Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (2): 50-61    DOI: 10.11868/j.issn.1001-4381.2021.000676
  综述 本期目录 | 过刊浏览 | 高级检索 |
先进航空材料焊接过程热裂纹研究进展
李红1, 闫维嘉1, 张禹1,*(), 杜文博1, 栗卓新1, MARIUSZBober2, SENKARAJacek2
1 北京工业大学 材料与制造学部 轻合金材料与加工研究所, 北京 100124
2 华沙理工大学, 华沙 02524
Research progress of hot crack in fusion welding of advanced aeronautical materials
Hong LI1, Weijia YAN1, Yu ZHANG1,*(), Wenbo DU1, Zhuoxin LI1, Bober MARIUSZ2, Jacek SENKARA2
1 Institute of Light Alloy and Processing, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
2 Warsaw University of Technology, Warsaw 02524, Poland
全文: PDF(6338 KB)   HTML ( 2 )  
输出: BibTeX | EndNote (RIS)      
摘要 

高焊接热裂纹敏感性是制约新一代合金材料在航空航天领域推广应用的技术瓶颈。本文分别从焊接热裂纹的产生机理和各类合金裂纹敏感性实验的角度梳理该方向的研究进展。焊接热裂纹主要包括凝固裂纹(在焊缝内部产生)和液化裂纹(在焊缝与部分熔化区交界处产生)。影响焊接热裂纹产生的因素包括材料成分、焊接热循环以及接头热应力。在梳理焊接热裂纹机理研究的基础上,分别总结了铝合金、镁合金、先进高强钢以及镍基合金焊接热裂纹的实验研究进展。建立考虑复杂多组元以及结晶形态对裂纹敏感性影响的量化判据,是该领域未来的重要发展方向。针对母材和焊材进行成分优化、添加形核剂或实施辅助工艺措施,是工程应用领域抑制热裂纹缺陷的有效方法。开展焊接热裂纹产生机理及其抑制方法研究,有助于突破新一代合金材料加工技术瓶颈,推进其在航空航天领域的应用。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李红
闫维嘉
张禹
杜文博
栗卓新
MARIUSZBober
SENKARAJacek
关键词 热裂纹铝合金镁合金高强钢镍基高温合金    
Abstract

The high fusion welding hot cracking sensibility of the next-generation alloy is the key technological difficulty that hinders its widely application in the aeronautic and astronautic industry. A critical review of the fusion welding hot cracking from the perspective of basic mechanism and the experimental research of typical materials was presented in this article. The fusion welding hot cracking phenomena include solidification cracking (occurs within the fusion zone) and liquidation cracking (occurs at the interface between fusion zone and partial melting zone). The formation factors of the fusion welding hot cracking include alloying composition, welding thermal cycle and thermal stress. Based on the comprehensive understanding of the formation mechanism of the fusion welding hot cracking, the relative research progress in the field of aluminum alloys, magnesium alloys, advanced high strength steel and nickel alloys was summarized. The establishment of the quantitative criterion that involves the effects of complicated multi-component and the morphology of the dendrite on the cracking sensibility is the key development direction. Optimizing the alloying composition of the base metal or filler metal, adding nucleanting agent or auxiliary facilities are the practical method for restraining the fusion welding hot cracking. Conducting the research on the mechanism and restraining method of the fusion welding hot cracking helps to solve the difficulty of the next generation alloys processing, which can realize their application in the field of aeronautic and astronautic industry.

Key wordshot cracking    aluminum alloy    magnesium alloy    high strength steel    Ni-based superalloy
收稿日期: 2021-07-21      出版日期: 2022-02-23
中图分类号:  TG401  
基金资助:国家自然科学基金(51905300);国家自然科学基金(52074017);科技部中国-波兰政府间科技合作委员会第38届例会人员交流项目(No.13);2021年度北京工业大学国际科研合作种子基金项目(A14);2021年度北京工业大学国际科研合作种子基金项目(B27);北京市自然科学基金(3202002)
通讯作者: 张禹     E-mail: zhangyumse@bjut.edu.cn
作者简介: 张禹(1989-), 男, 副研究员, 博士, 主要从事有色金属焊接裂纹敏感性、车身轻量化先进连接工艺以及多物理场耦合数值模拟等方向的研究, 联系地址: 北京市朝阳区平乐园100号北京工业大学材料楼328(100124), E-mail: zhangyumse@bjut.edu.cn
引用本文:   
李红, 闫维嘉, 张禹, 杜文博, 栗卓新, MARIUSZBober, SENKARAJacek. 先进航空材料焊接过程热裂纹研究进展[J]. 材料工程, 2022, 50(2): 50-61.
Hong LI, Weijia YAN, Yu ZHANG, Wenbo DU, Zhuoxin LI, Bober MARIUSZ, Jacek SENKARA. Research progress of hot crack in fusion welding of advanced aeronautical materials. Journal of Materials Engineering, 2022, 50(2): 50-61.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000676      或      http://jme.biam.ac.cn/CN/Y2022/V50/I2/50
Fig.1  凝固裂纹的产生机理[2]
(a)熔池附近的组织示意图;(b)焊缝冷凝区的局部放大图;(c)相邻晶粒生长的解析模型;(d)凝固裂纹敏感性判据示意图
Fig.2  液化裂纹产生机理[5]
(a)合金相图;(b)熔池及周围的组织示意图;(c)局部放大(产生液化裂纹的情况);(d)局部放大(不产生液化裂纹的情况)
Category Author Equation Characteristic Reference
Stress-based criteria Novikov (1968) σfr=2γ/b
σfr-fracture stress; γ-surface tension; b-film thickness
Crack will occur if stress pull apart two parallel plates separated by a thin liquid film as to the strength of semi-solid metals. Viscosity and wetting angle are neglected
Application: liquation crack, solidification crack
[3]
Williams and Singer (1968)
σfr-fracture stress; A-a constant dependent on the grain size and the dihedral angle; G-shear modulus; γ-effective fracture surface energy; VL-volume of liquid; ν-Poisson’s ratio; D-grain size
Modified from the Griffith model. The equation has been modified for the contribution of grain boundary sliding that aids the liquid crack growth
Application: liquation crack, solidification crack
[11]
Dickhaus et al. (1993)
Fz-the force required to increase the thickness of the liquid film from b1to b2; η-dynamic viscosity; R-radius of a plate; t-the time required to increase the film thickness from b1 to b2; b-film thickness; fs-fraction of solid; d-average thickness of a solidifying grain
The effect of viscosity on the critical force is considered
Application: solidification crack
[12]
Lahaie and Bouchard (2001)
σfr-fracture stress; η-dynamic viscosity; b-film thickness; ε-strain; m-the microstructure parameter, which is 1/3 for equiaxed and 1/2 for columnar structure; fs-fraction of solid
Expansion of Dichaus’ criterion. By changing the coefficient m, it can be applied to equiaxed or columnar crystal structures
Application: liquation crack, solidification crack
[13]
Strain-based criteria Novikov(1968)
Pr-reserve of plasticity; S-the difference between the average integrated value of the elongation to failure and the linear shrinkage in the brittle temperature range; ΔTbr-brittle temperature range
In the range of brittle temperature, the time when the fracture elongation is lower than the linear shrinkage is the sensitive period for cracking
Application: liquation crack, solidification crack
[3]
Magnin et al. (1996)
εθθ-the maximum principle plastic strain at the solidus temperature; εfr-the measured strain at a temperature close to the solidus
Cracks occur when the maximum principal strain is greater than the fracture strain. The ratio of their HCS is hot crack sensitivity
Application: liquation crack, solidification crack
[14]
Strain rate-based criteria Prokhorov(1971)
Tbr-brittle temperature range; εres-reserve strain; -reserve strain rate; Dmin-minimum fracture strain in ΔTbr-minimum fracture strain rate in ΔTbrεfree-free linear contraction strain; -free linear contraction strain rate; εapp-actual strain in the solidifying body and strain rate; -actual strain rate in the solidifying body
The higher the at which the hot cracking occurs, the worse the solidifying body configuration in relation to hot tearing
Application: liquation crack, solidification crack
[15]
Rappaz et al. (1999)
G-thermal gradient; λ2-secondary dendrite arm spacing; β-volumetric solidification shrinkage factor; μ-viscosity; ΔT0-vulnerable temperature range; VT-growth velocity of dendrites; A and B-depend only on the nature of the alloy and its solidification path; Pmax-critical cavitation pressure
Considered both uniaxial tensile deformation and shrinkage feeding
Cracking occurs when the strain rate is higher than the maximum strain rate that the mushy zone can be sustainable
Application: solidification crack
[16]
Non-mechanical criteria Feurer(1976) Hot cracking occurs when the replenishment liquid flow required for solidification volume shrinkage is greater than the maximum liquid flow that can pass through the porous
Application: solidification crack
[17]
SPV-maximum volumetric flow rate per unit volume; SRG-velocity of volumetric solidification shrinkage; f1-volume liquid fraction; λ2-secondary dendrite arm spacing; PS-effective feeding pressure; c-tortuousity constant of dendrite network; η-dynamic viscosity; L-length of porous network; ρ-average density; V-volume element of the solidifying mush with constant mass; t-time
Kool and Katgerman(2009)
d-cavity size; acrit-critical size; c-ratio of the lattice constant to the atomic radius; fv-cavity fraction; dg-grain size; γ1-surface energy of the liquid phase; E-Young’s modulus of the semi-solid; σ-tensile stress
When the cavity size is larger than the critical size, the liquid phase is not filled enough to form a hot crack
Application: liquation crack, solidification crack
[18]
Kou(2015)
εlocal-local strain; T-temperature; β-solidification shrinkage; fs-solidification shrinkage; t-time; νz-intergranular liquid flows at the velocity νz in the negative z direction
Cracking can initiate from preexisting nucleation sites or the free surface and propagate if the separation rate of two neighboring grains caused by tensile deformation, subtracted by their growth rate toward each other, exceeds the feeding rate of liquid along the grain boundary
Application: liquation crack, solidification crack
[4]
*HCS(hot cracking sensitivity)
Table 1  热裂纹判据
Fig.3  不同凝固路径下的压力降分布[24]
(a)CET效应对凝固路径的影响;(b)不同固相分数条件下枝晶间压力降的分布
1 LEYENS C , PETERS M . Titanium and titanium alloys: fundamentals and applications[M]. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2003: 7- 28.
2 SOYSAL T , KOU S . A simple test for assessing solidification cracking susceptibility and checking validity of susceptibility prediction[J]. Acta Materialia, 2018, 143, 181- 197.
doi: 10.1016/j.actamat.2017.09.065
3 NOVIKOV I I. Hot-shortness of nonferrous metals and alloys[R]. Ohio: Foreign Technology Div Wright-Patterson Afb Ohio, 1968.
4 KOU S . A criterion for cracking during solidification[J]. Acta Materialia, 2015, 88, 366- 374.
doi: 10.1016/j.actamat.2015.01.034
5 YUAN T , CHAI X , LUO Z , et al. Predicting susceptibility of magnesium alloys to weld-edge cracking[J]. Acta Materialia, 2015, 90, 242- 251.
doi: 10.1016/j.actamat.2015.02.031
6 QUIROZ V , GUMENYUK A , RETHMEIER M . Investigation of the hot cracking susceptibility of laser welds with the controlled tensile weldability test[J]. Journal of Strain Analysis for Engineering Design, 2012, 47 (8): 587- 599.
doi: 10.1177/0309324712462120
7 BAKIR N , GUMENYUK A , RETHMEIER M . Numerical simulation of solidification crack formation during laser beam welding of austenitic stainless steels under external load[J]. Welding in the World, 2015, 60 (5): 1- 8.
8 BAKIR N , GUMENYUK A , RETHMEIER M , et al. In situ determination of the critical straining condition for solidification cracking during laser beam welding[J]. Procedia CIRP, 2020, 94, 666- 670.
doi: 10.1016/j.procir.2020.09.104
9 MATSUDA F , NAKAGAWA H , TOMITA S . Quantitative evaluation of solidification brittleness of weld metal during solidification by in-situ observation and measurement (Report Ⅴ)[J]. Transactions of Jwri, 1990, 6, 93- 98.
10 MATSUDA F , NAKAGAWA H , SORADA K . Dynamic observation of solidification and solidification cracking during welding with optical microscope[J]. Transactions of JWRI, 2013, 11, 67- 77.
11 WILLIAMS J A , SINGER A R E . Deformation, strength, and fracture above the solidus temperature[J]. Journal of the Japan Institute of Metals, 1968, 96 (1): 5- 12.
12 DICKHAUS C H , OHM L , ENGLER S . Mechanical properties of solidifying shells of aluminum alloys[J]. Transactions-American Foundrymens Society, 1993, 677.
13 LAHAIE D J , BOUCHARD M . Physical modeling of the deformation mechanisms of semisolid bodies and a mechanical criterion for hot tearing[J]. Metallurgical and Materials Transactions B, 2001, 32 (4): 697- 705.
doi: 10.1007/s11663-001-0124-5
14 MAGNIN B, MAENNER L, KATGERMAN L, et al. Ductility and rheology of an Al-4.5% Cu alloy from room temperature to coherency temperature[C]//Materials Science Forum. Switherland: Trans Tech Publications Ltd., 1996, 217: 1209-1214.
15 PROKHOROV N N . Fundamentals of the theory for technological strength of metals while crystallising during welding[J]. Transactions of the Japan Welding Society, 1971, 2, 205- 213.
16 RAPPAZ M , DREZET J M , GREMAUD M . A new hot-tearing criterion[J]. Metallurgical and Materials Transactions A, 1999, 30 (2): 449- 455.
doi: 10.1007/s11661-999-0334-z
17 FEUER U . Mathematical model for the hot cracking tendency of binary aluminum alloys[J]. Giessereiforschung, 1976, 28 (2): 75- 80.
18 KOOL W H , KATGERMAN L . Integrated approach for prediction of hot tearing[J]. Metallurgical and Materials Transactions A, 2009, 40 (10): 2388- 2400.
doi: 10.1007/s11661-009-9941-y
19 ESKIN D G , SUYITNO , KATGERMAN L . Mechanical proper-ties in the semi-solid state and hot tearing of aluminium alloys[J]. Progress in Materials Science, 2004, 49 (5): 629- 711.
doi: 10.1016/S0079-6425(03)00037-9
20 DREZET J M , RAPPAZ M . Prediction of hot tears in DC-cast aluminum billets[M]. Switherland: Springer International Publishing, 2016: 912- 918.
21 MATSUDA F , NAKAGAWA H , NAKATA K , et al. The VDR cracking test for solidification crack susceptibility on weld metals and its application to aluminum alloys (materials, metallurgy, weldability)[J]. Transactions of JWRI, 1979, 8 (1): 85- 95.
22 CROSS C E , CONIGLIO N . Weld Solidification Cracking: Critical Conditions for Crack Initiation and Growth[M]. Berlin Heidelberg: Springer, 2008: 39- 57.
23 NASRESFAHANI M R , NIROUMAND B . A new criterion for prediction of hot tearing susceptibility of cast alloys[J]. Metallurgical & Materials Transactions A, 2014, 45 (9): 3699- 3702.
24 CHEN D , WANG J , ZHANG C . Coupling phase-field model and CFD for hot cracking predictions of Al-Li alloys[J]. Computational Materials Science, 2021, 192 (1): 110361.
25 左铁钏. 高强铝合金的激光加工[M]. 北京: 国防工业出版社, 2008.
25 ZUO T C . Laser materials processing of high strength aluminum alloys[M]. Beijing: National Defense Industry Press, 2008.
26 XIAO R , ZHANG X . Problems and issues in laser beam welding of aluminum-lithium alloys[J]. Journal of Manufacturing Processes, 2014, 16 (2): 166- 175.
doi: 10.1016/j.jmapro.2013.10.005
27 ISHCHENKO A Y . High-strength aluminium alloys for welded structures in the aircraft industry[J]. Welding International, 2005, 19 (3): 173- 185.
doi: 10.1533/wint.2005.3397
28 LIPPOLD J C , LIN W M . Weldability of commercial Al-Cu-Li alloys[J]. Materials Science Forum, 1996, 217/222, 1685- 1690.
doi: 10.4028/www.scientific.net/MSF.217-222.1685
29 GUPTA R K , NAYAN N , NAGASIREESHA G , et al. Development and characterization of Al-Li alloys[J]. Materials Science & Engineering: A, 2006, 420 (1/2): 228- 234.
30 JAN R, HOWELL P R, MARTUKANITZ R P. Optimizing the parameters for laser beam welding of aluminum-lithium alloy 2195[C]//Proceedings of 4th International Conference on Trends in Welding Research. Gatlinburge, USA: 1996: 329-334.
31 MONTERO SISTIAGA M L , MERTENS R , VRANCKEN B , et al. Changing the alloy composition of Al7075 for better processability by selective laser melting[J]. Journal of Materials Processing Technology, 2016, 437- 445.
32 OPPRECHT M , GARANDET J P , ROUX G , et al. A solution to the hot cracking problem for aluminium alloys manufactured by laser beam melting[J]. Acta Materialia, 2020, 197, 40- 53.
doi: 10.1016/j.actamat.2020.07.015
33 FORBORD B , LEFEBVRE W , DANOIX F , et al. Three dimensional atom probe investigation on the formation of Al3(Sc, Zr)-dispersoids in aluminium alloys[J]. Scripta Materialia, 2004, 51 (4): 333- 337.
doi: 10.1016/j.scriptamat.2004.03.033
34 TWARDOWSKA A, KUSINSKI J P. Laser welding of Al-Li-Mg-Zr alloy[C]//SPIE. Laser Technology Ⅵ: Applications. Szczecin: SPIE, 2000.
35 RAM G , MITRA T K , SHANKAR V , et al. Microstructural refinement through inoculation of type 7020 Al-Zn-Mg alloy welds and its effect on hot cracking and tensile properties[J]. Journal of Materials Processing Tech, 2003, 142 (1): 174- 181.
doi: 10.1016/S0924-0136(03)00574-0
36 RÖYSET J , RYUM N . Scandium in aluminium alloys[J]. International Materials Reviews, 2005, 50 (1): 19- 44.
doi: 10.1179/174328005X14311
37 HAGENLOCHER C , SEIBOLD M , WEBER R , et al. Modulation of the local grain structure in laser beam welds to inhibit the propagation of centerline hot cracks[J]. Procedia CIRP on Sci Verse Science Direct, 2018, 74, 434- 437.
38 MOOSAVY H N . Hot cracking in pulsed Nd: YAG laser welding of AA5456[J]. Optics & Laser Techno-logy, 2018, 103, 22- 32.
39 温斯涵, 周炼刚, 程昊, 等. 2195铝锂合金弧焊技术研究现状[J]. 宇航材料工艺, 2021, 51 (3): 1- 7.
39 WEN S H , ZHOU L G , CHENG H , et al. Arc welding technology of 2195 Al-Li alloy[J]. Aerospace Materials & Techno-logy, 2021, 51 (3): 1- 7.
40 周广涛, 江余东, 方洪渊. 横向超声随焊控制铝合金焊接热裂纹倾向数值模拟研究[J]. 稀有金属材料与工程, 2015, 44 (6): 1407- 1412.
40 ZHOU G T , JIANG Y D , FANG H Y . Numerical simulation of transverse ultrasonic for controlling the tendency of welding hot cracking in aluminum welding[J]. Rare Metal Materials and Engineering, 2015, 44 (6): 1407- 1412.
41 HOSSEINI S A , ABDOLLAH-ZADEH A , NAFFAKH-MOOSAVY H , et al. Elimination of hot cracking in the electron beam welding of AA2024-T351 by controlling the welding speed and heat input[J]. Journal of Manufacturing Processes, 2019, 46 (10): 147- 158.
42 候正全, 蒋斌, 王煜烨, 等. 镁合金新材料及制备加工新技术发展与应用[J]. 上海航天, 2021, 38 (3): 119- 133.
42 HOU Z Q , JIANG B , WANG Y Y , et al. Development and application of new magnesium alloy materials and their new preparation and processing technologies[J]. Transactions of Nonferrous Metals Society of China, 2021, 38 (3): 119- 133.
43 ZHANG X B , CAO Z Y , ZHAO P F . Investigation on solidification cracks in pulsed laser spot welding of an AZ31 magnesium alloy[J]. Optics and Laser Technology, 2020, 126, 106- 132.
doi: 10.1007/s00340-020-07464-x
44 俞照辉, 严红革, 管正刚, 等. 激光焊接工艺参数对高强镁合金焊缝成形及裂纹倾向的影响[J]. 中国有色金属学报, 2013, 23 (6): 1479- 1488.
44 YU Z H , YAN H G , GUAN Z G , et al. Effects of laser welding parameters on weld appearance and cracking tendency of high strength magnesium alloy[J]. The Chinese Journal of Nonferrous Metals, 2013, 23 (6): 1479- 1488.
45 MUNITZ A , COTLER C , STERN A , et al. Mechanical properties and microstructure of gas tungsten arc welded magnesium AZ91D plates[J]. Materials Science & Engineering: A, 2001, 302 (1): 68- 73.
46 ZHU T , CHEN Z W , GAO W . Incipient melting in partially melted zone during arc welding of AZ91D magnesium alloy[J]. Materials Science and Engineering: A, 2006, 416 (1/2): 246- 252.
47 CHAI X. Arc welding of mg alloys: oxide films, irregular weld shape and liquation cracking[D]. Wisconsin: the University of Wisconsin-Madison, 2015.
48 赵博, 许广兴, 贺飞, 等. 飞机起落架用超高强度钢应用现状及展望[J]. 航空材料学报, 2017, 37 (6): 1- 6.
48 ZHAO B , XU G X , HE F , et al. Present status and prospect of ultra high strength steel applied to aircraft landing gear[J]. Journal of Aeronautical Materials, 2017, 37 (6): 1- 6.
49 SARMA D S , KARASEV A V , JOENSSON P G . On the role of non-metallic inclusions in the nucleation of acicular ferrite in steels[J]. ISIJ International, 2009, 49 (7): 1063- 1074.
doi: 10.2355/isijinternational.49.1063
50 CHEN Z L , XIONG Y F , QIU H J , et al. Stress intensity factor-based prediction of solidification crack growth during welding of high strength steel[J]. Journal of Materials Processing Tech, 2018, 252, 270- 278.
doi: 10.1016/j.jmatprotec.2017.09.031
51 Groupe-Industry C . Welding for design engineers[M]. Mississauga: Canadian Welding Bureau, 2006.
52 KOU S . Welding metallurgy[M]. New Jersey: John Wiley & Sons Inc, 2003.
53 SAADATI M , NOBARZAD A , JAHAZI M . On the hot cracking of HSLA steel welds: Role of epitaxial growth and HAZ grain size[J]. Journal of Manufacturing Processes, 2019, 41 (5): 242- 251.
54 SAHA D C , CHANG I S , PARK Y D . Heat-affected zone liquation crack on resistance spot welded TWIP steels[J]. Materials Characterization, 2014, 93, 40- 51.
doi: 10.1016/j.matchar.2014.03.016
55 AGARWAL G , KUMAR A , RICHARDSON I M , et al. Evaluation of solidification cracking susceptibility during laser welding in advanced high strength automotive steels[J]. Materials & Design, 2019, 183, 108104.
56 KOTA K , SEIDAI U , SHUN T , et al. Effect of MC carbide formation on weld solidification cracking susceptibility of austenitic stainless steel[J]. Journal of Alloys and Compounds, 2020, 828, 1- 7.
57 BOUCHER C , VARELA D , DADIAN M , et al. Hot cracking and recent improvement of the weldability of nickel alloys of the inconel 718 and waspaloy types[J]. Metallurgical Research & Technology, 1976, 73, 817- 831.
58 EISELSTEIN H L . Advances in the Technology of Stainless Steels[M]. Philadelphia: American Society for Testing and Materials, 1965: 62- 80.
59 HENDERSON M B , ARRELL D , LARSSON R , et al. Nickel based superalloy welding practices for industrial gas turbine applications[J]. Science & Technology of Welding & Joining, 2013, 9 (1): 13- 21.
60 KELLY T J, Investigation of elemental effects on the weldability of cast nickel-based superalloys[R]//DAVID S A. Advances in Welding Science and Technology. Ohio: ASM International, 1986: 623-627.
61 DYE D , HUNZIKER O , ROBERTS S M , et al. Modeling of the mechanical effects induced by the tungsten inert-gas welding of the IN718 superalloy[J]. Metallurgical & Materials Transactions A, 2001, 32 (7): 1713- 1725.
62 HUNZIKER O , DYE D , REED R C . On the formation of a centreline grain boundary during fusion welding[J]. Acta Materialia, 2000, 48 (17): 4191- 4201.
doi: 10.1016/S1359-6454(00)00273-1
63 张冬梅. 718高温合金激光焊接及其液化裂纹形成机理研究[D]. 上海: 上海工程技术大学, 2015.
63 ZHANG D M. Research on laser welding and the mechanism of liquation crack of 718 superalloy[D]. Shanghai: Shanghai University of Engineering Science, 2015.
64 AHN Y , YOON B , LEE K C . Effect of dilution on the behavior of solidification cracking in PTAW overlay deposit on Ni-base superalloys[J]. Metals & Materials International, 2002, 8 (5): 469- 477.
65 ANTONSSON T , FREDRIKSSON H . The effect of cooling rate on the solidification of inconel 718[J]. Metallurgical & Materials Transactions B, 2005, 36 (1): 85- 96.
66 OJO O A , RICHARDS N L , CHATURVEDI M C . Contribution of constitutional liquation of gamma prime precipitate to weld HAZ cracking of cast Inconel 738 superalloy[J]. Scripta Materialia, 2004, 50 (5): 641- 646.
doi: 10.1016/j.scriptamat.2003.11.025
67 RADHAKRISHNA C H , RAO K P . The formation and control of Laves phase in superalloy 718 welds[J]. Journal of Materials Science, 1997, 32 (8): 1977- 1984.
doi: 10.1023/A:1018541915113
68 YE X , HUA X M , WANG M , et al. Controlling hot cracking in Ni-based inconel-718 superalloy cast sheets during tungsten inert gas welding[J]. Journal of Materials Processing Technology, 2015, 222, 381- 390.
doi: 10.1016/j.jmatprotec.2015.03.031
69 MANIKANDAN S G K , SIVAKUMAR D , RAO K P , et al. Effect of weld cooling rate on Laves phase formation in Inconel 718 fusion zone[J]. Journal of Materials Processing Tech, 2014, 214 (2): 358- 364.
doi: 10.1016/j.jmatprotec.2013.09.006
70 RAMKUMAR K D , KUMAR B M , KRISHNAN M G , et al. Studies on the weldability, microstructure and mechanical properties of activated flux TIG weldments of inconel 718[J]. Materials Science and Engineering: A, 2015, 639 (7): 234- 244.
71 THAVAMANI R , BALUSAMY V , NAMPOOTHIRI J , et al. Mitigation of hot cracking in Inconel 718 superalloy by ultrasonic vibration during gas tungsten arc welding[J]. Journal of Alloys and Compounds, 2018, 740, 870- 878.
doi: 10.1016/j.jallcom.2017.12.295
72 BAI Y Z , LU Q H , REN X Y , et al. Study of Inconel 718 welded by bead-on-plate laser welding under high-frequency micro-vibration condition[J]. Metals, 2019, 9 (12): 1335.
doi: 10.3390/met9121335
[1] 韩启飞, 符瑞, 胡锦龙, 郭跃岭, 韩亚峰, 王俊升, 纪涛, 卢继平, 刘长猛. 电弧熔丝增材制造铝合金研究进展[J]. 材料工程, 2022, 50(4): 62-73.
[2] 余晖, 任军超, 杨鑫, 郭舒龙, 余炜, 冯建航, 殷福星, 辛光善. Zn层添加AZ31/7075合金复合成形工艺及组织与性能研究[J]. 材料工程, 2022, 50(3): 157-165.
[3] 陈高红, 张月, 李应权, 刘建华, 于美. 缓蚀剂组合的容器负载方式对铝合金涂层耐蚀性能的影响[J]. 材料工程, 2022, 50(2): 153-163.
[4] 金启豪, 陈娟, 彭立明, 李子言, 阎熙, 李春曦, 侯城成, 袁铭扬. 碳纤维增强树脂基复合材料与铝/镁合金连接研究进展[J]. 材料工程, 2022, 50(1): 15-24.
[5] 邵震, 崔雷, 王东坡, 陈永亮, 胡正根, 王非凡. 几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响[J]. 材料工程, 2022, 50(1): 25-32.
[6] 王浩, 肖纳敏, 李惠曲, 王晓. 7050铝合金结构件热处理与冷成形过程残余应力演化规律的数值模拟[J]. 材料工程, 2021, 49(8): 72-80.
[7] 陈海燕, 曾越, 李艺, 吴建新, 许世锬, 邹燕成. 基于非线性超声空化效应的铝合金热浸镀工艺[J]. 材料工程, 2021, 49(7): 133-140.
[8] 詹强坤, 刘允中, 刘小辉, 周志光. 激光选区熔化成形含锆7×××系铝合金的显微组织与力学性能[J]. 材料工程, 2021, 49(6): 85-93.
[9] 田亚强, 赵冠璋, 刘芸, 张源, 郑小平, 陈连生. 生物可降解医用镁合金体内外降解行为研究进展[J]. 材料工程, 2021, 49(5): 24-37.
[10] 臧金鑫, 邢清源, 陈军洲, 戴圣龙. 800 MPa级超高强度铝合金的时效析出行为[J]. 材料工程, 2021, 49(4): 71-77.
[11] 冯靖凯, 张丁非, 陈霞, 赵阳, 蒋斌, 潘复生. 一种细化AZ31镁合金的固液两相区复合挤压工艺[J]. 材料工程, 2021, 49(4): 78-88.
[12] 孙大翔, 董宇, 叶凌英, 唐建国. 形变热处理工艺对2519A铝合金动态变形行为的影响[J]. 材料工程, 2021, 49(2): 79-87.
[13] 张连腾, 陈乐平, 徐勇, 袁源平. Mg-9Al-3Si-0.375Sr-0.78Y合金的热变形行为及本构模型[J]. 材料工程, 2021, 49(2): 88-96.
[14] 陈燕宁, 吴量, 陈勇花, 程苓, 姚文辉, 潘复生. 镁合金表面氧化石墨烯复合涂层的研究现状[J]. 材料工程, 2021, 49(12): 1-13.
[15] 汪荣香, 洪立鑫, 章晓波. 生物医用镁合金耐腐蚀性能研究进展[J]. 材料工程, 2021, 49(12): 14-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn