Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (1): 25-32    DOI: 10.11868/j.issn.1001-4381.2021.000657
  搅拌摩擦焊接专栏 本期目录 | 过刊浏览 | 高级检索 |
几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响
邵震1,2, 崔雷1,2,*(), 王东坡1,2, 陈永亮3, 胡正根4, 王非凡4
1 天津大学 材料科学与工程学院, 天津 300350
2 天津大学天津市现代连接技术重点实验室, 天津 300350
3 天津大学机械工程学院, 天津 300350
4 中国运载火箭技术研究院, 北京 100076
Influence of geometric parameters on microstructure and mechanical properties of friction pull plug welding joints for 2219 aluminum alloy
Zhen SHAO1,2, Lei CUI1,2,*(), Dongpo WANG1,2, Yongliang CHEN3, Zhenggen HU4, Feifan WANG4
1 School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
2 Tianjin Key Laboratory of Advanced Joining Technology, Tianjin University, Tianjin 300350, China
3 School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
4 China Academy of Launch Vehicle Technology, Beijing 100076, China
全文: PDF(27293 KB)   HTML ( 2 )  
输出: BibTeX | EndNote (RIS)      
摘要 

拉拔式摩擦塞补焊是火箭贮箱制造过程的重要技术之一。研究8 mm厚2219-T87铝合金拉拔式摩擦塞补焊接头的几何形状及其对接头微观组织和力学性能的影响。结果表明: 塞孔及成形环几何形状对接头界面结合质量有重要影响。当焊接工艺参数为7000 r·min-1主轴转速, 35 kN轴向拉力以及16 mm轴向进给量时, 使用锥直孔塞孔可有效防止塞棒在焊接过程中发生颈缩, 从而消除接头未焊合缺陷; 使用阶梯孔形成形环可以改善接头界面受力状态, 防止弱结合缺陷产生。微观组织分析表明, 毗邻结合界面的母材侧组织发生动态再结晶, 热机械影响区组织发生明显塑性变形。接头附近组织受焊接热循环和塞棒旋转挤压作用发生明显软化, 硬度最低值出现在热机械影响区, 约为90HV。当接头存在焊接缺陷时, 接头抗拉强度及伸长率较母材大幅降低, 而无缺陷焊接接头的抗拉强度及伸长率分别为360.1 MPa和6.45%, 接头系数为0.828, 断裂方式为韧性断裂。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邵震
崔雷
王东坡
陈永亮
胡正根
王非凡
关键词 拉拔式摩擦塞补焊2219铝合金接头几何参数微观组织力学性能    
Abstract

Friction pull plug welding is one of the key technologies in the manufacturing process of rocket tank.The geometrical shape and its effect on microstructure and mechanical properties of friction pull plug welding for the 8 mm thick 2219-T87 aluminum alloy were studied. The results show that the geometry of hole and forming ring has an important effect on the interface quality of the joint. When the welding parameters are 7000 r·min-1 rotation speed, 35 kN axial tensile force and 16 mm axial feed, the use of tapered straight hole can effectively prevent the neck of plug during the welding process, so as to eliminate the lack of bonding defect. The stepped shaped forming ring can improve the stress state of interface and prevent the weak bonding defects. The microstructure analysis shows that dynamic recrystallization occurs at the base material side adjacent to the interface, and obvious plastic deformation occurs at the thermo-mechanical affected zone. The microstructure adjacent to the bonding interface is obviously softened by the welding thermal cycle and the rotary extrusion of the plug; and the lowest hardness value is about 90HV, which occurs in the thermal mechanical affected zone. When the joint has weld defects, the tensile strength of the joint significantly reduces compared with that of base material.The tensile strength and elongation of the joint without weld defects can reach 360.1 MPa and 6.45%, respectively, the joint coefficient is 0.828, and the fracture mode is ductile fracture.

Key wordsfriction pull plug welding    2219 aluminum alloy    joint geometric parameter    microstructure    mechanical property
收稿日期: 2021-07-17      出版日期: 2022-01-19
中图分类号:  TG156  
基金资助:国家自然科学基金(51875401);国家自然科学基金(52075376)
通讯作者: 崔雷     E-mail: leicui@tju.edu.cn
作者简介: 崔雷(1985—),男,副教授,博士,研究方向为铝合金搅拌摩擦焊及摩擦塞补焊技术,联系地址:天津市津南区海河教育园区天津大学北洋园校区31教学楼(300350),E-mail: leicui@tju.edu.cn
引用本文:   
邵震, 崔雷, 王东坡, 陈永亮, 胡正根, 王非凡. 几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响[J]. 材料工程, 2022, 50(1): 25-32.
Zhen SHAO, Lei CUI, Dongpo WANG, Yongliang CHEN, Zhenggen HU, Feifan WANG. Influence of geometric parameters on microstructure and mechanical properties of friction pull plug welding joints for 2219 aluminum alloy. Journal of Materials Engineering, 2022, 50(1): 25-32.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000657      或      http://jme.biam.ac.cn/CN/Y2022/V50/I1/25
Cu Mn Ti Zr V Zn Mg Fe Si Al
5.8-6.8 0.2-0.4 0.02-0.10 0.10-0.24 0.05-0.15 <0.1 0.02 <0.3 <0.2 Bal
Table 1  2219铝合金化学成分(质量分数/%)
Rotation speed/(r·min-1) Axial force/kN Axial feed/mm Forging force/kN Forging time/s
7000 35 16 35 4
Table 2  FPPW焊接工艺参数
Fig.1  FPPW原理示意图(a)及接头装配(b)
Fig.2  FPPW接头几何结构示意图
(a)塞棒;(b)1#塞孔;(c)2#塞孔;(d)1#成形环;(e)2#成形环
Joint No Hole Forming ring
1# 1#
1# 2#
2# 1#
2# 2#
Table 3  塞孔与成形环匹配关系
Fig.3  拉伸试样尺寸示意图
Fig.4  不同温度下流变应力与应变的关系(a)260 ℃;(b)371 ℃;(c)482 ℃
Material Pyroconductivity/(N·s-1·mm-1·℃-1) Thermal capacity/(N·mm-2·℃-1) Thermal emissivity/(N·mm-1·s-1)
2219 180 1.0 0.7
45 steel 39 4.5 0.7
Table 4  相关材料热物理参数
Fig.5  接头截面宏观形貌
(a)接头Ⅰ;(b)接头Ⅱ;(c)接头Ⅲ;(d)接头Ⅳ
Fig.6  接头Ⅲ(a)和接头Ⅳ(b)的应力场分布
Fig.7  接头界面结合形貌
(a)接头Ⅰ;(b)接头Ⅱ;(c)接头Ⅲ;(d)接头Ⅳ
Fig.8  接头Ⅳ不同区域的SEM图
(a)SEM图;(b)BM;(c)HAZ;(d)TMAZ;(e)RZ;(f)BI;(g)PM
Fig.9  接头Ⅳ截面硬度分布
Fig.10  母材与不同接头的抗拉强度及伸长率
Fig.11  FPPW接头拉伸断口形貌
(a)接头Ⅰ;(b)接头Ⅱ;(c)接头Ⅲ;(d)接头Ⅳ
1 历吴恺. 拉拔式摩擦塞焊设备控制系统设计及焊接工艺试验研究[D]. 天津: 天津大学, 2018.
1 LI W K. Design on the control system of friction pullplug welding equipment and study on the welding experiment[D]. Tianjin: Tianjin University, 2018.
2 林恒利. 面向现场制造的拉锻式摩擦塞焊设备与工艺研究[D]. 天津: 天津大学, 2018.
2 LIN H L. Research on the equipment and process of friction pull plug welding for on-side manufacturing[D]. Tianjin: Tianjin University, 2018.
3 METZ D F , BARKEY M E . Fatigue behavior of friction plug welds in 2195 Al-Li alloy[J]. International Journal of Fatigue, 2012, 43, 178- 187.
doi: 10.1016/j.ijfatigue.2012.04.002
4 COLETTA E R, CANTRELL M A. Friction pull plug welding: chamfered heat sink pull plug design: US 6880743B1[P]. 2005-04-19.
5 METZ D F , WEISHAUPT E R , BARKEY M E , et al. A microstructure and microhardness characterization of a friction plug weld in friction stir welded 2195 Al-Li[J]. Journal of Engineering Materials and Technology, 2012, 134 (2): 021005.
doi: 10.1115/1.4006066
6 王建国, 王祝堂. 航空航天变形铝合金的进展(1)[J]. 轻合金加工技术, 2013, 41 (8): 1- 6.
6 WANG J G , WANG Z T . Advanced on wrought aluminum alloys used for aeronautic and astronautic industry(1)[J]. Light Alloy Fabrication Technology, 2013, 41 (8): 1- 6.
7 杜波, 杨新岐, 孙转平, 等. 2219-T87铝合金拉锻式摩擦塞补焊接头组织及性能[J]. 焊接学报, 2019, 40 (2): 128- 132.
7 DU B , YANG X Q , SUN Z P , et al. Microstructures and properties of 2219-T87 aluminum alloy friction pull plug welds[J]. Transactions of the China Welding Institution, 2019, 40 (2): 128- 132.
8 COLETTA E R, CANTRELL M A. Friction pull plug welding: top hat plug design: US 6253987B1[P]. 2001-07-03.
9 TAKESHITA R, HIBBARD T L. Friction plug welding: US 6213379B1[P]. 2001-04-10.
10 卢鹏, 崔雷, 王惠苗, 等. 2219铝合金拉锻式摩擦塞补焊工艺研究[J]. 航空制造技术, 2019, 62 (12): 55- 64.
10 LU P , CUI L , WANG H M , et al. Friction pull plug welding process of 2219 aluminum alloy[J]. Aeronautical Manufacturing Technology, 2019, 62 (12): 55- 64.
11 CUI L , LU P , LI W K , et al. Influence of axial force parameters to the quality of friction pull plug welding for 2219-T87 alumi-nium alloy sheets[J]. Science and Technology of Welding and Joining, 2018, 24 (26): 1- 9.
12 GAO J Y , YANG L J , CUI L , et al. Improving the weld formation and mechanical properties of the AA-5A06 friction pull plug welds by axial force control[J]. Acta Metallurgica Sinica (English Letters), 2020, 33 (3): 828- 838.
13 DU B , CUI L , YANG X Q , et al. Weakening mechanism and tensile fracture behavior of AA2219-T87 friction plug welds[J]. Materials Science and Engineering: A, 2017, 693, 129- 135.
doi: 10.1016/j.msea.2017.03.093
14 LI G A , MA Z , JIANG J T , et al. Effect of pre-stretch on the precipitation behavior and the mechanical properties of 2219 Al alloy[J]. Materials, 2021, 14 (9): 2101.
doi: 10.3390/ma14092101
15 马征. 冷变形及时效对2219铝合金组织性能的影响规律[D]. 哈尔滨: 哈尔滨工业大学, 2014.
15 MA Z. Influence of cold deformation and aging on microstructure and properties of aluminum alloy 2219[D]. Harbin: Harbin Institute of Technology, 2014.
16 MOTT N F , NABARRO F . An attempt to estimate the degree of precipitation hardening, with a simple model[J]. Proceedings of the Physical Society, 2002, 52 (1): 86- 89.
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[3] 朱阳阳, 李晓延, 张伟栋, 张虎, 何溪. 全Cu3Sn焊点在高温时效下的组织及力学性能[J]. 材料工程, 2022, 50(9): 169-176.
[4] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[5] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[6] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[7] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[8] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[9] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[10] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[11] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[12] 张昌青, 王树文, 罗德春, 师文辰, 刘晓, 崔国胜, 陈波阳, 辛舟, 芮执元. 热电耦合对铝/钢连续驱动摩擦焊接头组织的影响机理[J]. 材料工程, 2022, 50(5): 35-42.
[13] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[14] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[15] 安强, 祁文军, 左小刚. TA15钛合金表面原位合成TiC增强钛基激光熔覆层的组织与耐磨性[J]. 材料工程, 2022, 50(4): 139-146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn