Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (8): 45-59    DOI: 10.11868/j.issn.1001-4381.2021.000633
  铝合金专栏 本期目录 | 过刊浏览 | 高级检索 |
铝合金搅拌摩擦焊超声检测研究进展
金士杰(), 田鑫, 林莉()
大连理工大学 无损检测研究所, 辽宁 大连 116024
Research progress in ultrasonic testing for friction stir welding of aluminum alloy
Shijie JIN(), Xin TIAN, Li LIN()
NDT & E Laboratory, Dalian University of Technology, Dalian 116024, Liaoning, China
全文: PDF(1373 KB)   HTML ( 2 )  
输出: BibTeX | EndNote (RIS)      
摘要 

铝合金搅拌摩擦焊(friction stir welding, FSW)焊接参数选择不当将会产生隧道孔、未焊透(lack of penetration, LOP)和吻接等取向复杂、细微紧贴的缺陷。首先, 本文简述了FSW焊缝与典型缺陷特征, 总结了超声检测时面临纵向分辨力低、缺陷表征不完整、材料与缺陷声阻抗接近和灵敏度不足等难点。随后, 从常规超声、超声衍射时差法(time-of-flight diffraction, TOFD)、相控阵超声检测技术和其他超声检测技术等方面综述了现有的铝合金FSW超声检测研究工作。最后, 结合超声信号处理方法和机器学习方法对研究前景进行展望: 可以通过分析和提取信号特征, 进一步提升超声检测分辨力和信噪比, 并实现取向复杂缺陷和细微紧贴缺陷的精准辨识与定量。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
金士杰
田鑫
林莉
关键词 搅拌摩擦焊铝合金超声检测缺陷    
Abstract

The defects in friction stir welding (FSW) of aluminum alloy, e.g., tunnel defect, lack of penetration (LOP) and kissing bond, are with complex shape and narrow gap by inappropriate welding parameters. Firstly, the characteristics of FSW welding and typical defects were briefly described, and the difficult points in ultrasonic testing were summarized from the low time resolution, incomplete characterization of irregular defects, close acoustic impedance between kissing bond and Al alloy and the reduction of detection sensitivity. Subsequently, the research work on the ultrasonic testing for FSW of aluminum alloy were reviewed from the following four aspects, including conventional ultrasonic testing, time-of-flight diffraction (TOFD), phased array ultrasonic testing and other ultrasonic testing techniques. Finally, the research on the ultrasonic signal processing methods and machine learning methods was prospected. The signal characteristics were analyzed and extracted to further improve the resolution and signal-to-noise ratio of ultrasonic testing and realize the accurate identification and quantification for complex shape defects and subtle defects.

Key wordsfriction stir welding    aluminum alloy    ultrasonic testing    defect
收稿日期: 2021-07-09      出版日期: 2022-08-16
中图分类号:  TG146.21  
  TB553  
基金资助:国家重点研发项目(2019YFA0709003);大连市科技创新基金项目(2020JJ26GX041);中央高校基本科研业务费(DUT20ZD204)
通讯作者: 金士杰,林莉     E-mail: jinshijie@dlut.edu.cn;linli@dlut.edu.cn
作者简介: 林莉(1970—),女,教授,博士,研究方向:材料无损检测与评价,联系地址:辽宁省大连市高新园区凌工路2号大连理工大学无损检测研究所(116024),E-mail:linli@dlut.edu.cn
金士杰(1984—),男,副教授,博士,研究方向:材料无损检测与评价,联系地址:辽宁省大连市高新园区凌工路2号大连理工大学无损检测研究所(116024),E-mail:jinshijie@dlut.edu.cn
引用本文:   
金士杰, 田鑫, 林莉. 铝合金搅拌摩擦焊超声检测研究进展[J]. 材料工程, 2022, 50(8): 45-59.
Shijie JIN, Xin TIAN, Li LIN. Research progress in ultrasonic testing for friction stir welding of aluminum alloy. Journal of Materials Engineering, 2022, 50(8): 45-59.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000633      或      http://jme.biam.ac.cn/CN/Y2022/V50/I8/45
Fig.1  铝合金FSW焊接示意图
Fig.2  铝合金FSW焊接接头分区示意图
Fig.3  FSW接头横截面超声衰减系数变化趋势[31]
Fig.4  不同深度底面开口槽TOFD仿真检测信号
(a)d=1 mm;(b)d=7 mm
Fig.5  不同类型缺陷的金相照片[56]
(a)LOP;(b)隧道孔
Fig.6  铝合金FSW焊缝根部缺陷金相照片[32]
(a)OM图;(b)SEM图;(c)区域A放大;(d)区域B放大;(e)区域C放大
Fig.7  去噪前后的FSW焊缝TOFD检测图像[58]
(a)去噪前;(b)去噪后
Fig.8  不同检测频率f时的C扫查图像[31]
(a)f=10 MHz;(b)f=20 MHz
Fig.9  FSW焊缝中不同缺陷的C扫查图像(1)及平均信号功率3D显示(2)[73]
(a)LOP;(b)吻接
Fig.10  不同形态根部LOP的金相照片(1)及相控阵超声检测结果(2)[88]
(a)垂直LOP;(b)弯曲LOP
Fig.11  不同铝合金FSW试件激光超声检测结果[94]
(a)完好试样;(b)LOP缺陷试样
Fig.12  现有铝合金FSW超声检测难点及方法实施效果
1 刘铭, 李惠曲, 陈军洲, 等. 航空用7475-T7351铝合金厚板耐腐蚀性能[J]. 材料工程, 2017, 45 (9): 129- 135.
1 LIU M , LI H Q , CHEN J Z , et al. Corrosion resistance of 7475-T7351 alloy plate for aviation[J]. Journal of Materials Engineering, 2017, 45 (9): 129- 135.
2 WANG G Q , ZHAO Y H , HAO Y F . Friction stir welding of high-strength aerospace aluminum alloy and application in rocket tank manufacturing[J]. Journal of Materials Science & Technology, 2018, 34 (1): 73- 91.
3 KANG M , YOON J , KIM C . Hook formation and joint strength in friction stir spot welding of Al alloy and Al-Si-coated hot-press forming steel[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106 (5/6): 1671- 1681.
4 KIM S J , JANG S K , HAN M S , et al. Mechanical and electrochemical characteristics in sea water of 5052-O aluminum alloy for ship[J]. Transactions of Nonferrous Metals Society of China, 2013, 23 (3): 636- 641.
doi: 10.1016/S1003-6326(13)62510-8
5 SUN Y S , XUAN L , DU Q . Finite element analysis of welding pressing force for aluminum alloy middle roof plate of urban rail transit train[J]. Journal of Mechanical Science & Technology, 2017, 31 (3): 1357- 1363.
6 刘牧东. 航空铝合金材料低温裂纹扩展研究现状与展望[J]. 航空工程进展, 2020, 11 (1): 10- 19.
6 LIU M D . Research status and advances in cryogenic crack propagation of aeronautic aluminum-alloys[J]. Advances in Aeronautical Science and Engineering, 2020, 11 (1): 10- 19.
7 KULEKCI M K , KALUÇ E , ŞIK A , et al. Experimental comparison of MIG and friction stir welding processes for EN AW-6061-T6 (AlMg1SiCu) aluminum alloy[J]. Arabian Journal for Science and Engineering, 2010, 35 (1): 321- 330.
8 王昌盛, 熊江涛, 李京龙, 等. 2024铝合金搅拌摩擦焊焊缝区疲劳过程中的温度演变[J]. 材料工程, 2015, 43 (9): 53- 59.
8 WANG C S , XIONG J T , LI J L , et al. Temperature evolution in fatigue test of 2024 aluminum alloy weld fabricated by friction stir welding[J]. Journal of Materials Engineering, 2015, 43 (9): 53- 59.
9 MEYGHANI B , AWANG M , EMAMIAN S . A mathematical formulation for calculating temperature dependent friction coefficient values: application in friction stir welding (FSW)[J]. Defect and Diffusion Forum, 2017, 379, 73- 82.
doi: 10.4028/www.scientific.net/DDF.379.73
10 ÇAM G , MISTIKOGLU S . Recent developments in friction stir welding of Al-alloys[J]. Journal of Materials Engineering and Performance, 2014, 23 (6): 1936- 1953.
doi: 10.1007/s11665-014-0968-x
11 KAID M , ZEMRI M , BRAHAMI A , et al. Effect of friction stir welding (FSW) parameters on the peak temperature and the residual stresses of aluminum alloy 6061-T6: numerical modelisation[J]. International Journal on Interactive Design and Manufacturing, 2019, 13 (2): 797- 807.
doi: 10.1007/s12008-019-00541-2
12 AZIZ S B , DEWAN M W , HUGGETT D J , et al. A fully coupled thermomechanical model of friction stir welding (FSW) and numerical studies on process parameters of lightweight aluminum alloy joints[J]. Acta Metallurgica Sinica (English Letters), 2018, 31 (1): 1- 18.
doi: 10.1007/s40195-017-0658-4
13 毛育青, 江周明, 柯黎明, 等. 铝合金厚板搅拌摩擦焊焊缝金属流动行为研究进展[J]. 精密成形工程, 2018, 10 (5): 1- 15.
doi: 10.3969/j.issn.1674-6457.2018.05.001
13 MAO Y Q , JIANG Z M , KE L M , et al. Material flow behavior of friction stir welding aluminum alloy thick plate joint[J]. Journal of Netshape Forming Engineering, 2018, 10 (5): 1- 15.
doi: 10.3969/j.issn.1674-6457.2018.05.001
14 QIN D Q , FU L , SHEN Z K . Visualisation and numerical simulation of material flow behaviour during high-speed FSW process of 2024 aluminium alloy thin plate[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102 (5/8): 1901- 1912.
15 SONG S W , KIM B C , YOON T J , et al. Effect of welding parameters on weld formation and mechanical properties in dissimilar Al alloy joints by FSW[J]. Materials Transactions, 2010, 51 (7): 1319- 1325.
doi: 10.2320/matertrans.M2010032
16 严铿, 马志新, 张健. 包铝层对搅拌摩擦焊接头力学性能的影响[J]. 材料工程, 2008, (9): 44- 47.
doi: 10.3969/j.issn.1001-4381.2008.09.012
16 YAN K , MA Z X , ZHANG J . Effect of alclad on mechanical property of FSW joint[J]. Journal of Materials Engineering, 2008, (9): 44- 47.
doi: 10.3969/j.issn.1001-4381.2008.09.012
17 徐蒋明, 柯黎明, 邢丽. 搅拌摩擦焊焊缝的无损检测技术[J]. 无损检测, 2008, 30 (12): 934- 937.
17 XU J M , KE L M , XING L . Nondestructive evaluation for friction stir welding[J]. Nondestructive Testing, 2008, 30 (12): 934- 937.
18 李杨, 李根, 周云方. 搅拌摩擦焊缺陷无损检测技术研究进展[J]. 焊接技术, 2020, 49 (2): 1- 4.
18 LI Y , LI G , ZHOU Y F . Research progresses of non-destructive testing techniques for friction stir welding defects[J]. Welding Technology, 2020, 49 (2): 1- 4.
19 KINCHEN D G , ALDAHIR E . NDE of friction stir welds in aerospace applications[J]. Inspection Trends, 2002, 7, 1- 7.
20 吴振成, 李来平, 涂俊, 等. 铝合金搅拌摩擦焊焊接接头的涡流阵列检测[J]. 无损检测, 2018, 40 (1): 25- 28.
20 WU Z C , LI L P , TU J , et al. Testing of friction stir welding joint of aluminum alloy based on eddy current array[J]. Nondestructive Testing, 2018, 40 (1): 25- 28.
21 ROSADOA L S , CARDOSO F A , CARDOSO S , et al. Eddy currents testing probe with magneto-resistive sensors and differential measurement[J]. Sensors and Actuators A, 2014, 212 (6): 58- 67.
22 HUGGETT D J , DEWAN M W , WAHAB M A , et al. Phased array ultrasonic testing for post-weld and on-line detection of friction stir welding defects[J]. Research in Nondestructive Evaluation, 2017, 28 (4): 187- 210.
doi: 10.1080/09349847.2016.1157660
23 龚炼红. 2A70铝合金搅拌摩擦焊接接头超声检测技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.
23 GONG L H. A study on ultrasonic testing technology of friction stir welded joints of 2A70 aluminum alloy[D]. Harbin: Harbin Institute of Technology, 2010.
24 SUBBARATNAM R , ABRAHAM S T , VENKATRAMAN B , et al. Immersion and TOFD (I-TOFD): a novel combination for examination of lower thicknesses[J]. Journal of Nondestructive Evaluation, 2011, 30 (3): 137- 142.
doi: 10.1007/s10921-011-0101-0
25 AL-ATABY A , AL-NUAIMY W , BRETT C R , et al. Automatic detection and classification of weld flaws in TOFD data using wavelet transform and support vector machines[J]. Insight-Non-Destructive Testing and Condition Monitoring, 2010, 52 (11): 597- 602.
doi: 10.1784/insi.2010.52.11.597
26 马天天, 林莉, 张东辉, 等. 基于TOFD周向扫查的厚壁管道倾斜裂纹精准定量[J]. 仪器仪表学报, 2019, 40 (3): 23- 29.
26 MA T T , LIN L , ZHANG D H , et al. Accurate quantification of inclined cracks in thick-walled pipes based on TOFD circumferential scanning[J]. Chinese Journal of Scientific Instrument, 2019, 40 (3): 23- 29.
27 YUAN C , XIE C Z , LI L C , et al. Ultrasonic phased array detection of internal defects in composite insulators[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23 (1): 525- 531.
doi: 10.1109/TDEI.2015.005225
28 林莉, 杨平华, 张东辉, 等. 厚壁铸造奥氏体不锈钢管道焊缝超声相控阵检测技术概述[J]. 机械工程学报, 2012, 48 (4): 12- 20.
28 LIN L , YANG P H , ZHANG D H , et al. Review of phased array ultrasonic testing for thick wall cast austenitic stainless steel pipeline welds[J]. Journal of Mechanical Engineering, 2012, 48 (4): 12- 20.
29 周正干, 彭地, 李洋, 等. 相控阵超声检测技术中的全聚焦成像算法及其校准研究[J]. 机械工程学报, 2015, 51 (10): 1- 7.
29 ZHOU Z G , PENG D , LI Y , et al. Research on phased array ultrasonic total focusing method and its calibration[J]. Journal of Mechanical Engineering, 2015, 51 (10): 1- 7.
30 贺地求, 罗维, 邬红光. 60 mm厚度6061-T6铝合金板搅拌摩擦焊接接头微观组织与力学性能[J]. 材料工程, 2011, (9): 20- 24.
doi: 10.3969/j.issn.1001-4381.2011.09.004
30 HE D Q , LUO W , WU H G . Microstructure and mechanical property analysis on double-sided friction stir welding joints of 60 mm 6061-T6 aluminum alloy plate[J]. Journal of Materials Engineering, 2011, (9): 20- 24.
doi: 10.3969/j.issn.1001-4381.2011.09.004
31 赵雪梅. 铝合金搅拌摩擦焊接头超声信号特征与质量评价方法[D]. 哈尔滨: 哈尔滨工业大学, 2010.
31 ZHAO X M. Ultrasonic signal features and quality evaluation method of friction stir welded joint of aluminum alloy[D]. Harbin: Harbin Institute of Technology, 2010.
32 周平, 戴启雷, 张元杰. 6082铝合金搅拌摩擦焊接头根部缺陷的微观特征[J]. 机械工程材料, 2019, 43 (12): 29- 33.
doi: 10.11973/jxgccl201912006
32 ZHOU P , DAI Q L , ZHANG Y J . Microscopic characteristics of root defects in friction stir welded joints of 6082 aluminum alloy[J]. Materials for Mechanical Engineering, 2019, 43 (12): 29- 33.
doi: 10.11973/jxgccl201912006
33 AZIZ S B , DEWAN M W , HUGGETT D J , et al. Impact of friction stir welding (FSW) process parameters on thermal modeling and heat generation of aluminum alloy joints[J]. Acta Metallurgica Sinica (English Letters), 2016, 29 (9): 869- 883.
doi: 10.1007/s40195-016-0466-2
34 徐韦锋, 刘金合, 栾国红, 等. 厚板铝合金搅拌摩擦焊接头显微组织与力学性能[J]. 金属学报, 2008, 44 (11): 1404- 1408.
doi: 10.3321/j.issn:0412-1961.2008.11.022
34 XU W F , LIU J H , LUAN G H , et al. Microstructures and mechanical properties of friction stir welded aluminum alloy thick plate[J]. Acta Metallurgica Sinica, 2008, 44 (11): 1404- 1408.
doi: 10.3321/j.issn:0412-1961.2008.11.022
35 张亮亮, 王希靖, 刘骁. 6082铝合金搅拌摩擦焊焊接过程中晶粒取向演化[J]. 材料工程, 2018, 46 (10): 55- 59.
doi: 10.11868/j.issn.1001-4381.2017.001011
35 ZHANG L L , WANG X J , LIU X . Crystal orientation evolution during friction stir welding of 6082 aluminum alloys[J]. Journal of Materials Engineering, 2018, 46 (10): 55- 59.
doi: 10.11868/j.issn.1001-4381.2017.001011
36 FENG A H , CHEN D L , MA Z Y . Microstructure and cyclic deformation behavior of a friction-stir-welded 7075 Al alloy[J]. Metallurgical and Materials Transactions A, 2010, 41 (4): 957- 971.
doi: 10.1007/s11661-009-0152-3
37 董鹏, 孙大千, 李洪梅, 等. 6005A-T6铝合金搅拌摩擦焊接头组织与力学性能特征[J]. 材料工程, 2012, (4): 27- 31.
doi: 10.3969/j.issn.1001-4381.2012.04.006
37 DONG P , SUN D Q , LI H M , et al. Microstructure and mechanical characteristics of friction stir welded 6005A-T6 aluminum alloy[J]. Journal of Materials Engineering, 2012, (4): 27- 31.
doi: 10.3969/j.issn.1001-4381.2012.04.006
38 MOVAHEDI M , KOKABI A H , REIHANI S M S , et al. Effect of tool travel and rotation speeds on weld zone defects and joint strength of aluminum steel lap joints made by friction stir welding[J]. Science and Technology of Welding and Joining, 2012, 17 (2): 162- 167.
doi: 10.1179/1362171811Y.0000000092
39 邹青峰, 钱炜, 安丽, 等. 搅拌针形状对2A14铝合金搅拌摩擦焊接头组织和拉伸性能的影响[J]. 机械工程材料, 2015, 39 (5): 37- 41.
39 ZOU Q F , QIAN W , AN L , et al. Effect of stir pin shapes on microstruction and tensile properties of friction stir welded joint[J]. Materials for Mechanical Engineering, 2015, 39 (5): 37- 41.
40 BARLAS Z , OZSARAC U . Effects of FSW parameters on joint properties of AlMg3 alloy[J]. Welding Journal, 2012, 91 (1): 16- 22.
41 柯黎明, 潘际銮, 邢丽, 等. 铝合金搅拌摩擦焊焊缝形成的物理机制[J]. 材料工程, 2008, (4): 33- 37.
doi: 10.3969/j.issn.1001-4381.2008.04.009
41 KE L M , PAN J L , XING L , et al. Physical mechanism of friction stir weld formation of aluminum alloy[J]. Journal of Materials Engineering, 2008, (4): 33- 37.
doi: 10.3969/j.issn.1001-4381.2008.04.009
42 贺地求, 罗家文, 王海军, 等. 搅拌摩擦焊工艺参数与其焊接作用力的关系研究[J]. 热加工工艺, 2016, 45 (19): 232- 234.
42 HE D Q , LUO J W , WANG H J , et al. Study on relationship between process parameters and welding force of friction stir welding[J]. Hot Working Technology, 2016, 45 (19): 232- 234.
43 李博, 沈以赴, 胡伟叶. 伸缩式搅拌头厚铝板搅拌摩擦焊缺陷及其补焊工艺[J]. 中国有色金属学报, 2012, 22 (1): 62- 71.
43 LI B , SHEN Y F , HU W Y . Friction-stir welded defects and repairing weld process of thick aluminum plates with telescopic stir-pin[J]. The Chinese Journal of Nonferrous Metals, 2012, 22 (1): 62- 71.
44 刘松平, 刘菲菲, 李乐刚, 等. 铝合金搅拌摩擦焊缝的无损检测方法[J]. 航空制造技术, 2006, (3): 81- 84.
doi: 10.3969/j.issn.1671-833X.2006.03.014
44 LIU S P , LIU F F , LI L G , et al. Nondestructive evaluation methods for aluminum alloy friction stir welding[J]. Aeronautical Manufacturing Technology, 2006, (3): 81- 84.
doi: 10.3969/j.issn.1671-833X.2006.03.014
45 LIU X C , WU C S . Elimination of tunnel defect in ultrasonic vibration enhanced friction stir welding[J]. Materials & Design, 2016, 90, 350- 358.
46 PAPADOPOULOS M , PANTELAKIS S . Fatigue testing of 2198 T8 FSW aluminum alloy with and without LOP defect[J]. International Journal of Structural Integrity, 2017, 8 (4): 496- 504.
doi: 10.1108/IJSI-04-2016-0015
47 ZHOU N , SONG D F , QI W J , et al. Influence of the kissing bond on the mechanical properties and fracture behaviour of AA5083-H112 friction stir welds[J]. Materials Science and Engineering: A, 2018, 719, 12- 20.
doi: 10.1016/j.msea.2018.02.011
48 SATO Y S , TAKAUCHI H , PARK S H C , et al. Characteristics of the kissing-bond in friction stir welded Al alloy 1050[J]. Materials Science and Engineering: A, 2005, 405 (1/2): 333- 338.
49 KADLEC M , RŮŽEK R , NOVÁKOVÁ L . Mechanical behaviour of AA 7475 friction stir welds with the kissing bond defect[J]. International Journal of Fatigue, 2015, 74 (5): 7- 19.
50 RAGUPATHY V D , BHAT M R , PRASAD M V N . An experimental study of discontinuities in friction stir welded joints through nondestructive testing[J]. Materials Evaluation, 2017, 75 (3): 406- 412.
51 TAHERI H , KILPATRICK M , NORVALLS M , et al. Investigation of nondestructive testing methods for friction stir welding[J]. Metals, 2019, 9 (6): 624- 644.
doi: 10.3390/met9060624
52 ZHAO Y , LIN L , LI X M , et al. Simultaneous determination of the coating thickness and its longitudinal velocity by ultrasonic nondestructive method[J]. NDT & E International, 2010, 43 (7): 579- 585.
53 MA Z Y , ZHAO Y , LUO Z B , et al. Ultrasonic characterization of thermally grown oxide in thermal barrier coating by reflection coefficient amplitude spectrum[J]. Ultrasonics, 2014, 54 (4): 1005- 1009.
doi: 10.1016/j.ultras.2013.11.012
54 王磊, 谢里阳. 摩擦搅拌焊接过程温度场的测量分析[J]. 轻合金加工技术, 2011, 39 (4): 54- 59.
doi: 10.3969/j.issn.1007-7235.2011.04.012
54 WANG L , XIE L Y . Measurement and analysis of temperature in friction stirring welding process[J]. Light Alloy Fabrication Technology, 2011, 39 (4): 54- 59.
doi: 10.3969/j.issn.1007-7235.2011.04.012
55 JOSHIA V, BALASUBRAMANIAMA K, PRAKASH R V. Optimization of friction stir welding parameter for AA 5083 by radiography and ultrasonic technique[C]// 2011 IEEE International Ultrasonics Symposium. Orlando: IEEE, 2011: 1920-1923.
56 胡博文. 铝合金搅拌摩擦焊缺陷超声相控阵检测及其图像特征识别[D]. 南昌: 南昌航空大学, 2018.
56 HU B W. Ultrasonic phased array detection and recognition of image features for defects in friction stir welded aluminum alloy joints[D]. Nanchang: Nanchang Hangkong University, 2018.
57 JOHNSTON P H. Addressing the limit of detectability of residual oxide discontinuities in friction stir butt welds of aluminum using phased array ultrasound[C]// American Institute of Physics. Hampton: AIP Conference Proceedings, 2009: 1902-1909.
58 胡怀辉. 基于超声TOFD的搅拌摩擦焊近表面缺陷识别与检测信号特征研究[D]. 南昌: 南昌航空大学, 2014.
58 HU H H. Study of signal characteristic and near surface defect recognition of friction stir welding based on ultrasonic TOFD technology[D]. Nanchang: Nanchang Hangkong University, 2014.
59 BIRD R C . Ultrasonic phased array inspection technology for the evaluation of friction stir welds[J]. Insight-Non-Destructive Testing and Condition Monitoring, 2004, 46 (1): 31- 36.
doi: 10.1784/insi.46.1.31.52658
60 董剑. 铝合金搅拌摩擦焊缝超声波检测仿真研究[D]. 长春: 吉林大学, 2014.
60 DONG J. Ultrasonic simulation of friction stir welded joints of aluminum alloy[D]. Changchun: Jilin University, 2014.
61 路浩, 邢立伟, 赵新玉. 焊接缺陷高频显微超声可视化扫查检测[J]. 焊接, 2014, (9): 19- 23.
doi: 10.3969/j.issn.1001-1382.2014.09.005
61 LU H , XING L W , ZHAO X Y . Visual scanning inspection of welding defects by high frequency ultrasonic[J]. Welding & Joining, 2014, (9): 19- 23.
doi: 10.3969/j.issn.1001-1382.2014.09.005
62 ADAMUS K , LACKI P . Assessment of aluminum FSW joints using ultrasonic testing[J]. Archives of Metallurgy and Materials, 2017, 62 (4): 2399- 2404.
doi: 10.1515/amm-2017-0353
63 刘松平, 刘菲菲, 李乐刚, 等. 搅拌摩擦焊缝变入射角超声检测方法研究[J]. 无损检测, 2006, (5): 225- 228.
doi: 10.3969/j.issn.1000-6656.2006.05.001
63 LIU S P , LIU F F , LI L G , et al. Investigation of ultrasonic method based on different incident angles for evaluation of friction stir welding[J]. Nondestructive Testing, 2006, (5): 225- 228.
doi: 10.3969/j.issn.1000-6656.2006.05.001
64 GHIDINI T , VUGRIN T , DONNE C D . Residual stresses, defects and non-destructive evaluation of FSW joints[J]. Welding International, 2005, 19 (10): 783- 790.
doi: 10.1533/wint.2005.3493
65 孟永乐. 搅拌摩擦焊缺陷的无损检测技术研究[D]. 南昌: 南昌航空大学, 2011.
65 MENG Y L. Investigation on non-destructive testing technology in friction stir welding defects[D]. Nanchang: Nanchang Hangkong University, 2011.
66 徐蒋明, 柯黎明, 邢丽, 等. 搅拌摩擦焊焊缝缺陷的超声波动态波形研究[J]. 无损探伤, 2008, 32 (1): 5- 8.
doi: 10.3969/j.issn.1671-4423.2008.01.002
66 XU J M , KE L M , XING L , et al. Study on ultrasonic dynamic waveform of weld defects in friction stir welding[J]. Nondestructive Testing Technology, 2008, 32 (1): 5- 8.
doi: 10.3969/j.issn.1671-4423.2008.01.002
67 WEGLOWSKI M S . Ultrasonic tests of FSW joints of thicknesses below 8 mm[J]. Biuletyn Instytutu Spawalnictwa, 2018, (2): 7- 14.
68 YEH F W T , LUKOMSKI T , HAAG J , et al. An alternative ultrasonic time of flight diffraction (TOFD) method[J]. NDT & E International, 2018, 100, 74- 83.
69 HABIBPOUR-LEDARI A , HONARVAR F . Three dimensional characterization of defects by ultrasonic time-of-flight diffraction (TOFD) technique[J]. Journal of Nondestructive Evaluation, 2018, 37 (1): 14- 24.
doi: 10.1007/s10921-018-0465-5
70 孙旭, 金士杰, 张东辉, 等. 基于自回归谱外推方法的TOFD检测盲区抑制[J]. 机械工程学报, 2018, 54 (22): 15- 20.
70 SUN X , JIN S J , ZHANG D H , et al. Suppression of dead zone in TOFD with autoregressive spectral extrapolation[J]. Materials for Mechanical Engineering, 2018, 54 (22): 15- 20.
71 史俊伟, 刘松平. 搅拌摩擦焊焊缝超声TOFD检测与缺陷评估方法[J]. 无损检测, 2011, 33 (11): 1- 3.
71 SHI J W , LIU S P . Ultrasonic TOFD inspection and evaluation of weld seam defects in friction stir welding[J]. Nondestructive Testing, 2011, 33 (11): 1- 3.
72 迟大钊, 刚铁, 袁媛, 等. 面状缺陷超声TOFD法信号和图像的特征与识别[J]. 焊接学报, 2005, 26 (11): 1- 5.
doi: 10.3321/j.issn:0253-360X.2005.11.001
72 CHI D Z , GANG T , YUAN Y , et al. Feature and recognition of signal and image of ultrasonic TOFD method for surface defect[J]. Transactions of the China Welding Institution, 2005, 26 (11): 1- 5.
doi: 10.3321/j.issn:0253-360X.2005.11.001
73 TABATABAEIPOUR M , HETTLER J , DELRUE S , et al. Non-destructive ultrasonic examination of root defects in friction stir welded butt-joints[J]. NDT & E International, 2016, 80 (6): 23- 34.
74 迟大钊, 刚铁, 赵立彬. 线聚焦超声波法焊接缺陷识别[J]. 焊接学报, 2015, 36 (5): 29- 32.
74 CHI D Z , GANG T , ZHAO L B . Identification of welding defects by linear focusing ultrasonic method[J]. Transactions of the China Welding Institution, 2015, 36 (5): 29- 32.
75 JIN S J , SUN X , MA T T , et al. Quantitative detection of shallow subsurface defects by using mode-converted waves in time-of-flight diffraction technique[J]. Journal of Nondestructive Evaluation, 2020, 39 (2): 33.
doi: 10.1007/s10921-020-00676-3
76 CHEN T L , QUE P W , ZHANG O , et al. Ultrasonic nondestructive testing accurate sizing and locating technique based on time-of-flight-diffraction method[J]. Russian Journal of Nondestructive Testing, 2005, 41 (9): 594- 601.
doi: 10.1007/s11181-006-0006-7
77 陶京新. 薄板焊缝缺陷超声散射检测方法的研究[D]. 南昌: 南昌航空大学, 2014.
77 TAO J X. Study of the ultrasonic scattering detection method for thin planar welds[D]. Nanchang: Nanchang Hangkong University, 2014.
78 CHEN Y , LUO Z B , ZHOU Q , et al. Modeling of ultrasonic propagation in heavy-walled centrifugally cast austenitic stainless steel based on EBSD analysis[J]. Ultrasonics, 2015, 59, 31- 39.
doi: 10.1016/j.ultras.2015.01.009
79 OIWA N , KIDA K , IWAKI T , et al. A test of phased array ultrasonic testing of aluminum alloy friction stir welded joints[J]. Welding International, 2008, 22 (8): 511- 517.
doi: 10.1080/09507110802351920
80 FORTUNATO J , ANAND C , BRAGA D F O , et al. Friction stir weld-bonding defect inspection using phased array ultrasonic testing[J]. The International Journal of Advanced Manufacturing Technology, 2017, 93 (9/12): 3125- 3134.
81 WANG F , TU J , WEI Q , et al. Ultrasonic phased array testing of friction stir welded thin-walled lock welds[J]. Nondestructive Testing, 2017, 39 (5): 17- 20.
82 孙昌立, 刚铁, 刘斌, 等. 基于超声相控阵的FSW缺陷三维可视化[J]. 焊接学报, 2015, 36 (4): 47- 50.
82 SUN C L , GANG T , LIU B , et al. 3D visualization of FSW defects based on ultrasonic phased array[J]. Transactions of the China Welding Institution, 2015, 36 (4): 47- 50.
83 王常玺, 刚铁, 于朋, 等. 一种铝合金薄板搅拌摩擦焊焊缝的超声快速检测方法[J]. 机械工程学报, 2015, 51 (2): 7- 13.
83 WANG C X , GANG T , YU P , et al. Ultrasonic method for rapid detection of the aluminum friction stir welding defects[J]. Materials for Mechanical Engineering, 2015, 51 (2): 7- 13.
84 LAMARRE A , DUPUIS O , MOLES M . Complete inspection of friction stir welds in aluminum using ultrasonic and eddy current arrays[J]. CINDE Journal, 2006, 27 (4): 14- 16.
85 OIWA N , IWAKI S , OKADA T , et al. Studies on characteristics of friction stir welded joints in structural thin aluminum alloys part 1: imperfections in friction stir welded zones and their precision non-destructive testing[J]. Welding in the World, 2005, 49 (3): 76- 82.
86 康举, 栾国红, 付瑞东. 7075-T6铝合金搅拌摩擦焊焊缝表面带状纹理的组织与性能[J]. 金属学报, 2011, 47 (2): 224- 230.
86 KANG J , LUAN G H , FU R D . Microstructures and mechanical properties of banded textures of friction stir welded 7075-T6 aluminum alloy[J]. Acta Metallurgica Sinica, 2011, 47 (2): 224- 230.
87 王波, 高双胜, 马明. 2024铝合金薄板搅拌摩擦焊接头缺陷超声无损检测[J]. 机械制造与自动化, 2019, 48 (5): 54- 56.
87 WANG B , GAO S S , MA M . Study of ultrasound nondestructive detection of friction stir welded joint of 2024 aluminum alloy sheet[J]. Machine Building Automation, 2019, 48 (5): 54- 56.
88 易冠英. 铝合金搅拌摩擦焊接头缺陷的无损检测研究[D]. 沈阳: 沈阳航空航天大学, 2016.
88 YI G Y. Nondestructive testing of defects in friction stir welded joints of aluminum alloy[D]. Shenyang: Shenyang Aerospace University, 2016.
89 余亮, 陈玉华, 黄春平, 等. 搅拌摩擦焊焊缝缺陷的超声相控阵检测技术[J]. 焊接学报, 2014, 35 (1): 21- 24.
89 YU L , CHEN Y H , HUANG C P , et al. Ultrasonic phased array inspection technology for defects in friction stir welded seam[J]. Transactions of the China Welding Institution, 2014, 35 (1): 21- 24.
90 屈祎昕. 铝合金搅拌摩擦焊接头的无损检测与缺陷表征[D]. 石家庄: 河北科技大学, 2019.
90 QU Y X. Nondestructive testing and defect characterization of friction stir welding joints of aluminum alloys[D]. Shijiazhuang: Hebei University of Science and Technology, 2019.
91 SAGAR S P , MIYASAKA C , GHOSH M , et al. NDE of friction stir welds of Al alloys using high-frequency acoustic microscopy[J]. Nondestructive Testing and Evaluation, 2012, 27 (4): 375- 389.
doi: 10.1080/10589759.2012.656638
92 JIANG Y , WANG H , CHEN S , et al. Quantitative imaging detection of additive manufactured parts using laser ultrasonic testing[J]. IEEE Access, 2020, 8, 186071- 186079.
doi: 10.1109/ACCESS.2020.3030307
93 LIU J , FENG X , YIN A , et al. Weld quality inspection of small-diameter thin-walled pipes by a laser ultrasonic method[J]. Applied Optics: Optical Technology and Biomedical Optics, 2020, 59 (12): 3538- 3542.
94 郑德根. 基于激光超声的铝合金搅拌摩擦焊缺陷评价[D]. 上海: 上海交通大学, 2014.
94 ZHENG D G. Friction stir welding flaw evaluation of aluminum alloy by laser ultrasonic[D]. Shanghai: Shanghai Jiao Tong University, 2014.
95 LÉVESQUE D , DUBOURG L , BLOUIN A . Laser ultrasonics for defect detection and residual stress measurement of friction stir welds[J]. Nondestructive Testing and Evaluation, 2011, 26 (3/4): 319- 333.
96 FAN Z , LOWE M J S . Interaction of weld-guided waves with defects[J]. NDT & E International, 2012, 47, 124- 133.
97 滕飞. 基于时间反转法的兰姆波在铝合金板材缺陷检测中的应用[D]. 哈尔滨: 哈尔滨理工大学, 2009.
97 TENG F. Time-reversal lamb wave used in defect detection of aluminum alloyed plates[D]. Harbin: Harbin University of Science and Technology, 2009.
98 SANTOS M J , SANTOS J B . Lamb waves technique applied to the characterization of defects in friction stir welding of aluminum plates: comparison with X-Ray and ultrasonic C-Scan[J]. Journal of Testing & Evaluation, 2010, 38 (5): 622- 627.
99 YU L Y , TIAN Z H , LECKEY C A C . Crack imaging and quantification in aluminum plates with guided wave wavenumber analysis methods[J]. Ultrasonics, 2015, 62, 203- 212.
doi: 10.1016/j.ultras.2015.05.019
100 FAKIH M A , MUSTAPHA S , TARRAF J , et al. Detection and assessment of flaws in friction stir welded joints using ultrasonic guided waves: experimental and finite element analysis[J]. Mechanical Systems and Signal Processing, 2018, 101 (1): 516- 534.
101 HAFEZI M H , ALEBRAHIM R , KUNDU T . Peri-ultrasound for modeling linear and nonlinear ultrasonic response[J]. Ultrasonics, 2017, 80, 47- 57.
doi: 10.1016/j.ultras.2017.04.015
102 DELRUE S , TABATABAEIPOUR M , HETTLER J , et al. Applying a nonlinear, pitch-catch, ultrasonic technique for the detection of kissing bonds in friction stir welds[J]. Ultrasonics, 2016, 68, 71- 79.
doi: 10.1016/j.ultras.2016.02.012
103 夏宁, 滕东平, 李东风, 等. 基于相控阵图谱的轨道车辆铝合金搅拌摩擦焊接头缺陷自动识别系统[J]. 焊接技术, 2019, 48 (9): 107- 109.
103 XIA N , TENG D P , LI D F , et al. Automatic identification system of rail vehicle aluminum alloy friction stir welding joint defects based on phased array images[J]. Welding Technology, 2019, 48 (9): 107- 109.
104 原可义, 韩赞东, 史清宇, 等. 基于独立分量分析的搅拌摩擦焊缝超声无损评价[J]. 焊接学报, 2015, 36 (12): 9- 12.
104 YUAN K Y , HAN Z D , SHI Q Y , et al. Ultrasonic nondestructive evaluation of friction stir welding joints based on independent component analysis[J]. Transactions of the China Welding Institution, 2015, 36 (12): 9- 12.
105 SANTOS T , VILAÇA P , QUINTINO L . Developments in NDT for detecting imperfections in friction stir welds in aluminium alloys[J]. Welding in the World, 2008, 52 (9): 30- 37.
106 LIU J , XU G C , REN L , et al. Defect intelligent identification in resistance spot welding ultrasonic detection based on wavelet packet and neural network[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90 (9): 2581- 2588.
107 WEIMER D , THAMER H , SCHOLZ-REITER B . Learning defect classifiers for textured surfaces using neural networks and statistical feature representations[J]. Procedia CIRP, 2013, 7, 347- 352.
doi: 10.1016/j.procir.2013.05.059
108 DAS B , PAL S , BAG S . A combined wavelet packet and Hilbert-Huang transform for defect detection and modelling of weld strength in friction stir welding process[J]. Journal of Manufacturing Processes, 2016, 22 (4): 260- 268.
109 PASADAS D J , RAMOS H G , FENG B , et al. Defect classification with SVM and wideband excitation in multilayer aluminum plates[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69 (1): 241- 248.
doi: 10.1109/TIM.2019.2893009
110 徐蒋明, 柯黎明. 搅拌摩擦焊焊缝缺陷超声检测信号特征分析与神经网络模识别[J]. 核动力工程, 2020, 41 (1): 163- 166.
110 XU J M , KE L M . Characteristic extraction based on wavelet packet and pattern recognition for ultrasonic inspection signals from defects in FSW joints using artificial neural network[J]. Nuclear Power Engineering, 2020, 41 (1): 163- 166.
[1] 刘小辉, 刘允中. 激光选区熔化成形高强铝合金晶粒细化抑制裂纹研究现状[J]. 材料工程, 2022, 50(8): 1-16.
[2] 潘士伟, 王自东, 陈晓华, 王艳林, 陈凯旋, 朱谕至. 锆微合金化增强铝合金的研究进展[J]. 材料工程, 2022, 50(8): 17-33.
[3] 倪洪江, 邢宇, 戴霄翔, 李军, 张代军, 陈祥宝. 航空发动机用聚酰亚胺树脂基复合材料固化工艺及热稳定性能[J]. 材料工程, 2022, 50(7): 102-109.
[4] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[5] 王付胜, 孔繁淇, 王文平, 陈亚军. 航空铝合金原位腐蚀疲劳性能及断裂机理[J]. 材料工程, 2022, 50(6): 149-156.
[6] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[7] 韩启飞, 符瑞, 胡锦龙, 郭跃岭, 韩亚峰, 王俊升, 纪涛, 卢继平, 刘长猛. 电弧熔丝增材制造铝合金研究进展[J]. 材料工程, 2022, 50(4): 62-73.
[8] 余晖, 任军超, 杨鑫, 郭舒龙, 余炜, 冯建航, 殷福星, 辛光善. Zn层添加AZ31/7075合金复合成形工艺及组织与性能研究[J]. 材料工程, 2022, 50(3): 157-165.
[9] 李红, 闫维嘉, 张禹, 杜文博, 栗卓新, MARIUSZBober, SENKARAJacek. 先进航空材料焊接过程热裂纹研究进展[J]. 材料工程, 2022, 50(2): 50-61.
[10] 陈高红, 张月, 李应权, 刘建华, 于美. 缓蚀剂组合的容器负载方式对铝合金涂层耐蚀性能的影响[J]. 材料工程, 2022, 50(2): 153-163.
[11] 金启豪, 陈娟, 彭立明, 李子言, 阎熙, 李春曦, 侯城成, 袁铭扬. 碳纤维增强树脂基复合材料与铝/镁合金连接研究进展[J]. 材料工程, 2022, 50(1): 15-24.
[12] 邵震, 崔雷, 王东坡, 陈永亮, 胡正根, 王非凡. 几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响[J]. 材料工程, 2022, 50(1): 25-32.
[13] 吴程浩, 刘涛, 高嵩, 石磊, 刘洪涛. 铝/钢异种金属的超声振动强化搅拌摩擦焊接工艺[J]. 材料工程, 2022, 50(1): 33-42.
[14] 王浩, 肖纳敏, 李惠曲, 王晓. 7050铝合金结构件热处理与冷成形过程残余应力演化规律的数值模拟[J]. 材料工程, 2021, 49(8): 72-80.
[15] 王志成, 李嘉荣, 刘世忠, 赵金乾, 史振学, 王效光, 杨万鹏, 岳晓岱. 单晶高温合金雀斑研究进展[J]. 材料工程, 2021, 49(7): 1-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn