Vacuum brazing of TiAl alloy and 316L stainless steel (SS) was conducted using Zr-42.9Cu-21.4Ni amorphous filler metal. The effect of brazing temperature and brazing time on the microstructure and shear properties of the dissimilar metal joints between TiAl alloy and 316L stainless steel was investigated. The results show that the interface of the brazed joint can be divided into six different reaction layers. The microstructure of the brazed joints from TiAl alloy to 316L stainless steel at 1040 ℃/10 min is γ(TiAl)+AlCuTi/α2(Ti3Al)+AlCuTi/AlCu+ZrCuNi+FeZr/Cu8Zr3+ZrCuNi+TiFe+Fe2Zr/FeZr+Fe2Zr+TiFe2+ZrCu/α-(Fe, Cr). With the increase of brazing temperature, the shear strength of brazed joints increase first and then decrease. The maximum shear strength of 162 MPa is obtained at 1040 ℃/25 min. Fracture analysis indicates that cracks initiate at the interface of FeZr+Fe2Zr+TiFe2+ZrCu, and then propagate along Cu8Zr3+ZrCuNi+TiFe+Fe2Zr and α-(Fe, Cr) with cleavage fracture pattern.
XU W C , HUANG K , WU S F , et al. Influence of Mo content on microstructure and mechanical properties of beta-containing TiAl alloy[J]. Transactions of Nonferrous Metals Society of China, 2017, 27 (4): 820- 828.
doi: 10.1016/S1003-6326(17)60094-3
2
REN H S , XIONG H P , CHEN B , et al. Vacuum brazing of Ti3Al-based alloy to TiAl using TiZrCuNi(Co) fillers[J]. Journal of Materials Processing Technology, 2015, 224, 26- 32.
doi: 10.1016/j.jmatprotec.2015.04.024
3
QIU Q W , WANG Y , YANG Z W , et al. Microstructure and mechanical properties of TiAl alloy joints vacuum brazed with Ti-Zr-Ni-Cu brazing powder without and with Mo additive[J]. Materials & Design, 2016, 90, 650- 659.
4
LI L , LI X Q , HU K , et al. Effects of brazing temperature and testing temperature on the microstructure and shear strength of γ-TiAl joints[J]. Materials Science and Engineering: A, 2015, 634, 91- 98.
doi: 10.1016/j.msea.2015.03.039
5
XIAO S L , XU L J , CHEN Y Y , et al. Microstructure and mechanical properties of TiAl-based alloy prepared by double mechanical milling and spark plasma sintering[J]. Transactions of Nonferrous Metals Society of China, 2012, 22 (5): 1086- 1091.
doi: 10.1016/S1003-6326(11)61287-9
6
SONG X G , CAO J , LIU Y Z , et al. Brazing high Nb containing TiAl alloy using TiNi-Nb eutectic braze alloy[J]. Intermetallics, 2012, 22, 136- 141.
doi: 10.1016/j.intermet.2011.10.020
7
FAN J L , LI X Z , SU Y Q , et al. Effect of thermal stabilization on microstructure and mechanical property of directionally solidified Ti-46Al-0.5Si alloy[J]. Transactions of Nonferrous Metals Society of China, 2012, 22, 1073- 1080.
doi: 10.1016/S1003-6326(11)61285-5
SONG T F , JIANG X S , MO D F , et al. A survey on dissimilar welding of stainless steel and titanium alloy[J]. Materials Review, 2015, 29 (6): 81- 87.
SUN R L , ZHANG J H . Welding problems and present situation of titanium or titanium alloy and steel[J]. Aerospace Materials and Technology, 1997, 27 (2): 7- 11.
11
SHANG Y L , REN H S , JING Y J , et al. Vacuum brazing of TiAl-based alloy using Ti-Zr-Fe filler metal[J]. Welding in the World, 2019, 63 (5): 1461- 1467.
doi: 10.1007/s40194-019-00759-4
12
LIU H , FENG J C . Microstructure and strength of vacuum brazed joints of TiAl based alloy to 40Cr steel[J]. Materials Science and Technology, 2013, 18 (9): 1049- 1051.
BIAN J R , HOU J C , ZHANG Q M , et al. Effect of welding current on formability and microstructure of plasma arc cladding titanium/steel dissimilar metal joint with copper intermediate layer[J]. Materials for Mechanical Engineering, 2020, 44 (6): 38- 42.
14
HOSSEINI S R , FENG K , NIE P L , et al. Fracture surface characterization of laser welding processed Ti alloy to stainless steel joints[J]. Welding in the World, 2018, 62 (5): 947- 960.
doi: 10.1007/s40194-018-0586-6
15
CHU Q L , ZHANG M , LI J H , et al. Experimental and numerical investigation of microstructure and mechanical behavior of titanium/steel interfaces prepared by explosive welding[J]. Materials Science & Engineering: A, 2017, 689, 323- 331.
16
VELMURUGAN C , SENTHILKUMAR V , SARALA S , et al. Low temperature diffusion bonding of Ti-6Al-4V and duplex stainless steel[J]. Journal of Materials Processing Technology: A, 2016, 234, 272- 279.
doi: 10.1016/j.jmatprotec.2016.03.013
17
REN H S , XIONG H P , CHEN B , et al. Microstructures and mechanical properties of vacuum brazed Ti3Al/TiAl joints using two Ti-based filler metals[J]. Journal of Materials Science & Technology, 2016, 32 (4): 372- 380.
18
XIA Y Q , DONG H G , HAO X H , et al. Vacuum brazing of Ti6Al4V alloy to 316L stainless steel using a Ti-Cu-based amorphous filler metal[J]. Journal of Materials Processing Technology, 2019, 269, 35- 44.
doi: 10.1016/j.jmatprotec.2019.01.020
19
LI Y L , HE P , FENG J C . Interface structure and mechanical properties of the TiAl/42CrMo steel joint vacuum brazed with Ag-Cu/Ti/Ag-Cu filler metal[J]. Scripta Materialia, 2006, 55, 171- 174.
doi: 10.1016/j.scriptamat.2006.03.055
20
LI Y L , LIU W , SEKULIC D P , et al. Reactive wetting of AgCuTi filler metal on the TiAl-based alloy substrate[J]. Applied Surface Science, 2012, 259, 343- 348.
doi: 10.1016/j.apsusc.2012.07.047
21
LI Y L , CHENG Z , HU X W , et al. Mechanism and process of the intermetallic compound particles reinforced TiAl/steel brazing seam[J]. Rare Metal Materials & Engineering, 2015, 44 (9): 2086- 2090.
22
RABAHI L , GALLOUZE M , GROSDIDIER T , et al. Energetics of atomic hydrogen absorption in C15-Fe2Zr Laves phases with ternary additions: a DFT study[J]. International Journal of Hydrogen Energy, 2016, 42 (4): 2157- 2166.
XU Y H , WANG G Y , CHEN C P , et al. Structure and electrochemical properties of Ti-based AB2 Laves phase hydrogen storage alloy[J]. Chinese Journal of Power Sources, 2002, 26 (Suppl 1): 250- 254.