Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (1): 25-32    DOI: 10.11868/j.issn.1001-4381.2021.000657
  搅拌摩擦焊接专栏 本期目录 | 过刊浏览 | 高级检索 |
几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响
邵震1,2, 崔雷1,2, 王东坡1,2, 陈永亮3, 胡正根4, 王非凡4
1. 天津大学 材料科学与工程学院, 天津 300350;
2. 天津大学天津市现代连接技术重点实验室, 天津 300350;
3. 天津大学机械工程学院, 天津 300350;
4. 中国运载火箭技术研究院, 北京 100076
Influence of geometric parameters on microstructure and mechanical properties of friction pull plug welding joints for 2219 aluminum alloy
SHAO Zhen1,2, CUI Lei1,2, WANG Dongpo1,2, CHEN Yongliang3, HU Zhenggen4, WANG Feifan4
1. School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China;
2. Tianjin Key Laboratory of Advanced Joining Technology, Tianjin University, Tianjin 300350, China;
3. School of Mechanical Engineering, Tianjin University, Tianjin 300350, China;
4. China Academy of Launch Vehicle Technology, Beijing 100076, China
全文: PDF(27293 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 拉拔式摩擦塞补焊是火箭贮箱制造过程的重要技术之一。研究8 mm厚2219-T87铝合金拉拔式摩擦塞补焊接头的几何形状及其对接头微观组织和力学性能的影响。结果表明:塞孔及成形环几何形状对接头界面结合质量有重要影响。当焊接工艺参数为7000 r·min-1主轴转速,35 kN轴向拉力以及16 mm轴向进给量时,使用锥直孔塞孔可有效防止塞棒在焊接过程中发生颈缩,从而消除接头未焊合缺陷;使用阶梯孔形成形环可以改善接头界面受力状态,防止弱结合缺陷产生。微观组织分析表明,毗邻结合界面的母材侧组织发生动态再结晶,热机械影响区组织发生明显塑性变形。接头附近组织受焊接热循环和塞棒旋转挤压作用发生明显软化,硬度最低值出现在热机械影响区,约为90HV。当接头存在焊接缺陷时,接头抗拉强度及伸长率较母材大幅降低,而无缺陷焊接接头的抗拉强度及伸长率分别为360.1 MPa和6.45%,接头系数为0.828,断裂方式为韧性断裂。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邵震
崔雷
王东坡
陈永亮
胡正根
王非凡
关键词 拉拔式摩擦塞补焊2219铝合金接头几何参数微观组织力学性能    
Abstract:Friction pull plug welding is one of the key technologies in the manufacturing process of rocket tank.The geometrical shape and its effect on microstructure and mechanical properties of friction pull plug welding for the 8 mm thick 2219-T87 aluminum alloy were studied. The results show that the geometry of hole and forming ring has an important effect on the interface quality of the joint. When the welding parameters are 7000 r·min-1 rotation speed, 35 kN axial tensile force and 16 mm axial feed, the use of tapered straight hole can effectively prevent the neck of plug during the welding process, so as to eliminate the lack of bonding defect. The stepped shaped forming ring can improve the stress state of interface and prevent the weak bonding defects. The microstructure analysis shows that dynamic recrystallization occurs at the base material side adjacent to the interface, and obvious plastic deformation occurs at the thermo-mechanical affected zone. The microstructure adjacent to the bonding interface is obviously softened by the welding thermal cycle and the rotary extrusion of the plug; and the lowest hardness value is about 90HV, which occurs in the thermal mechanical affected zone. When the joint has weld defects, the tensile strength of the joint significantly reduces compared with that of base material.The tensile strength and elongation of the joint without weld defects can reach 360.1 MPa and 6.45%, respectively, the joint coefficient is 0.828, and the fracture mode is ductile fracture.
Key wordsfriction pull plug welding    2219 aluminum alloy    joint geometric parameter    microstructure    mechanical property
收稿日期: 2021-07-17      出版日期: 2022-01-19
中图分类号:  TG156  
基金资助:国家自然科学基金(51875401,52075376)
通讯作者: 崔雷(1985—),男,副教授,博士,研究方向为铝合金搅拌摩擦焊及摩擦塞补焊技术,联系地址:天津市津南区海河教育园区天津大学北洋园校区31教学楼(300350),E-mail: leicui@tju.edu.cn     E-mail: leicui@tju.edu.cn
引用本文:   
邵震, 崔雷, 王东坡, 陈永亮, 胡正根, 王非凡. 几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响[J]. 材料工程, 2022, 50(1): 25-32.
SHAO Zhen, CUI Lei, WANG Dongpo, CHEN Yongliang, HU Zhenggen, WANG Feifan. Influence of geometric parameters on microstructure and mechanical properties of friction pull plug welding joints for 2219 aluminum alloy. Journal of Materials Engineering, 2022, 50(1): 25-32.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000657      或      http://jme.biam.ac.cn/CN/Y2022/V50/I1/25
[1] LI W K. Design on the control system of friction pullplug welding equipment and study on the welding experiment[D]. Tianjin: Tianjin University, 2018. 历吴恺. 拉拔式摩擦塞焊设备控制系统设计及焊接工艺试验研究[D]. 天津: 天津大学, 2018.
[2] LIN H L. Research on the equipment and process of friction pull plug welding for on-side manufacturing[D]. Tianjin: Tianjin University, 2018. 林恒利. 面向现场制造的拉锻式摩擦塞焊设备与工艺研究[D]. 天津: 天津大学, 2018.
[3] METZ D F, BARKEY M E. Fatigue behavior of friction plug welds in 2195 Al-Li alloy[J]. International Journal of Fatigue, 2012, 43: 178-187.
[4] COLETTA E R, CANTRELL M A. Friction pull plug welding: chamfered heat sink pull plug design: US 6880743B1[P]. 2005-04-19.
[5] METZ D F, WEISHAUPT E R, BARKEY M E, et al. A microstructure and microhardness characterization of a friction plug weld in friction stir welded 2195 Al-Li[J]. Journal of Engineering Materials and Technology, 2012, 134(2): 021005.
[6] WANG J G, WANG Z T. Advanced on wrought aluminum alloys used for aeronautic and astronautic industry(1)[J]. Light Alloy Fabrication Technology, 2013, 41(8): 1-6. 王建国, 王祝堂. 航空航天变形铝合金的进展(1)[J]. 轻合金加工技术, 2013, 41(8): 1-6.
[7] DU B, YANG X Q, SUN Z P, et al. Microstructures and properties of 2219-T87 aluminum alloy friction pull plug welds[J]. Transactions of the China Welding Institution, 2019, 40(2): 128-132. 杜波, 杨新岐, 孙转平, 等. 2219-T87铝合金拉锻式摩擦塞补焊接头组织及性能[J]. 焊接学报, 2019, 40(2): 128-132.
[8] COLETTA E R, CANTRELL M A. Friction pull plug welding: top hat plug design: US 6253987B1[P]. 2001-07-03.
[9] TAKESHITA R, HIBBARD T L. Friction plug welding: US 6213379B1[P]. 2001-04-10.
[10] LU P, CUI L, WANG H M, et al. Friction pull plug welding process of 2219 aluminum alloy[J]. Aeronautical Manufacturing Technology, 2019, 62(12): 55-64. 卢鹏, 崔雷, 王惠苗, 等. 2219铝合金拉锻式摩擦塞补焊工艺研究[J]. 航空制造技术, 2019, 62(12): 55-64.
[11] CUI L, LU P, LI W K, et al. Influence of axial force parameters to the quality of friction pull plug welding for 2219-T87 alumi-nium alloy sheets[J]. Science and Technology of Welding and Joining, 2018, 24(26): 1-9.
[12] GAO J Y, YANG L J, CUI L, et al. Improving the weld formation and mechanical properties of the AA-5A06 friction pull plug welds by axial force control[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 828-838.
[13] DU B, CUI L, YANG X Q, et al. Weakening mechanism and tensile fracture behavior of AA2219-T87 friction plug welds[J]. Materials Science and Engineering: A, 2017, 693: 129-135.
[14] LI G A, MA Z, JIANG J T, et al. Effect of pre-stretch on the precipitation behavior and the mechanical properties of 2219 Al alloy[J]. Materials, 2021, 14(9): 2101.
[15] MA Z. Influence of cold deformation and aging on microstructure and properties of aluminum alloy 2219[D]. Harbin: Harbin Institute of Technology, 2014. 马征. 冷变形及时效对2219铝合金组织性能的影响规律[D]. 哈尔滨: 哈尔滨工业大学, 2014.
[16] MOTT N F, NABARRO F. An attempt to estimate the degree of precipitation hardening, with a simple model[J]. Proceedings of the Physical Society, 2002, 52(1): 86-89.
[1] 安强, 祁文军, 左小刚. TA15钛合金表面原位合成TiC增强钛基激光熔覆层的组织与耐磨性[J]. 材料工程, 2022, 50(4): 139-146.
[2] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[3] 孙琦迪, 杨蔚涛, 郝庆国, 关肖虎, 章斌, 杨旗. 低周疲劳变形过程中Fe-33Mn-4Si合金钢的微观组织演变[J]. 材料工程, 2022, 50(4): 162-171.
[4] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
[5] 计植耀, 马跃, 王清, 董闯. 高性能软磁合金的研究进展[J]. 材料工程, 2022, 50(3): 69-80.
[6] 陈帅, 陶凤和, 贾长治, 孙河洋. 成形角度对选区激光熔化4Cr5MoSiV1钢组织和性能的影响[J]. 材料工程, 2022, 50(3): 122-130.
[7] 余晖, 任军超, 杨鑫, 郭舒龙, 余炜, 冯建航, 殷福星, 辛光善. Zn层添加AZ31/7075合金复合成形工艺及组织与性能研究[J]. 材料工程, 2022, 50(3): 157-165.
[8] 唐鹏钧, 房立家, 王兴元, 李沛勇, 张学军. 人工时效对激光选区熔化AlMg4.5Sc0.55Mn0.5Zr0.2合金显微组织和力学性能的影响[J]. 材料工程, 2022, 50(2): 84-93.
[9] 吴程浩, 刘涛, 高嵩, 石磊, 刘洪涛. 铝/钢异种金属的超声振动强化搅拌摩擦焊接工艺[J]. 材料工程, 2022, 50(1): 33-42.
[10] 徐学宏, 郑义珠, 陈吉平, 宁博, 刘晓忱. 缝合参数对泡沫夹层结构复合材料力学性能的影响[J]. 材料工程, 2022, 50(1): 132-137.
[11] 肖伟, 杨占旭, 乔庆东. 石墨电极表面聚丙烯腈纳米纤维膜的制备及性能[J]. 材料工程, 2021, 49(9): 60-68.
[12] 王庆娟, 吴金城, 王伟, 杜忠泽, 尹仁锟. 超高强β钛合金等温相转变特性及力学性能[J]. 材料工程, 2021, 49(9): 94-100.
[13] 李安庆, 张立华, 蒋日鹏, 李晓谦, 张昀. 冷却速度及超声振动协同作用对7085铝合金凝固组织及力学性能的影响[J]. 材料工程, 2021, 49(8): 63-71.
[14] 孙昊飞, 肖志, 韦凯, 杨旭静, 齐军. 预弯曲变形对CP800复相钢力学性能的影响[J]. 材料工程, 2021, 49(8): 81-88.
[15] 姜卓钰, 束小文, 吕晓旭, 高晔, 周怡然, 董禹飞, 焦健. SiC晶须增强SiCf/SiC复合材料的力学性能[J]. 材料工程, 2021, 49(8): 89-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn