J]. Materials & Design, 2015, 66, 504- 515.
14 BHARATH KUMAR B , SINGH A , DODDAMANI M , et al. Quasi-static and high strain rate compressive response of injection-molded cenosphere/HDPE syntactic foam[J]. Journal of the Minerals Metals & Materials Society, 2016, 68 (7): 1861- 1871.
15 YUAN J , AN Z , ZHANG J . Effects of hollow microsphere surface property on the mechanical performance of high strength syntactic foams[J]. Composites Science and Technology, 2020, 199, 108309.
doi: 10.1016/j.compscitech.2020.108309
16 GENG H , HU X , ZHOU J , et al. Fabrication and compressive properties of closed-cell alumina ceramics by binding hollow alumina spheres with high-temperature binder[J]. Ceramics International, 2016, 42, 16071- 16076.
doi: 10.1016/j.ceramint.2016.07.117
17 SANKARAN S , RAVISHANKAR B , SEKHAR R , et al. Syntactic foams for multifunctional applications[M]. Heidelberg: Springer-Verlag, 2017: 281- 314.
18 AFOLABIA L , ARIFF Z , HASHIM S , et al. Syntactic foams formulations, production techniques, and industry applications: a review[J]. Journal of Materials Research and Technology, 2020, 9 (5): 10698- 10718.
doi: 10.1016/j.jmrt.2020.07.074
19 AFOLABIA L , ABDUL MUTALIB N , ARIFF Z . Fabrication and characterization of two-phase syntactic foam using vacuum assisted mould filling technique[J]. Journal of Materials Research and Technology, 2019, 8 (5): 3843- 3851.
doi: 10.1016/j.jmrt.2019.06.046
20 GUPTA N , ZELTMANN S , SHUNMUGASAMY V , et al. Applications of polymer matrix syntactic foams[J]. Journal of the Minerals Metals & Materials Society, 2014, 66 (2): 1- 10.
21 GROSJEAN F , BOUCHONNEAU N , CHOQUEUSE D , et al. Comprehensive analyses of syntactic foam behaviour in deepwater environment[J]. Journal of Materials Science, 2009, 44 (6): 1462- 1468.
doi: 10.1007/s10853-008-3166-0
22 TROFIMOV A , PLESHKOV L , BACK H . Hollow glass microspheres for high strength composite cores[J]. Reinforced Plastics, 2006, 50 (7): 44- 50.
doi: 10.1016/S0034-3617(06)71074-8
23 刘艳, 刘文智, 马春霞. 深水固体浮力材料的制备及性能研究[J]. 舰船科学技术, 2017, 39 (3): 87- 90.
doi: 10.3404/j.issn.1672-7619.2017.03.018
23 LIU Y , LIU W Z , MA C X . Research on preparation and properties of deep-water solid buoyancy material[J]. Ship Science and Technology, 2017, 39 (3): 87- 90.
doi: 10.3404/j.issn.1672-7619.2017.03.018
24 华云龙, 余同希. 多胞材料的力学行为[J]. 力学进展, 1991, 21 (4): 457- 469.
24 HUA Y L , YU T X . Mechanical behavior of cellure solids[J]. Advances in Mechanics, 1991, 21 (4): 457- 469.
25 ANANTHARAMAN H , SHUNMUGASAMY V , GUPTA N , et al. Dynamic properties of silicon carbide hollow particle filled magnesium alloy (AZ91D) matrix syntactic foams[J]. International Journal of Impact Engineering, 2015, 82, 14- 24.
doi: 10.1016/j.ijimpeng.2015.04.008
26 ZHANG B , ZHANG J , WANG L , et al. Bending behavior of cenosphere aluminum matrix syntactic foam-filled circular tubes[J]. Engineering Structures, 2021, 243, 112650.
doi: 10.1016/j.engstruct.2021.112650
27 SU M , WANG H , HAO H , et al. Compressive properties of expanded glass and alumina hollow spheres hybrid reinforced aluminum matrix syntactic foams[J]. Journal of Alloys and Compounds, 2020, 821, 153233.
doi: 10.1016/j.jallcom.2019.153233
28 GREEN D J , HOAGLAND R G . Mechanical behavior of lightweight ceramics based on sintered hollow spheres[J]. Journal of the American Ceramic Society, 1985, 68 (7): 395- 398.
doi: 10.1111/j.1151-2916.1985.tb10151.x
29 GREEN D J . Fabrication and mechanical properties of lightweight ceramics produced by sintering of hollow spheres[J]. Journal of the American Ceramic Society, 1985, 68 (7): 403- 409.
doi: 10.1111/j.1151-2916.1985.tb10153.x
30 VERWEIJ H , WITH G , VEENMAN D . Hollow glass microsphere composites: preparation and properties[J]. Journal of Materials Science, 1985, 20 (3): 1069- 1078.
doi: 10.1007/BF00585751
31 WANG Q , CHEN J , GUI B , et al. Fabrication and properties of thermal insulating material using hollow glass microspheres bonded by aluminum-chrome-phosphate and tetraethyl orthosilicate[J]. Ceramics International, 2016, 42 (4): 4886- 4892.
doi: 10.1016/j.ceramint.2015.12.003
32 KENIG S , NAKRIS M , RAITER I . Three-phase silicone based syntactic foams[J]. Journal of Cellular Plastics, 1984, 20 (6): 423- 429.
doi: 10.1177/0021955X8402000604
33 JANG D , KIM Y , SONG I , et al. Processing of cellular glasses using glass microspheres[J]. Journal of the American Ceramic Society, 2006, 89 (10): 3262- 3265.
doi: 10.1111/j.1551-2916.2006.01196.x
34 SU M , WANG H , HAO H . Axial and radial compressive properties of alumina-aluminum matrix syntactic foam filled thin-walled tubes[J]. Composite Structures, 2019, 226, 107764.
35 LIN Y , ZHANG Q , CHANG J , et al. Microstructural characterization and compression mechanical response of glass hollow spheres/Al syntactic foams with different Mg additions[J]. Materials Science and Engineering: A, 2019, 766, 138338.
doi: 10.1016/j.msea.2019.138338
36 BROXTERMANN S , SU M , HAO H , et al. Comparative study of stir casting and infiltration casting of expanded glass-aluminum syntactic foams[J]. Journal of Alloys and Compounds, 2020, 845, 155415.
doi: 10.1016/j.jallcom.2020.155415
37 MOVAHEDI N , VESENJAK M , KRSTULOVIĆ-OPAR L , et al. Dynamic compression of functionally-graded metal syntactic foams[J]. Composite Structures, 2021, 261, 113308.
doi: 10.1016/j.compstruct.2020.113308
38 FIEDLER T , AL-SAHLANI K , LINUL P , et al. Mechanical properties of A356 and ZA27 metallic syntactic foams at cryogenic temperature[J]. Journal of Alloys and Compounds, 2020, 813, 152181.
doi: 10.1016/j.jallcom.2019.152181
39 HANGAI Y , TAKAHASHI K , YAMAGUCHI R , et al. Nondestructive observation of pore structure deformation behavior of functionally graded aluminum foam by X-ray computed tomography[J]. Materials Science and Engineering: A, 2012, 556, 678- 684.
doi: 10.1016/j.msea.2012.07.047
40 CHEN J , ZHANG P , CHENG Y , et al. On the crushing response of the functionally graded metallic foams based on 3D Voronoi model[J]. Thin-Walled Structures, 2020, 157, 107085.
doi: 10.1016/j.tws.2020.107085
41 KOZMAI I , ASOLDOS I . CT-based tests and finite element simulation for failure analysis of syntactic foams[J]. Engineering Failure Analysis, 2019, 104, 371- 378.
doi: 10.1016/j.engfailanal.2019.06.003
42 YASEER O M , XIANG C , GUPTA N , et al. Syntactic foam core metal matrix sandwich composite: compressive properties and strain rate effects[J]. Materials Science and Engineering: A, 2015, 643, 156- 168.
doi: 10.1016/j.msea.2015.07.033
43 XIANG C , GUPTA N , COELHO P , et al. Effect of microstructure on tensile and compressive behavior of WE43 alloy in as cast and heat-treated conditions[J]. Materials Science and Engineering: A, 2018, 710, 74- 85.
doi: 10.1016/j.msea.2017.10.084
44 XU X , KOOMSON C , DODDAMANI M , et al. Extracting elastic modulus at different strain rates and temperatures from dynamic mechanical analysis data: a study on nanocomposites[J]. Composites Part B, 2019, 159, 346- 354.
doi: 10.1016/j.compositesb.2018.10.015
45 OMAR M , XIANG C , GUPTA N , et al. Syntactic foam core metal matrix sandwich composite under bending conditions[J]. Materials & Design, 2015, 86, 536- 544.
46 KUMAR B , DODDAMANI M , ZELTMANN S , et al. Processing of cenosphere/HDPE syntactic foams using an industrial scale polymer injection molding machine[J]. Materials & Design, 2016, 92 (15): 414- 423.
47 HANIF A , DIAO S , LU Z , et al. Green lightweight cementitious composite incorporating aerogels and fly ash cenospheres-mechanical and thermal insulating properties[J]. Construction & Building Materials, 2016, 116, 422- 430.
48 REN S , TAO X , MA X , et al. Fabrication of fly ash cenospheres-hollow glass microspheres/borosilicate glass composites for high temperature application[J]. Ceramics International, 2018, 44 (1): 1147- 1155.
doi: 10.1016/j.ceramint.2017.10.089
49 REN S , LI X , ZHANG X , et al. Mechanical properties and high-temperature resistance of the hollow glass microspheres/borosilicate glass composite with different particle size[J]. Journal of Alloys and Compounds, 2017, 722, 321- 329.
doi: 10.1016/j.jallcom.2017.06.092
50 REN S , TAO X , XU X , et al. Preparation and characteristic of the fly ash cenospheres/mullite composite for high-temperature application[J]. Fuel, 2018, 233, 336- 345.
doi: 10.1016/j.fuel.2018.06.058
51 REN S , HU X , REN H , et al. Development of a buoyancy material of hollow glass microspheres/SiO2 for high-temperature application[J]. Journal of Alloys and Compounds, 2017, 721, 213- 219.
doi: 10.1016/j.jallcom.2017.06.002
52 REN S , LIU J , GUO A , et al. Mechanical properties and thermal conductivity of a temperature resistance hollow glass microspheres/borosilicate glass buoyance material[J]. Materials Science and Engineering: A, 2016, 674, 604- 614.
doi: 10.1016/j.msea.2016.08.014
53 REN S , GUO A , DONG X , et al. Preparation and characteristic of a temperature resistance buoyancy material through a gelcasting process[J]. Chemical Engineering Journal, 2016, 288, 59- 69.
doi: 10.1016/j.cej.2015.11.094
54 ZHANG L , MA J . Processing and characterization of syntactic carbon foams containing hollow carbon microspheres[J]. Carbon, 2009, 47 (6): 1451- 1456.
doi: 10.1016/j.carbon.2009.01.037
55 ZHANG L , MA J . Effect of coupling agent on mechanical properties of hollow carbon microsphere/phenolic resin syntactic foam[J]. Composites Science and Technology, 2010, 70 (8): 1265- 1271.
doi: 10.1016/j.compscitech.2010.03.016
56 ZHOU J , ZHAO H , WANG J , et al. Scalable preparation of hollow polymer and carbon microspheres by spray drying and their application in low-density syntactic foam[J]. Materials Chemistry and Physics, 2016, 181, 150- 158.
doi: 10.1016/j.matchemphys.2016.06.044
57 LI X , ZHU M , TANG X , et al. Influence of hollow carbon microspheres of micro and nano-scale on the physical and mechanical properties of epoxy syntactic foams[J]. RSC Advances, 2015, 5, 50919.
doi: 10.1039/C5RA07112G
58 曹成昊, 郭安然, 刘家臣, 等. 复合树脂/空心微珠耐高温浮力材料的制备及性能[J]. 材料导报, 2021, 35 (2): 2185- 2190.
58 CAO C H , GUO A R , LIU J C , et al. Preparation and properties of composite resin /hollow microspheres high temperature buoyancy materials[J]. Materials Reports, 2021, 35 (2): 2185- 2190.
59 ZHANG L , ZHANG J , WANG D Y . Hierarchical layered double hydroxide nanosheets/phosphorus-containing organosilane functionalized hollow glass microsphere towards high performance epoxy composite: enhanced interfacial adhesion and bottom-up charring behavior[J]. Polymer, 2020, 210, 123018.
doi: 10.1016/j.polymer.2020.123018
60 GOGOI R , MANIK G , ARUN B . High specific strength hybrid polypropylene composites using carbon fiber and hollow glass microspheres: development, characterization and comparison with empirical models[J]. Composites Part B, 2019, 173, 106875.
doi: 10.1016/j.compositesb.2019.05.086
61 KUMAR N , MIREJA S , KHANDELWAL V , et al. Light-weight high-strength hollow glass microspheres and bamboo fiber-based hybrid polypropylene composite: a strength analysis and morphological study[J]. Composites Part B, 2017, 109, 277- 285.
doi: 10.1016/j.compositesb.2016.10.052
62 ADRIEN J , MAIRE E , GIMENEZ N , et al. Experimental study of the compression behaviour of syntactic foams by in situ X-ray tomography[J]. Acta Materialia, 2007, 55 (5): 1667- 1679.
doi: 10.1016/j.actamat.2006.10.027
63 DODDAMANI M , KISHORE , SHUNMUGASAMY V , et al. Compressive and flexural properties of functionally graded fly ash cenosphere-epoxy resin syntactic foams[J]. Polymer Composites, 2015, 36, 685- 693.
doi: 10.1002/pc.22987
64 SHAMS A , PORFIRI M . A generalized Vlasov-Jones foundation model for micromechanics studies of syntactic foams[J]. Composite Structures, 2013, 103, 168- 178.
doi: 10.1016/j.compstruct.2013.04.020
65 SHAMS A , PORFIRI M . Analysis of particle-matrix interfacial debonding using the proper generalized decomposition[J]. Composite Structures, 2014, 111, 602- 618.
doi: 10.1016/j.compstruct.2014.01.037
66 SHAMS A , PANTEGHINI A , BARDELLA L , et al. A micromechanical model to study failure of polymer-glass syntactic foams at high strain rates[J]. Computational Materials Science, 2017, 135, 189- 204.
doi: 10.1016/j.commatsci.2017.04.007
67 NIAN G , SHAN Y , XU Q , et al. Effects of hollow particle shape and distribution on the elastic properties of syntactic foams: 3D computational modeling[J]. Computational Materials Science, 2014, 95, 106- 112.
doi: 10.1016/j.commatsci.2014.07.012
68 NIAN G , SHAN Y , XU Q , et al. Failure analysis of syntactic foams: a computational model with cohesive law and XFEM[J]. Composites Part B, 2016, 89, 18- 26.
69 LACHAMBRE J , MAIRE E , ADRIEN J , et al. In situ observation of syntactic foams under hydrostatic pressure using X-ray tomography[J]. Acta Materialia, 2013, 61 (11): 4035- 4043.
doi: 10.1016/j.actamat.2013.03.017
70 HUANG R , LI P . Elastic behavior and failure mechanism in epoxy syntactic foams: the effect of glass microballoon volume fractions[J]. Composites Part B, 2015, 78, 41- 48.
71 HUANG R , LI P , LIU T . X-ray microtomography and finite element modelling of compressive failure mechanism in cenosphere epoxy syntactic foams[J]. Composites Structures, 2016, 140, 157- 165.
doi: 10.1016/j.compstruct.2015.12.040
72 PALUMBO M , DONZELLA G , TEMPESTI E , et al. On the compressive elasticity of epoxy resins filled with hollow glass microspheres[J]. Journal of Applied Polymer Science, 1996, 60 (1): 47- 53.
doi: 10.1002/(SICI)1097-4628(19960404)60:1<47::AID-APP6>3.0.CO;2-V
73 POVEDA R , GUPTA N . Carbon-nanofiber-reinforced syntactic foams: compressive properties and strain rate sensitivity[J]. Journal of the Minerals Metals & Materials Society, 2013, 66 (1): 66- 77.
74 ZHANG L , MA J . Effect of carbon nanofiber reinforcement on mechanical properties of syntactic foam[J]. Materials Science and Engineering: A, 2013, 574 (7): 191- 196.
75 POVEDA R , GUPTA N . Electrical properties of carbon nanofiber reinforced multiscale polymer composites[J]. Materials & Design, 2014, 56 (4): 416- 422.
76 COLLCA M , GUPTA N , PORFIRI M . Tensile properties of carbon nanofiber reinforced multiscale syntactic foams[J]. Composites Part B, 2013, 44 (1): 584- 591.
doi: 10.1016/j.compositesb.2012.02.030
77 GUZMAN M , RODRIGUEZ A , MINAIE B , et al. Processing and properties of syntactic foams reinforced with carbon nanotubes[J]. Journal of Applied Polymer Science, 2012, 124 (3): 2383- 2394.
doi: 10.1002/app.35283
78 ZEGEYE E , GHAMSARI A , WOLDESENBET E . Mechanical properties of graphene platelets reinforced syntactic foams[J]. Composites Part B, 2014, 60 (4): 268- 273.
79 ALONSO M , AUAD M , NUTT S . Short-fiber-reinforced epoxy foams[J]. Composites Part A, 2006, 37 (11): 1952- 1960.
doi: 10.1016/j.compositesa.2005.12.011
80 DIMCHEV M , CARTI R , GUPTA N . Effect of carbon nanofibers on tensile and compressive characteristics of hollow particle filled composites[J]. Materials & Design, 2010, 31 (3): 1332- 1337.
81 POVEDA R , ACHAR S , GUPTA N . Viscoelastic properties of carbon nanofiber reinforced multiscale syntactic foam[J]. Composites Part B, 2014, 58, 208- 216.
doi: 10.1016/j.compositesb.2013.10.079
82 FERREIRA J , CAPELA C , COSTA J . A study of the mechanical behavior on fiber reinforced hollow microspheres hybrid composites[J]. Composites Part A, 2010, 41 (3): 345- 352.
doi: 10.1016/j.compositesa.2009.10.018
83 SONG W , MAGID A , LI D , et al. Application of recycled carbon-fiber-reinforced polymers as reinforcement for epoxy foams[J]. Journal of Environmental Management, 2020, 269, 110766.
doi: 10.1016/j.jenvman.2020.110766
84 SONG W , KONSTANTELLOS G , LI D , et al. Short carbon fiber-reinforced epoxy foams with isotropic cellular structure and anisotropic mechanical response produced from liquid foam templates[J]. Composites Science and Technology, 2019, 184, 107871.
doi: 10.1016/j.compscitech.2019.107871
85 WANG L , ZHANG J , YANG X , et al. Flexural properties of epoxy syntactic foams reinforced by fiber glass mesh and/or short glass fiber[J]. Materials & Design, 2014, 55, 929- 936.
86 WANG Y , YA B , ZHOU B , et al. Numerical simulation of the mechanical properties of a carbon-fiber reinforced hollow glass microsphere-epoxy syntactic foam[J]. Journal of Applied Polymer Science, 2019, 136 (8): 47083.
doi: 10.1002/app.47083
87 BAO F , WANG J , WANG J , et al. Static and impact responses of syntactic foam composites reinforced by multi-walled carbon nanotubes[J]. Journal of Materials Research and Technology, 2020, 9 (6): 12391- 12403.
doi: 10.1016/j.jmrt.2020.08.079
88 YA B , ZHOU B , YIN S , et al. Effect of ultrasonication on the properties of multi-walled carbon nanotubes/hollow glass microspheres/epoxy syntactic foam[J]. Journal of Wuhan University of Technology, 2017, 32 (3): 709- 712.
doi: 10.1007/s11595-017-1656-0
89 ULLAS A V , JAISWAL B . Halloysite nanotubes reinforced epoxy-glass microballoons syntactic foams[J]. Composites Communications, 2020, 21, 100407.
doi: 10.1016/j.coco.2020.100407
90 DODDAMANI M , SHAHAPURKAR K , GARCIA C , et al. Effect of arctic environment on flexural behavior of fly ash cenosphere reinforced epoxy syntactic foams[J]. Composites Part B, 2018, 151, 265- 273.
doi: 10.1016/j.compositesb.2018.06.035
91 SHADLOU S , AHMADI-MOGHADAM B , TAHERI F . The effect of strain-rate on the tensile and compressive behavior of graphene reinforced epoxy/nanocomposites[J]. Materials & Design, 2014, 59, 439- 447.
[1] 王付胜, 孔繁淇, 王文平, 陈亚军. 航空铝合金原位腐蚀疲劳性能及断裂机理[J]. 材料工程, 2022, 50(6): 149-156.
[2] 万长鑫, 詹胜鹏, 陈辉, 李银华, 贾丹, 李健, 段海涛. 功能性填料改性聚合物材料的摩擦学研究进展[J]. 材料工程, 2022, 50(2): 73-83.
[3] 解齐颖, 张祎, 朱阳, 崔红西. 超高温陶瓷改性碳/碳复合材料[J]. 材料工程, 2021, 49(7): 46-55.
[4] 杨斌, 李云龙, 王世杰, 聂瑞, 王照智. 拉应力下碳纳米管增强高分子基复合材料的应力分布[J]. 材料工程, 2020, 48(2): 79-86.
[5] 刘园, 崔岩, 郭开金, 曹雷刚, 杨越. 高导热金刚石/铝复合材料的研究进展[J]. 材料工程, 2020, 48(12): 44-52.
[6] 何宗倍, 张瑞谦, 付道贵, 李鸣, 陈招科, 邱邵宇. 不同界面SiC纤维束复合材料的拉伸力学行为[J]. 材料工程, 2019, 47(4): 25-31.
[7] 朱礼宝, 戴文喜, 李永清, 朱锡, 朱子旭. 考虑层间和界面的玻璃纤维/环氧复合材料吸湿扩散实验和仿真[J]. 材料工程, 2019, 47(11): 84-91.
[8] 宋娜, 崔思奇, 焦德金, 侯兴双, 刘建影, 丁鹏, 施利毅. 不同填料复配对尼龙6/石墨烯复合材料导热性能的影响[J]. 材料工程, 2018, 46(3): 28-33.
[9] 刘丽玉, 高翔宇, 杨宪锋, 何玉怀. DD6单晶高温合金振动疲劳性能及断裂机理[J]. 材料工程, 2018, 46(2): 128-133.
[10] 杨瑞, 齐哲, 杨金华, 焦健. 氧化物/氧化物陶瓷基复合材料及其制备工艺研究进展[J]. 材料工程, 2018, 46(12): 1-9.
[11] 贺毅强, 徐虎林, 钱晨晨, 丁云飞, 冯文, 陈劲松, 李化强, 冯立超. 基体成分对SiCP/Al-Fe-V-Si复合材料显微组织与性能的影响[J]. 材料工程, 2018, 46(12): 124-130.
[12] 刘皓, 李克智. 两种双基体C/C复合材料的微观结构与力学性能[J]. 材料工程, 2017, 45(8): 38-42.
[13] 王瑶, 陈旸, 乔宁, 李欣, 张文婷. 含氢硅油制备SiC晶须的研究[J]. 材料工程, 2017, 45(10): 59-64.
[14] 刘皓, 李克智. C/C复合材料不同基体炭的微观结构[J]. 材料工程, 2016, 44(7): 7-12.
[15] 张海军, 周储伟. 基于显微CT图像的细编穿刺碳/碳复合材料细观力学模型[J]. 材料工程, 2016, 44(5): 65-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn