Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (3): 33-42    DOI: 10.11868/j.issn.1001-4381.2021.000582
  高熵合金专栏 本期目录 | 过刊浏览 | 高级检索 |
难熔高熵合金制备及性能研究进展
姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟(), 刘洪喜()
昆明理工大学 材料科学与工程学院, 昆明 650093
Research progress in preparation and properties of refractory high entropy alloys
Xuan JIANG, Lin CHEN, Xuanhong HAO, Yueyi WANG, Xiaowei ZHANG(), Hongxi LIU()
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
全文: PDF(752 KB)   HTML ( 3 )  
输出: BibTeX | EndNote (RIS)      
摘要 

本文简述了难熔高熵合金的含义与特点, 归纳了各类难熔高熵合金(块体、薄膜、涂层)的制备方法, 重点阐述了难熔高熵合金的综合性能。建议通过构建专门的难熔高熵合金数据库优化成分设计, 并着重于不同制备方法的工艺性研究。针对目前难熔高熵合金存在室温脆性大、密度大、成本高等不足, 提出可根据所需难熔高熵合金的性能而选择不同的制备方法, 以便未来工业化应用。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姜萱
陈林
郝轩弘
王悦怡
张晓伟
刘洪喜
关键词 难熔高熵合金制备方法力学性能高温抗氧化性能    
Abstract

The meaning and characteristics of refractory high entropy alloys were briefly described, and the preparation methods of various refractory high entropy alloys (bulk, film and coating) were summarized.The comprehensive properties of refractory high entropy alloys were emphatically expounded. It was suggested that the composition design should be optimized by constructing a special database of refractory high entropy alloys, and the manufacturability of different preparation methods should be focused on. In view of the shortcomings of high room temperature brittleness, high density and high cost of refractory high entropy alloys at present, different preparation methods could be selected according to the properties of refractory high entropy alloys for future industrial application.

Key wordsrefractory high entropy alloy    preparation method    mechanical property    high temperature oxidation resistance
收稿日期: 2021-06-25      出版日期: 2022-03-19
中图分类号:  TG132.3+2  
基金资助:国家自然科学基金资助项目(61963021);国家自然科学基金资助项目(11674134)
通讯作者: 张晓伟,刘洪喜     E-mail: 31687367@qq.com;piiiliuhx@sina.com
作者简介: 刘洪喜(1972—),男,教授,博士,主要研究方向为表面改性与增材制造,联系地址:云南省昆明市五华区昆明理工大学莲华校区材料科学与工程学院(650093),E-mail: piiiliuhx@sina.com
张晓伟(1984—),男,副教授,博士,主要从事金属3D打印(增材制造),联系地址:云南省昆明市五华区昆明理工大学莲华校区材料科学与工程学院(650093),E-mail: 31687367@qq.com
引用本文:   
姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
Xuan JIANG, Lin CHEN, Xuanhong HAO, Yueyi WANG, Xiaowei ZHANG, Hongxi LIU. Research progress in preparation and properties of refractory high entropy alloys. Journal of Materials Engineering, 2022, 50(3): 33-42.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000582      或      http://jme.biam.ac.cn/CN/Y2022/V50/I3/33
RHEAs Phase composition Reference
WNbMoTa BCC [10]
WNbMoTaV BCC [10]
TiZrHfNbTa BCC [12]
CrNbTiVZr BCC+Laves [13]
AlMo0.5NbTa0.5TiZr BCC1+BCC2 [14]
AlNb1.5Ta0.5Ti1.5Zr0.5 BCC [14]
Al0.4Hf0.6NbTaTiZr BCC [14]
HfNbTaTiVZr BCC [15]
TaNbHfZr BCC+HCP [16]
NbMoCrTiAl BCC [17]
ZrTiHfV0.5Nb0.5 BCC [18]
Zr2.0TiHfVNb2.0 BCC [18]
ZrTiHfNb0.5Mo0.5 BCC [18]
ZrTiHfNb0.5Ta0.5 BCC [18]
HfNbTaTiZrW BCC1+BCC2 [19]
HfNbTaTiZrMoW BCC1+BCC2 [19]
Al20Cr10Nb15Ti20V25Zr10 B2+C14 (HCP) Laves [20]
Table 1  真空电弧熔炼技术制备的典型RHEAs及其相组成
RHEAs Phase composition Method Reference
AlMo0.5NbTa0.5TiZr BCC1+BCC2 MA+SPS [22]
Ti4W25Ta24V24Cr23 BCC+Laves SPS [23]
Ti7W24Ta23V23Cr22 BCC SPS [23]
WNbMoTaV BCC MA+SPS [24]
TiNbTa0.5Zr BCC MA+SPS [25]
TiNbTa0.5ZrAl0.2 BCC MA+SPS [25]
WMoVCrTa BCC MA+SPS [26]
MoNbTaTiV BCC MA+SPS [27]
Hf0.5Nb0.5Ta0.5Ti1.5Zr BCC+HCP MA+HPS [28]
MoNbTaW BCC+FCC MA+SPS [29]
CrMoNbWTi BCC+FCC+HCP MA+SPS [30]
Table 2  粉末冶金法制备RHEAs的类型、方法及其相组成
RHEAs Phase composition Reference
TiZrNbWMo BCC [32]
NbMoTaTi BCC [33]
MoFeCrTiWAlNb BCC+HCP [34]
W0.16NbMoTa BCC [35]
W0.33NbMoTa BCC [35]
W0.53NbMoTa BCC [35]
AlTiVMoNb BCC [36]
MoFeCrTiWAlNb BCC+Laves+carbide [37]
Table 3  激光熔覆技术制备难熔高熵合金涂层的类型及其相组成
RHEAs Phase composition Reference
NbMoTaW BCC [39]
V19.2Nb19.4Mo20.3Ta19.5W21.6 BCC [40]
TaNbHfZr BCC [41]
VNbMoTaWAl BCC [42]
Table 4  直流磁控溅射技术制备RHEAs薄膜的类型及其相组成
RHEAs HV σ0.2/MPa σp/MPa ε/% Reference
TiNbMoTaW 1455 1910 11.5 [43]
CoCrMoNbTi0.2 916.46HV0.5 1905.6 5.07 [44]
AlNbTiZr 422HV0.5 1509 1554 8.6 [45]
MoNbTaTiV 542HV1 2208 3238 24.9 [27]
TiZrHfSc 233HV0.5 1001 1800 21.9 [46]
TiZrHfY 241HV0.5 554 1071 17.7 [46]
TiZrHfScY 256HV0.5 793 1365 15.7 [46]
TiZrVNb 434.9HV0.5 1116 1447 3.5 [47]
Ti1.5ZrVNb 383.1HV0.5 1101 1401 11.2 [47]
Ti2ZrVNb 350.4HV0.5 1058 1305 12.3 [47]
Table 5  部分RHEAs的室温力学性能
RHEAs Temperature/℃ σ0.2/MPa σp/MPa ε/% Reference
Nb25Mo25Ta25W25 600 561 [50]
800 522 [50]
1000 548 1008 16 [50]
1200 506 803 12 [50]
1400 421 467 9 [50]
1600 405 600 27 [50]
V20Nb20Mo20Ta20W20 600 862 1597 13 [50]
800 846 1536 16 [50]
1000 842 1454 14 [50]
1200 735 943 4.2 [50]
1400 656 707 1.6 [50]
1600 477 479 0.95 [50]
HfMo0.5NbTiV0.5Si0.7 1000 673 741 >35 [51]
1200 235 268 >35 [51]
AlNbTiV 600 1280 1005 14.3 [52]
800 560 700 >50 [52]
AlNbTiVZr0.1 600 975 1085 5.1 [52]
800 865 920 >50 [52]
AlNbTiVZr0.5 600 1135 1425 7.5 [52]
800 675 740 >50 [52]
AlNbTiVZr 600 1155 1385 1.0 [52]
800 550 600 >50 [52]
AlMo0.5NbTa0.5TiZr 1000 745 792 1.9 [53]
AlMo0.5NbTa0.5TiZr0.5 1000 935 1019 2.0 [53]
AlNbTa0.5TiZr0.5 1000 535 542 1.4 [53]
Al0.5Mo0.5NbTa0.5TiZr 1000 579 646 2.0 [53]
Al0.25NbTaTiZr 1000 366 408 1.6 [53]
CrNbVMo 1000 1513 16.4 [54]
Al0.5CrNbVMo 1000 1178 27.4 [54]
AlCrNbVMo 1000 1085 >30 [54]
Table 6  部分RHEAs的高温力学性能
1 叶红. 高超声速飞行器热防护系统技术研究[D]. 南京: 南京航空航天大学, 2013.
1 YE H. Research on thermal protection system on supersonic aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013.
2 YEH J W , CHEN S K , LIN S J , et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6 (5): 299- 303.
doi: 10.1002/adem.200300567
3 MIRACLE D B , SENKOV O N . A critical review of high entropy alloys and related concepts[J]. Acta Materialia, 2017, 122, 448- 511.
doi: 10.1016/j.actamat.2016.08.081
4 SENKOV O N , MIRACLE D B , CHAPUT K J , et al. Development and exploration of refractory high entropy alloys—a review[J]. Journal of Materials Research, 2018, 33 (19): 3092- 3128.
doi: 10.1557/jmr.2018.153
5 ZHANG Y , ZUO T T , TANG Z , et al. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science, 2014, 61, 1- 93.
doi: 10.1016/j.pmatsci.2013.10.001
6 XU X , LIU P , GUO S , et al. Nanoscale phase separation in a fcc-based CoCrCuFeNiAl0.5 high-entropy alloy[J]. Acta Materialia, 2015, 84, 145- 152.
doi: 10.1016/j.actamat.2014.10.033
7 LIU W , HE J , HUANG H , et al. Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys[J]. Intermetallics, 2015, 60, 1- 8.
doi: 10.1016/j.intermet.2015.01.004
8 张勇, 陈明彪, 杨潇, 等. 先进高熵合金技术[M]. 北京: 化学工业出版社, 2018.
8 ZHANG Y , CHEN M B , YANG X , et al. Advanced technology in high-entropy alloys[M]. Beijing: Chemical Industry Press, 2018.
9 KOŽELJ P , VRTNIK S , JELEN A , et al. Discovery of a superconducting high-entropy alloy[J]. Physical Review Letters, 2014, 113 (10): 107001.
doi: 10.1103/PhysRevLett.113.107001
10 SENKOV O N , WILKS G B , MIRACLE D B , et al. Refractory high-entropy alloys[J]. Intermetallics, 2010, 18 (9): 1758- 1765.
doi: 10.1016/j.intermet.2010.05.014
11 POLETTI M G , FIORE G , SZOST B A , et al. Search for high entropy alloys in the X-NbTaTiZr systems(X=Al, Cr, V, Sn)[J]. Journal of Alloys and Compounds, 2015, 620, 283- 288.
doi: 10.1016/j.jallcom.2014.09.145
12 SENKOV O N , SCOTT J M , SENKOVA S V , et al. Microstructure and room temperature properties of a high-entropy TaNb HfZrTi alloy[J]. Journal of Alloys and Compounds, 2011, 509 (20): 6043- 6048.
doi: 10.1016/j.jallcom.2011.02.171
13 SENKOV O N , SENKOVA S V , WOODWARD C , et al. Low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system: microstructure and phase analysis[J]. Acta Materialia, 2013, 61 (5): 1545- 1557.
doi: 10.1016/j.actamat.2012.11.032
14 SENKOV O N , WOODWARD C , MIRACLE D B . Microstructure and properties of aluminum-containing refractory high-entropy alloys[J]. JOM, 2014, 66 (10): 2030- 2042.
doi: 10.1007/s11837-014-1066-0
15 GAO M C , ZHANG B , YANG S , et al. Senary refractory high-entropy alloy HfNbTaTiVZr[J]. Metallurgical and Materials Transactions A, 2016, 47 (7): 3333- 3345.
doi: 10.1007/s11661-015-3105-z
16 MAITI S , STEURER W . Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy[J]. Acta Materialia, 2016, 106, 87- 97.
doi: 10.1016/j.actamat.2016.01.018
17 CHEN H , KAUFFMANN A , LAUBE S , et al. Contribution of lattice distortion to solid solution strengthening in a series of refractory high entropy alloys[J]. Metallurgical and Materials Transactions A, 2018, 49 (3): 772- 781.
doi: 10.1007/s11661-017-4386-1
18 CHEN Y W , LI Y K , CHENG X W , et al. The microstructure and mechanical properties of refractoryhigh-entropy alloys with high plasticity[J]. Materials, 2018, 11 (2): 208.
doi: 10.3390/ma11020208
19 WANG M , MA Z , XU Z , et al. Microstructures and mechanical properties of HfNbTaTiZrW and HfNbTaTiZrMoW refractory high-entropy alloys[J]. Journal of Alloys and Compounds, 2019, 803, 778- 785.
doi: 10.1016/j.jallcom.2019.06.138
20 YURCHENKO N , PANINA E , TIKHONOVSKY M , et al. Structure and mechanical properties of an in situ refractory Al20Cr10Nb15Ti20V25Zr10 high entropy alloy composite[J]. Materials Letters, 2020, 264, 127372.
doi: 10.1016/j.matlet.2020.127372
21 杨廷志. 现代粉末冶金材料与技术进展[J]. 中国金属通报, 2019, (12): 10- 11.
doi: 10.3969/j.issn.1672-1667.2019.12.007
21 YANG T Z . Modern powder metallurgy materials and technical progress[J]. China Metal Bulletin, 2019, (12): 10- 11.
doi: 10.3969/j.issn.1672-1667.2019.12.007
22 LI Y, LEE J, KANG B, et al. Microstructure and elevated-temperature mechanical properties of refractory AlMo0.5NbTa0.5TiZr high entropy alloy fabricated by powder metallurgy[J/OL]. arXiv: Materials Science, 2017[2021-06-25]. https://arxiv.org/abs/1801.00263.
23 WASEEM O A , LEE J , LEE H M , et al. The effect of Ti on the sintering and mechanical properties of refractory high-entropy alloy TixWTaVCr fabricated via spark plasma sintering for fusion plasma-facing materials[J]. Materials Chemistry and Phy-sics, 2018, 210, 87- 94.
doi: 10.1016/j.matchemphys.2017.06.054
24 KANG B , LEE J , RYU H J , et al. Ultra-high strength WNbMo TaV high-entropy alloys with fine grain structure fabricated by powder metallurgical process[J]. Materials Science and Engineering: A, 2018, 712, 616- 624.
doi: 10.1016/j.msea.2017.12.021
25 CAO Y , LIU Y , LIU B , et al. Precipitation behavior during hot deformation of powder metallurgy Ti-Nb-Ta-Zr-Al high entropy alloys[J]. Intermetallics, 2018, 100, 95- 103.
doi: 10.1016/j.intermet.2018.06.007
26 DAS S , ROBI P S . Mechanical alloying of W-Mo-V-Cr-Ta high entropy alloys[J]. IOP Conference Series: Materials Science and Engineering, 2018, 346 (1): 12047.
27 LIU Q , WANG G , SUI X , et al. Microstructure and mechanical properties of ultra-fine grained MoNbTaTiV refractory high-entropy alloy fabricated by spark plasma sintering[J]. Journal of Materials Science & Technology, 2019, 35 (11): 2600- 2607.
28 PORTNOI V , LEONOV A , GUSAKOV M , et al. Preparation of high-temperature multicomponent alloys by mechanochemical synthesis from refractory elements[J]. Inorganic Materials, 2019, 55 (2): 195- 199.
doi: 10.1134/S0020168519010084
29 ROH A , KIM D , NAM S , et al. NbMoTaW refractory high entropy alloy composites strengthened by in-situ metal-non-metal compounds[J]. Journal of Alloys and Compounds, 2020, 822, 153423.
doi: 10.1016/j.jallcom.2019.153423
30 LV S , ZU Y , CHEN G , et al. A multiple nonmetallic atoms co-doped CrMoNbWTi refractory high-entropy alloy with ultra-high strength and hardness[J]. Materials Science and Engineering: A, 2020, 795, 140035.
doi: 10.1016/j.msea.2020.140035
31 张安峰, 李涤尘, 梁少端, 等. 高性能金属零件激光增材制造技术研究进展[J]. 航空制造技术, 2016, (22): 16- 22.
31 ZHANG A F , LI D C , LIANG S D , et al. Development of laser additive manufacturing of high-performance metal parts[J]. Aeronautical Manufacturing Technology, 2016, (22): 16- 22.
32 ZHANG M , ZHOU X , YU X , et al. Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding[J]. Surface and Coatings Technology, 2017, 311, 321- 329.
doi: 10.1016/j.surfcoat.2017.01.012
33 李青宇, 李涤尘, 张航, 等. 激光熔覆沉积成形NbMoTaTi难熔高熵合金的组织与强度研究[J]. 航空制造技术, 2018, 61 (10): 61- 67.
33 LI Q Y , LI D C , ZHANG H , et al. Study on structure and strength of NbMoTaTi refractory high entropy alloy fabricated by laser cladding deposition[J]. Aeronautical Manufacturing Technology, 2018, 61 (10): 61- 67.
34 GUO Y , LIU Q . MoFeCrTiWAlNb refractory high-entropy alloy coating fabricated by rectangular-spot laser cladding[J]. Intermetallics, 2018, 102, 78- 87.
doi: 10.1016/j.intermet.2018.09.005
35 LI Q , ZHANG H , LI D , et al. WxNbMoTa refractory high-entropy alloys fabricated by laser cladding deposition[J]. Materials, 2019, 12 (3): 533.
doi: 10.3390/ma12030533
36 CHEN L , ZHANG X W , WANG Y Y , et al. Microstructure and elastic constants of AlTiVMoNb refractory high-entropy alloy coating on Ti6Al4V by laser cladding[J]. Materials Research Express, 2019, 6 (11): 116571.
doi: 10.1088/2053-1591/ab49e7
37 GUO Y , WANG H , LIU Q . Microstructure evolution and strengthening mechanism of laser-cladding MoFexCrTiWAlNby refractory high-entropy alloy coatings[J]. Journal of Alloys and Compounds, 2020, 834, 155147.
doi: 10.1016/j.jallcom.2020.155147
38 王慧琳, 郭亚雄, 蓝宏伟, 等. 光斑类型对激光熔覆MoFeCrTi WAlNb高熔点高熵合金涂层组织和性能的影响[J]. 表面技术, 2019, 48 (6): 130- 137.
38 WANG H L , GUO Y X , LAN H W , et al. Effect of spot type on microstructure and properties of MoFeCrTiWAlNb refractory high-entropy alloy coating fabricated by laser cladding[J]. Surface Technology, 2019, 48 (6): 130- 137.
39 ZOU Y , MA H , SPOLENAK R . Ultrastrong ductile and stable high-entropy alloys at small scales[J]. Nature Communications, 2015, 6 (1): 7748.
doi: 10.1038/ncomms8748
40 CHEN Y , HUNG S , WANG C , et al. High temperature electrical properties and oxidation resistance of V-Nb-Mo-Ta-W high entropy alloy thin films[J]. Surface and Coatings Technology, 2019, 375, 854- 863.
doi: 10.1016/j.surfcoat.2019.07.080
41 SONG B , LI Y , CONG Z , et al. Effects of deposition temperature on the nanomechanical properties of refractory high entropy TaNbHfZr films[J]. Journal of Alloys and Compounds, 2019, 797, 1025- 1030.
doi: 10.1016/j.jallcom.2019.05.121
42 BACHANI S K , WANG C J , LOU B S , et al. Microstructural characterization, mechanical property and corrosion behavior of VNbMoTaWAl refractory high entropy alloy coatings: effect of Al content[J]. Surface and Coatings Technology, 2020, 403, 126351.
doi: 10.1016/j.surfcoat.2020.126351
43 HAN Z D , LUAN H W , LIU X , et al. Microstructures and mechanical properties of TixNbMoTaW refractory high-entropy alloys[J]. Materials Science and Engineering: A, 2018, 712, 380- 385.
doi: 10.1016/j.msea.2017.12.004
44 ZHANG M , ZHOU X , LI J . Microstructure and mechanical properties of a refractory CoCrMoNbTi high-entropy alloy[J]. Journal of Materials Engineering and Performance, 2017, 26 (8): 3657- 3665.
doi: 10.1007/s11665-017-2799-z
45 CHEN W , TANG Q , WANG H , et al. Microstructure and mechanical properties of a novel refractory AlNbTiZr high-entropy alloy[J]. Materials Science and Technology, 2018, 34 (11): 1309- 1315.
doi: 10.1080/02670836.2018.1446267
46 HUANG T , JIANG H , LU Y , et al. Effect of Sc and Y addition on the microstructure and properties of HCP-structured high-entropy alloys[J]. Applied Physics A, 2019, 125 (3): 180.
doi: 10.1007/s00339-019-2484-1
47 HUANG T D , WU S Y , JIANG H , et al. Effect of Ti content on microstructure and properties of TixZrVNb refractory high-entropy alloys[J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27 (10): 1318- 1325.
doi: 10.1007/s12613-020-2040-1
48 GUO Z , ZHANG A , HAN J , et al. Effect of Si additions on microstructure and mechanical properties of refractory NbTaWMo high-entropy alloys[J]. Journal of Materials Science, 2019, 54 (7): 5844- 5851.
doi: 10.1007/s10853-018-03280-z
49 GE S , FU H , ZHANG L , et al. Effects of Al addition on the microstructures and properties of MoNbTaTiV refractory high entropy alloy[J]. Materials Science and Engineering: A, 2020, 784, 139275.
doi: 10.1016/j.msea.2020.139275
50 SENKOV O N , WILKS G B , SCOTT J M , et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J]. Intermetallics, 2011, 19 (5): 698- 706.
doi: 10.1016/j.intermet.2011.01.004
51 LIU Y , ZHANG Y , ZHANG H , et al. Microstructure and mechanical properties of refractory HfMo0.5NbTiV0.5Six high-entropy composites[J]. Journal of Alloys and Compounds, 2017, 694, 869- 876.
doi: 10.1016/j.jallcom.2016.10.014
52 YURCHENKO N Y , STEPANOV N , ZHEREBTSOV S , et al. Structure and mechanical properties of B2 ordered refractory Al NbTiVZrx(x=0-1.5) high-entropy alloys[J]. Materials Science and Engineering: A, 2017, 704, 82- 90.
doi: 10.1016/j.msea.2017.08.019
53 SENKOV O , JENSEN J , PILCHAK A , et al. Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr[J]. Materials & Design, 2018, 139, 498- 511.
54 KANG B , KONG T , RYU H J , et al. Superior mechanical properties and strengthening mechanisms of lightweight AlxCrNbV Mo refractory high-entropy alloys(x=0, 0.5, 1.0) fabricated by the powder metallurgy process[J]. Journal of Materials Science & Technology, 2021, 69, 32- 41.
55 ZHANG Y , LIU Y , LI Y , et al. Microstructure and mechanical properties of a refractory HfNbTiVSi0.5 high-entropy alloy composite[J]. Materials Letters, 2016, 174, 82- 85.
doi: 10.1016/j.matlet.2016.03.092
56 CHANG C H , TITUS M S , YEH J W . Oxidation behavior between 700 and 1300 ℃ of refractory TiZrNbHfTa high-entropy alloys containing aluminum[J]. Advanced Engineering Mate-rials, 2018, 20 (6): 1700948.
doi: 10.1002/adem.201700948
57 LO K C , CHANG Y J , MURAKAMI H , et al. An oxidation resistant refractory high entropy alloy protected by CrTaO4-based oxide[J]. Scientific Reports, 2019, 9 (1): 7266.
doi: 10.1038/s41598-019-43819-x
58 HAN J , SU B , MENG J , et al. Microstructure and composition evolution of a fused slurry silicide coating on MoNbTaTiW refractory high-entropy alloy in high-temperature oxidation environment[J]. Materials, 2020, 13 (16): 3592.
doi: 10.3390/ma13163592
59 郭亚雄, 刘其斌, 周芳. 激光熔覆高熔点AlCrFeMoNbxTiW高熵合金涂层组织及耐磨性能[J]. 稀有金属, 2017, 41 (12): 1327- 1332.
59 GUO Y X , LIU Q B , ZHOU F . Microstructure and wear resis-tance of high-melting-point AlCrFeMoNbxTiW high-entropy alloy coating by laser cladding[J]. Rare Metals, 2017, 41 (12): 1327- 1332.
60 POLE M , SADEGHILARIDJANI M , SHITTU J , et al. High temperature wear behavior of refractory high entropy alloys based on 4-5-6 elemental palette[J]. Journal of Alloys and Compounds, 2020, 843, 156004.
doi: 10.1016/j.jallcom.2020.156004
61 HUNG S B , WANG C J , CHEN Y Y , et al. Thermal and corrosion properties of V-Nb-Mo-Ta-W and V-Nb-Mo-Ta-W-Cr-B high entropy alloy coatings[J]. Surface and Coatings Technology, 2019, 375, 802- 809.
doi: 10.1016/j.surfcoat.2019.07.079
62 PATEL D , RICHARDSON M D , JIM B , et al. Radiation damage tolerance of a novel metastable refractory high entropy alloy V2.5Cr1.2WMoCo0.04[J]. Journal of Nuclear Materials, 2020, 531, 152005.
doi: 10.1016/j.jnucmat.2020.152005
63 姚俊卿. 低密度难熔高熵合金的热稳定性、相结构与力学性能[D]. 武汉: 华中科技大学, 2019.
63 YAO J Q. Thermal stability, phase structure and mechanical properties of low-density refractory high-entropy alloys[D]. Wuhan: Huazhong University of Science and Technology, 2019.
64 RAMAN L , KARTHICK G , GURUVIDYATHRI K , et al. Influence of processing route on the alloy in behavior, microstructural evolution and thermal stability of CrMoNbTiW refractory high-entropy alloy[J]. Journal of Materials Research, 2020, 35 (12): 1556- 1571.
doi: 10.1557/jmr.2020.128
[1] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[2] 陈帅, 陶凤和, 贾长治, 孙河洋. 成形角度对选区激光熔化4Cr5MoSiV1钢组织和性能的影响[J]. 材料工程, 2022, 50(3): 122-130.
[3] 唐鹏钧, 房立家, 王兴元, 李沛勇, 张学军. 人工时效对激光选区熔化AlMg4.5Sc0.55Mn0.5Zr0.2合金显微组织和力学性能的影响[J]. 材料工程, 2022, 50(2): 84-93.
[4] 邵震, 崔雷, 王东坡, 陈永亮, 胡正根, 王非凡. 几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响[J]. 材料工程, 2022, 50(1): 25-32.
[5] 吴程浩, 刘涛, 高嵩, 石磊, 刘洪涛. 铝/钢异种金属的超声振动强化搅拌摩擦焊接工艺[J]. 材料工程, 2022, 50(1): 33-42.
[6] 徐学宏, 郑义珠, 陈吉平, 宁博, 刘晓忱. 缝合参数对泡沫夹层结构复合材料力学性能的影响[J]. 材料工程, 2022, 50(1): 132-137.
[7] 肖伟, 杨占旭, 乔庆东. 石墨电极表面聚丙烯腈纳米纤维膜的制备及性能[J]. 材料工程, 2021, 49(9): 60-68.
[8] 王庆娟, 吴金城, 王伟, 杜忠泽, 尹仁锟. 超高强β钛合金等温相转变特性及力学性能[J]. 材料工程, 2021, 49(9): 94-100.
[9] 孙昊飞, 肖志, 韦凯, 杨旭静, 齐军. 预弯曲变形对CP800复相钢力学性能的影响[J]. 材料工程, 2021, 49(8): 81-88.
[10] 姜卓钰, 束小文, 吕晓旭, 高晔, 周怡然, 董禹飞, 焦健. SiC晶须增强SiCf/SiC复合材料的力学性能[J]. 材料工程, 2021, 49(8): 89-96.
[11] 张海连, 段淼, 李四中, 林志勇. 催化炭化-原位反应/反应熔体浸渗法制备C/C-SiC复合材料[J]. 材料工程, 2021, 49(7): 85-91.
[12] 唐延川, 万能, 唐兴昌, 刘德佳, 焦海涛, 胡勇, 赵龙志. 合金化组元(Al,Cr,Si,Ti)含量对激光沉积(FeNiCo)-(AlCrSiTi)非等原子比多组元合金涂层组织与力学性能的影响[J]. 材料工程, 2021, 49(7): 92-102.
[13] 邢宇轩, 郭英奎, 陈磊, 赵壮志, 王玉金. 气压浸渗法制备ZrC-W-Cu复合材料的显微组织与力学性能[J]. 材料工程, 2021, 49(7): 124-132.
[14] 詹强坤, 刘允中, 刘小辉, 周志光. 激光选区熔化成形含锆7×××系铝合金的显微组织与力学性能[J]. 材料工程, 2021, 49(6): 85-93.
[15] 高玉魁. 负泊松比超材料和结构[J]. 材料工程, 2021, 49(5): 38-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn