Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (4): 156-161    DOI: 10.11868/j.issn.1001-4381.2021.000678
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响
贾耀雄1, 许良2,*(), 敖清阳1, 张文正1, 王涛1, 魏娟1
1 航空工业成都飞机工业(集团)有限责任公司,成都 610091
2 沈阳航空航天大学 机电工程学院,沈阳 110136
Effects of different thermal-oxidative environments on mechanical properties of T800 carbon fiber/epoxy resin composites
Yaoxiong JIA1, Liang XU2,*(), Qingyang AO1, Wenzheng ZHANG1, Tao WANG1, Juan WEI1
1 Aviation Industrial Chengdu Aircraft Industrial (Group) Co., Ltd., Chengdu 610091, China
2 College of Electromechanical Engineering, Shenyang Aerospace University, Shenyang 110136, China
全文: PDF(11179 KB)   HTML ( 4 )  
输出: BibTeX | EndNote (RIS)      
摘要 

不同热氧环境(70, 130, 190 ℃)对碳纤维复合材料的性能有着重要的影响。分析了不同热氧环境下T800碳纤维/环氧树脂复合材料的失重特性, 并对比了老化前后的表面形貌、红外光谱、动态力学性能和层间剪切性能。结果表明: 在热氧老化初始阶段, 质损率急速上升, 老化温度越高质量损失越快; 试样表面形貌随热氧温度的升高其破坏程度逐渐加剧, 在190 ℃老化后, 纤维表面树脂脱落严重, 纤维与纤维之间出现裂缝空隙, 无树脂填充, 在此老化温度下, 试样发生了不可逆化学变化; 试样的玻璃化转变温度会随老化温度的升高而变大, 但内耗呈现先降低后增大再降低的趋势, 在70, 130, 190 ℃热氧老化后试样剪切强度分别提高6.0%, 13.7%和2.1%。相关实验结果和实验现象可为后续研究新型国产T800碳纤维/环氧复合材料提供数据参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贾耀雄
许良
敖清阳
张文正
王涛
魏娟
关键词 不同热氧环境T800碳纤维/环氧树脂复合材料表面形貌红外光谱力学性能    
Abstract

Different thermal-oxidative environments (70, 130 ℃ and 190 ℃) have important effects on the properties of carbon fiber composites. The mass loss characteristics of T800 carbon fiber/epoxy resin composites under different thermal-oxidative environments were analyzed, and the surface morphology, infrared spectra, dynamic mechanical properties and interlaminar shear properties of T800 carbon fiber/epoxy resin composites before and after aging were compared. The results show that in the initial stage of thermal-oxidative aging, the mass loss rate is increased rapidly, and the higher the aging temperature, the faster the mass loss. The extent of damage sample surface morphology is gradually increased with the increasing of thermal-oxidative temperature, after aging at 190 ℃, the resin on the fiber surface falls off seriously, the cracks and gaps appear between the fibers, and there is no resin filling, at this aging temperature, the sample has an irreversible chemical change. The glass transition temperature of the sample is increased with the increase of aging temperature, but the internal friction is decreased at first, then increased and then decreased. After thermal-oxidative aging at 70, 130 ℃ and 190 ℃, the shear strength of the samples is increased by 6.0%, 13.7% and 2.1%, respectively. The relevant test results and phenomena can provide data reference for the follow-up study of the new domestic T800 carbon fiber/epoxy composites.

Key wordsdifferent thermal-oxidative environment    T800 carbon fiber/epoxy resin composite    surface morphology    infrared spectrum    mechanical property
收稿日期: 2021-07-21      出版日期: 2022-04-18
中图分类号:  TB332  
通讯作者: 许良     E-mail: sysyxu@163.com
作者简介: 许良(1965—),男,教授,主要从事复合材料和金属材料性能研究,联系地址:辽宁省沈阳市道义南大街37号沈阳航空航天大学机电工程学院(110136),E-mail: sysyxu@163.com
引用本文:   
贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
Yaoxiong JIA, Liang XU, Qingyang AO, Wenzheng ZHANG, Tao WANG, Juan WEI. Effects of different thermal-oxidative environments on mechanical properties of T800 carbon fiber/epoxy resin composites. Journal of Materials Engineering, 2022, 50(4): 156-161.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000678      或      http://jme.biam.ac.cn/CN/Y2022/V50/I4/156
Fig.1  不同老化环境下的质量变化曲线
Fig.2  不同老化环境下的SEM图
(a)未老化;(b)70 ℃;(c)130 ℃;(d)190 ℃
Fig.3  T800碳纤维/环氧树脂复合材料在不同老化环境下的红外光谱图
Fig.4  不同老化环境下的DMA曲线
Aging environment Maximumbreaking load/N Shear strength/MPa
Unaged 854 62.1
70 ℃ thermal-oxidative aging 906 65.8
130 ℃ thermal-oxidative aging 972 70.6
190 ℃ thermal-oxidative aging 872 63.4
Table 1  不同老化环境对T800碳纤维复合材料层间剪切性能的影响
1 SALVETTI M , GILIOL A , SBARUFATTI C , et al. Analytical model of the dynamic behavior of CFRP plates subjected to low-velocity impacts[J]. Composites: Part B, 2018, 142, 47- 55.
doi: 10.1016/j.compositesb.2018.01.005
2 LIAO B , LIU P F . Finite element analysis of dynamic progressive failure properties of GLARE hybrid laminates under low-velocity impact[J]. Journal of Composite Materials, 2018, 52 (10): 1317- 1330.
doi: 10.1177/0021998317724216
3 陈祥宝. 先进树脂基复合材料的发展[J]. 航空材料学报, 2000, 20 (1): 46- 54.
doi: 10.3969/j.issn.1005-5053.2000.01.009
3 CHEN X B . Development of advanced polymer composites[J]. Journal of Aeronautical Materials, 2000, 20 (1): 46- 54.
doi: 10.3969/j.issn.1005-5053.2000.01.009
4 KUBOTA Y , FURUTA T , AOKI T , et al. Long-term thermal stability of carbon fibre-reinforced addition-type polyimide composite in terms of compressive strength[J]. Advanced Composite Materials, 2019, 28 (2): 115- 133.
doi: 10.1080/09243046.2018.1446124
5 马少华, 许赞, 许良, 等. 湿热-高温循环老化对碳纤维增强双马树脂基复合材料界面性能的影响[J]. 高分子材料科学与工程, 2018, 34 (3): 54- 59.
5 MA S H , XU Z , XU L , et al. Influence of cyclic hygrothermal-thermal aging on the interfacial property of carbon fiber reinforced bismaleimide resin matrix composite[J]. Polymer Materials Science & Engineering, 2018, 34 (3): 54- 59.
6 过梅丽, 肇研, 许凤和, 等. 先进聚合物基复合材料的老化研究Ⅰ热氧老化[J]. 航空学报, 2000, 21 (增刊1): 62- 65.
6 GUO M L , ZHAO Y , XU F H , et al. Study of aging of advanced polymer matrix compositesⅠ thermooxidizing aging[J]. Acta Aeronautica et Astronautica Sinica, 2000, 21 (Suppl 1): 62- 65.
7 郭丹丹, 李嘉禄, 尚博. 热氧老化对三维四向编织碳/环氧复合材料压缩性能的影响[J]. 山东纺织科技, 2014, (5): 7- 11.
doi: 10.3969/j.issn.1009-3028.2014.05.004
7 GUO D D , LI J L , SHANG B , et al. Thermal-oxidative aging effects on the compressive property of three-dimensional and four-directional braided carbon/epoxy resin composites[J]. Shandong Textile Science & Technology, 2014, (5): 7- 11.
doi: 10.3969/j.issn.1009-3028.2014.05.004
8 AKAY M , SPRATT G R . Evaluation of thermal ageing of a carbon fibre reinforced bismalemide[J]. Composites Science and Technology, 2008, 68 (15/16): 3081- 3086.
9 SHIVAKUMAR K N , CHEN H , HOLLOWAY G . Effect of thermal fatigue on tensile and flexural properties of carbon/cyanate ester pultruded composite[J]. Journal of Reinforced Plastics and Composites, 2009, 28 (6): 675- 689.
doi: 10.1177/0731684407086614
10 马少华, 费昺强, 许良, 等. 热氧老化对碳纤维双马树脂基复合材料性能的影响[J]. 材料工程, 2017, 45 (12): 50- 57.
doi: 10.11868/j.issn.1001-4381.2016.000981
10 MA S H , FEI B Q , XU L , et al. Influence of thermal-oxidative aging on property of carbon fiber bismaleimide resin composites[J]. Journal of Materials Engineering, 2017, 45 (12): 50- 57.
doi: 10.11868/j.issn.1001-4381.2016.000981
11 XU L , HE Y , MA S H , et al. Effects of hygrothermal and thermal-oxidative ageing on the open-hole properties of T800/high-temperature epoxy resin composites with different hole shapes[J]. High Performance Polymers, 2020, 32, 306- 315.
doi: 10.1177/0954008319860892
12 CHEN J S , YANG S Y , TAO Z Q , et al. Processing and properties of carbon fiber-reinforced PMR type polyimide composites[J]. High Performance Polymers, 2006, 18 (3): 377- 396.
doi: 10.1177/0954008306063395
13 RAY B C . Temperature effect during humid ageing on interfaces of glass and carbon fibers reinforced epoxy composites[J]. Journal of Colloid and Interface Science, 2006, 298, 111- 117.
doi: 10.1016/j.jcis.2005.12.023
14 樊威, 李嘉禄. 热氧老化对碳纤维织物增强聚合物基复合材料弯曲性能的影响[J]. 复合材料学报, 2015, 32 (5): 1260- 1270.
14 FAN W , LI J L . Effects of thermo-oxidative aging on flexural properties of carbon fiber fabric reinforced polymer matrix composites[J]. Acta Materiae Compositae Sinica, 2015, 32 (5): 1260- 1270.
15 XU L , HE Y , MA S H , et al. Effects of aging process and testing temperature on the open-hole compressive properties of a carbon fiber composite[J]. High Performance Polymers, 2020, 32, 693- 701.
doi: 10.1177/0954008319897291
16 许良, 黄国栋, 马少华, 等. 热氧老化对炭纤维/双马树脂复合材料力学性能的影响[J]. 固体火箭技术, 2017, 40 (6): 770- 775.
16 XU L , HUANG G D , MA S H , et al. Influence of thermal-oxidative aging on mechanical property of carbon fiber bismaleimide resin composites[J]. Journal of Solid Rocket Technology, 2017, 40 (6): 770- 775.
[1] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
[2] 陈帅, 陶凤和, 贾长治, 孙河洋. 成形角度对选区激光熔化4Cr5MoSiV1钢组织和性能的影响[J]. 材料工程, 2022, 50(3): 122-130.
[3] 唐鹏钧, 房立家, 王兴元, 李沛勇, 张学军. 人工时效对激光选区熔化AlMg4.5Sc0.55Mn0.5Zr0.2合金显微组织和力学性能的影响[J]. 材料工程, 2022, 50(2): 84-93.
[4] 邵震, 崔雷, 王东坡, 陈永亮, 胡正根, 王非凡. 几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响[J]. 材料工程, 2022, 50(1): 25-32.
[5] 吴程浩, 刘涛, 高嵩, 石磊, 刘洪涛. 铝/钢异种金属的超声振动强化搅拌摩擦焊接工艺[J]. 材料工程, 2022, 50(1): 33-42.
[6] 徐学宏, 郑义珠, 陈吉平, 宁博, 刘晓忱. 缝合参数对泡沫夹层结构复合材料力学性能的影响[J]. 材料工程, 2022, 50(1): 132-137.
[7] 肖伟, 杨占旭, 乔庆东. 石墨电极表面聚丙烯腈纳米纤维膜的制备及性能[J]. 材料工程, 2021, 49(9): 60-68.
[8] 王庆娟, 吴金城, 王伟, 杜忠泽, 尹仁锟. 超高强β钛合金等温相转变特性及力学性能[J]. 材料工程, 2021, 49(9): 94-100.
[9] 孙昊飞, 肖志, 韦凯, 杨旭静, 齐军. 预弯曲变形对CP800复相钢力学性能的影响[J]. 材料工程, 2021, 49(8): 81-88.
[10] 姜卓钰, 束小文, 吕晓旭, 高晔, 周怡然, 董禹飞, 焦健. SiC晶须增强SiCf/SiC复合材料的力学性能[J]. 材料工程, 2021, 49(8): 89-96.
[11] 张海连, 段淼, 李四中, 林志勇. 催化炭化-原位反应/反应熔体浸渗法制备C/C-SiC复合材料[J]. 材料工程, 2021, 49(7): 85-91.
[12] 唐延川, 万能, 唐兴昌, 刘德佳, 焦海涛, 胡勇, 赵龙志. 合金化组元(Al,Cr,Si,Ti)含量对激光沉积(FeNiCo)-(AlCrSiTi)非等原子比多组元合金涂层组织与力学性能的影响[J]. 材料工程, 2021, 49(7): 92-102.
[13] 邢宇轩, 郭英奎, 陈磊, 赵壮志, 王玉金. 气压浸渗法制备ZrC-W-Cu复合材料的显微组织与力学性能[J]. 材料工程, 2021, 49(7): 124-132.
[14] 詹强坤, 刘允中, 刘小辉, 周志光. 激光选区熔化成形含锆7×××系铝合金的显微组织与力学性能[J]. 材料工程, 2021, 49(6): 85-93.
[15] 高玉魁. 负泊松比超材料和结构[J]. 材料工程, 2021, 49(5): 38-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn