Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (5): 52-61    DOI: 10.11868/j.issn.1001-4381.2021.000684
  异质材料连接及界面行为专栏 本期目录 | 过刊浏览 | 高级检索 |
Zr-Cu-Ni非晶钎料真空钎焊TiAl合金/316L不锈钢接头的界面组织与剪切性能
杨跃森, 董红刚(), 吴宝生, 李鹏, 杨江, 马月婷
大连理工大学 材料科学与工程学院,辽宁 大连 116024
Interfacial microstructure and shear properties of vacuum brazing TiAl alloy/316L stainless steel joint with Zr-Cu-Ni amorphous filler metal
Yuesen YANG, Honggang DONG(), Baosheng WU, Peng LI, Jiang YANG, Yueting MA
School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
全文: PDF(20675 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用自主设计制备的Zr-42.9Cu-21.4Ni非晶钎料对TiAl合金和316L不锈钢进行真空钎焊,研究钎焊温度和钎焊时间对TiAl合金/316L不锈钢异种金属接头微观组织和剪切性能的影响。结果表明:钎缝界面可以划分为6个不同的反应层。1040 ℃/10 min下制备的钎焊接头从TiAl合金到316L不锈钢侧界面组织依次为γ(TiAl)+AlCuTi/α2(Ti3Al)+AlCuTi/AlCu+ZrCuNi+FeZr/Cu8Zr3+ZrCuNi+TiFe+Fe2Zr/FeZr+Fe2Zr+TiFe2+ZrCu/α-(Fe, Cr)。随着钎焊温度的升高,接头的抗剪强度先升高后降低。当钎焊温度为1040 ℃和钎焊时间25 min时,接头抗剪强度达到最大值162 MPa。断口分析表明,接头在FeZr+Fe2Zr+TiFe2+ZrCu界面处萌生,沿着Cu8Zr3+ZrCuNi+TiFe+Fe2Zr和α-(Fe, Cr)扩展,呈解理断裂。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨跃森
董红刚
吴宝生
李鹏
杨江
马月婷
关键词 TiAl合金316L不锈钢真空钎焊Zr-Cu基非晶钎料界面组织抗剪强度    
Abstract

Vacuum brazing of TiAl alloy and 316L stainless steel (SS) was conducted using Zr-42.9Cu-21.4Ni amorphous filler metal. The effect of brazing temperature and brazing time on the microstructure and shear properties of the dissimilar metal joints between TiAl alloy and 316L stainless steel was investigated. The results show that the interface of the brazed joint can be divided into six different reaction layers. The microstructure of the brazed joints from TiAl alloy to 316L stainless steel at 1040 ℃/10 min is γ(TiAl)+AlCuTi/α2(Ti3Al)+AlCuTi/AlCu+ZrCuNi+FeZr/Cu8Zr3+ZrCuNi+TiFe+Fe2Zr/FeZr+Fe2Zr+TiFe2+ZrCu/α-(Fe, Cr). With the increase of brazing temperature, the shear strength of brazed joints increase first and then decrease. The maximum shear strength of 162 MPa is obtained at 1040 ℃/25 min. Fracture analysis indicates that cracks initiate at the interface of FeZr+Fe2Zr+TiFe2+ZrCu, and then propagate along Cu8Zr3+ZrCuNi+TiFe+Fe2Zr and α-(Fe, Cr) with cleavage fracture pattern.

Key wordsTiAl alloy    316L stainless steel    vacuum brazing    Zr-Cu based amorphous filler metal    interfacial microstructure    shear strength
收稿日期: 2021-07-23      出版日期: 2022-05-23
中图分类号:  TG401  
基金资助:国家自然科学基金面上项目(51674060)
通讯作者: 董红刚     E-mail: donghg@dlut.edu.cn
作者简介: 董红刚(1975—),男,教授,博士,研究方向为异种材料连接工艺与冶金原理、焊接材料成分设计、焊接热过程数值计算,联系地址:辽宁省大连市甘井子区凌工路2号大连理工大学铸造中心304室(116024),E-mail: donghg@dlut.edu.cn
引用本文:   
杨跃森, 董红刚, 吴宝生, 李鹏, 杨江, 马月婷. Zr-Cu-Ni非晶钎料真空钎焊TiAl合金/316L不锈钢接头的界面组织与剪切性能[J]. 材料工程, 2022, 50(5): 52-61.
Yuesen YANG, Honggang DONG, Baosheng WU, Peng LI, Jiang YANG, Yueting MA. Interfacial microstructure and shear properties of vacuum brazing TiAl alloy/316L stainless steel joint with Zr-Cu-Ni amorphous filler metal. Journal of Materials Engineering, 2022, 50(5): 52-61.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000684      或      http://jme.biam.ac.cn/CN/Y2022/V50/I5/52
Base metal Al Nb Ni Cr Mo Ti Fe
TiAl 26.8 15.6 Bal
316L 10.4 16.8 2.0 Bal
Table 1  母材化学成分(质量分数/%)
Fig.1  钎焊试样(a)和剪切试样(b)示意图
Fig.2  钎焊温度-时间曲线
Fig.3  TiAl合金/316L不锈钢不同钎焊温度下保温10 min时接头界面微观组织形貌
(a)1020 ℃; (b)1040 ℃; (c)1060 ℃; (d)1080 ℃
Fig.4  1040 ℃/10 min下典型钎焊接头微观组织分析
(a)1040 ℃/10 min下典型钎焊接头截面图; (b)图(a)中1区放大视图; (c)图(a)中2区放大视图; (d)图(a)中的线扫描结果
Alloying element ΔHmix/(kJ·mol-1)
Zr Cu
Ti 0 -9
Al -44 -1
Fe -25 13
Cr -12 12
Ni -49 14
Table 2  Zr和Cu与母材中主要合金元素的混合焓(kJ·mol-1)
Location Ti Al Zr Cu Ni Fe Cr Possible phase
A 35.1 32.6 0.6 13.8 10.9 2.2 0.2 γ(TiAl)+AlCuTi
B 19.8 34.9 14.5 17.5 9.4 1.4 0.1 α2(Ti3Al)+AlCuTi
C 2.6 19.6 22.7 35.0 19.1 0.7 AlCu+ZrCuNi
D 9.0 8.0 28.0 16.9 17.2 15.6 3.6 ZrCuNi+FeZr
E 7.0 1.6 32.7 30.9 25.8 1.8 0.1 Residual filler metal
F 12.5 6.9 26.4 22.5 14.9 13.1 1.6 TiFe+ZrCuNi
G 1.4 5.6 21.1 58.0 11.6 1.7 0.1 Cu8Zr3Ni
H 8.6 7.8 27.9 17.1 16.7 16.2 3.8 FeZr+Fe2Zr+TiFe2+ZrCu
I 1.1 0.5 0.5 0.4 3.2 67.3 25.7 α-(Fe, Cr)
Table 3  图 4中对应位置的EPMA点分析结果(原子分数/%)
Fig.5  TiAl合金/316L不锈钢不同钎焊温度下保温10 min时接头的抗剪强度
Fig.6  不同钎焊温度下TiAl合金/316L不锈钢典型接头断裂路径
(a)1040 ℃; (b)1060 ℃
Location Ti Al Zr Cu Ni Fe Cr Possible phase
A 11.37 1.09 42.59 24.24 18.18 1.55 0.61 Zr2Cu+TiNi
B 11.96 2.12 47.72 21.06 13.52 2.91 0.44 Zr2Cu+TiNi
C 2.04 4.35 41.52 40.87 8.80 1.60 0.63 ZrCu
D 2.84 0.32 38.83 1.41 10.16 41.51 4.93 FeZr
E 5.09 1.15 22.22 1.30 11.18 52.52 6.54 Fe2Zr+TiNi2
F 9.51 4.29 28.32 7.21 10.55 35.29 4.84 Fe2Zr+FeZr+TiNi
G 8.88 7.38 30.00 17.26 15.89 17.04 2.00 ZrCuNi+TiFe2
H 2.14 21.46 26.85 31.20 17.51 0.26 0.24 ZrCuNiAl
I 30.73 41.50 1.03 14.33 13.13 2.79 0.80 AlCuTi+TiNi
J 6.27 5.53 26.03 20.75 17.90 18.53 5.12 TiAl+ZrCuNi+FeZr
K 7.79 1.07 20.56 1.04 8.39 53.52 6.70 Fe2Zr+TiNi
L 5.43 0.97 26.29 1.94 10.32 48.10 6.14 Fe2Zr+TiNi2
Table 4  图 7中对应位置的EDS化学成分点分析结果(原子分数/%)
Fig.7  不同钎焊温度下保温10 min时接头断口特征形貌
(a)1040 ℃,316L侧; (b)钎焊温度1040 ℃,TiAl侧; (c)钎焊温度1060 ℃,316L侧; (d)钎焊温度1060 ℃,TiAl侧
Fig.8  钎焊温度为1040 ℃时,不同钎焊时间下TiAl合金/316L不锈钢接头的微观组织形貌
(a)10 min; (b)15 min; (c)25 min; (d)35 min
Fig.9  钎焊温度为1040 ℃时,不同钎焊时间下TiAl合金/316L不锈钢接头的抗剪强度
Fig.10  钎焊温度为1040 ℃时,不同钎焊时间下TiAl合金/316L不锈钢接头的断裂路径
(a)10 min; (b)15 min; (c)25 min; (d)35 min
Fig.11  TiAl合金/316L不锈钢钎焊接头形成演变示意图
(a)接头装配; (b)钎料熔化; (c)元素扩散; (d)各反应层最终状态
1 XU W C , HUANG K , WU S F , et al. Influence of Mo content on microstructure and mechanical properties of beta-containing TiAl alloy[J]. Transactions of Nonferrous Metals Society of China, 2017, 27 (4): 820- 828.
doi: 10.1016/S1003-6326(17)60094-3
2 REN H S , XIONG H P , CHEN B , et al. Vacuum brazing of Ti3Al-based alloy to TiAl using TiZrCuNi(Co) fillers[J]. Journal of Materials Processing Technology, 2015, 224, 26- 32.
doi: 10.1016/j.jmatprotec.2015.04.024
3 QIU Q W , WANG Y , YANG Z W , et al. Microstructure and mechanical properties of TiAl alloy joints vacuum brazed with Ti-Zr-Ni-Cu brazing powder without and with Mo additive[J]. Materials & Design, 2016, 90, 650- 659.
4 LI L , LI X Q , HU K , et al. Effects of brazing temperature and testing temperature on the microstructure and shear strength of γ-TiAl joints[J]. Materials Science and Engineering: A, 2015, 634, 91- 98.
doi: 10.1016/j.msea.2015.03.039
5 XIAO S L , XU L J , CHEN Y Y , et al. Microstructure and mechanical properties of TiAl-based alloy prepared by double mechanical milling and spark plasma sintering[J]. Transactions of Nonferrous Metals Society of China, 2012, 22 (5): 1086- 1091.
doi: 10.1016/S1003-6326(11)61287-9
6 SONG X G , CAO J , LIU Y Z , et al. Brazing high Nb containing TiAl alloy using TiNi-Nb eutectic braze alloy[J]. Intermetallics, 2012, 22, 136- 141.
doi: 10.1016/j.intermet.2011.10.020
7 FAN J L , LI X Z , SU Y Q , et al. Effect of thermal stabilization on microstructure and mechanical property of directionally solidified Ti-46Al-0.5Si alloy[J]. Transactions of Nonferrous Metals Society of China, 2012, 22, 1073- 1080.
doi: 10.1016/S1003-6326(11)61285-5
8 余存烨. 现代铁素体不锈钢应用综述[J]. 石油化工腐蚀与防护, 2010, 27 (4): 1- 4.
8 YU C Y . Application of modern ferritic stainless steels[J]. Corrosion & Protection in Petrochemical Industry, 2010, 27 (4): 1- 4.
9 宋庭丰, 蒋小松, 莫德锋, 等. 不锈钢和钛合金异种金属焊接研究进展[J]. 材料导报, 2015, 29 (6): 81- 87.
9 SONG T F , JIANG X S , MO D F , et al. A survey on dissimilar welding of stainless steel and titanium alloy[J]. Materials Review, 2015, 29 (6): 81- 87.
10 孙荣禄, 张九海. 钛及钛合金与钢焊接的问题及研究现状[J]. 宇航材料工艺, 1997, 27 (2): 7- 11.
10 SUN R L , ZHANG J H . Welding problems and present situation of titanium or titanium alloy and steel[J]. Aerospace Materials and Technology, 1997, 27 (2): 7- 11.
11 SHANG Y L , REN H S , JING Y J , et al. Vacuum brazing of TiAl-based alloy using Ti-Zr-Fe filler metal[J]. Welding in the World, 2019, 63 (5): 1461- 1467.
doi: 10.1007/s40194-019-00759-4
12 LIU H , FENG J C . Microstructure and strength of vacuum brazed joints of TiAl based alloy to 40Cr steel[J]. Materials Science and Technology, 2013, 18 (9): 1049- 1051.
13 边婧如, 侯军才, 张秋美, 等. 焊接电流对铜中间层钛/钢异种金属等离子焊接头成形性能及显微组织的影响[J]. 机械工程材料, 2020, 44 (6): 38- 42.
13 BIAN J R , HOU J C , ZHANG Q M , et al. Effect of welding current on formability and microstructure of plasma arc cladding titanium/steel dissimilar metal joint with copper intermediate layer[J]. Materials for Mechanical Engineering, 2020, 44 (6): 38- 42.
14 HOSSEINI S R , FENG K , NIE P L , et al. Fracture surface characterization of laser welding processed Ti alloy to stainless steel joints[J]. Welding in the World, 2018, 62 (5): 947- 960.
doi: 10.1007/s40194-018-0586-6
15 CHU Q L , ZHANG M , LI J H , et al. Experimental and numerical investigation of microstructure and mechanical behavior of titanium/steel interfaces prepared by explosive welding[J]. Materials Science & Engineering: A, 2017, 689, 323- 331.
16 VELMURUGAN C , SENTHILKUMAR V , SARALA S , et al. Low temperature diffusion bonding of Ti-6Al-4V and duplex stainless steel[J]. Journal of Materials Processing Technology: A, 2016, 234, 272- 279.
doi: 10.1016/j.jmatprotec.2016.03.013
17 REN H S , XIONG H P , CHEN B , et al. Microstructures and mechanical properties of vacuum brazed Ti3Al/TiAl joints using two Ti-based filler metals[J]. Journal of Materials Science & Technology, 2016, 32 (4): 372- 380.
18 XIA Y Q , DONG H G , HAO X H , et al. Vacuum brazing of Ti6Al4V alloy to 316L stainless steel using a Ti-Cu-based amorphous filler metal[J]. Journal of Materials Processing Technology, 2019, 269, 35- 44.
doi: 10.1016/j.jmatprotec.2019.01.020
19 LI Y L , HE P , FENG J C . Interface structure and mechanical properties of the TiAl/42CrMo steel joint vacuum brazed with Ag-Cu/Ti/Ag-Cu filler metal[J]. Scripta Materialia, 2006, 55, 171- 174.
doi: 10.1016/j.scriptamat.2006.03.055
20 LI Y L , LIU W , SEKULIC D P , et al. Reactive wetting of AgCuTi filler metal on the TiAl-based alloy substrate[J]. Applied Surface Science, 2012, 259, 343- 348.
doi: 10.1016/j.apsusc.2012.07.047
21 LI Y L , CHENG Z , HU X W , et al. Mechanism and process of the intermetallic compound particles reinforced TiAl/steel brazing seam[J]. Rare Metal Materials & Engineering, 2015, 44 (9): 2086- 2090.
22 RABAHI L , GALLOUZE M , GROSDIDIER T , et al. Energetics of atomic hydrogen absorption in C15-Fe2Zr Laves phases with ternary additions: a DFT study[J]. International Journal of Hydrogen Energy, 2016, 42 (4): 2157- 2166.
23 徐艳辉, 王国元, 陈长聘, 等. Ti基AB2 Laves相合金的结构与电化学性能[J]. 电源技术, 2002, 26 (增刊1): 250- 254.
23 XU Y H , WANG G Y , CHEN C P , et al. Structure and electrochemical properties of Ti-based AB2 Laves phase hydrogen storage alloy[J]. Chinese Journal of Power Sources, 2002, 26 (Suppl 1): 250- 254.
[1] 张勋业, 张秋光, 林盼盼, 王春月, 何鹏, 林铁松, 龙伟民. Ti2AlNb合金与钛基复合材料的低温固相扩散连接机理[J]. 材料工程, 2021, 49(1): 95-103.
[2] 易振华, 冉丽萍, 易茂中. Ni-Cr-P焊膏钎焊C/C复合材料的组织和性能[J]. 材料工程, 2020, 48(5): 127-135.
[3] 范爱一, 李慧中, 梁霄鹏, 陈永辉, 齐叶龙. 热变形Ti-45Al-7Nb-0.3W合金的显微组织与力学性能[J]. 材料工程, 2018, 46(7): 121-126.
[4] 黄健康, 王梓懿, 刘宁, 余淑荣, 樊丁. 金属镀层对铝/钢激光熔钎焊接头组织与性能的影响[J]. 材料工程, 2018, 46(5): 99-105.
[5] 王红卫, 朱春雷, 张继, 曹睿. 不同温度热暴露对铸造TiAl合金室温拉伸塑性的影响[J]. 材料工程, 2018, 46(12): 151-156.
[6] 朱春雷, 李胜, 张继. 有利于铸造TiAl合金增压器涡轮叶片可靠性的组织设计[J]. 材料工程, 2017, 45(6): 36-42.
[7] 蔡建明, 弭光宝, 高帆, 黄浩, 曹京霞, 黄旭, 曹春晓. 航空发动机用先进高温钛合金材料技术研究与发展[J]. 材料工程, 2016, 44(8): 1-10.
[8] 李滔, 周海涛, 王顺成, 戚文军, 郑开宏. 液固铸造4343/3003/4343铝合金复合锭的界面组织[J]. 材料工程, 2016, 44(1): 19-25.
[9] 徐冬霞, 田金峰, 王东斌, 牛济泰, 薛行雁, 孙华为. Al-20Cu-9.6Si-xEr钎料对SiCp/A356复合材料真空钎焊接头组织与性能的影响[J]. 材料工程, 2016, 44(1): 60-65.
[10] 马李, 何录菊, 邵先亦, 王古平, 张梦贤. 电子束沉积TiAl合金的微观形貌及组织结构稳定性[J]. 材料工程, 2016, 44(1): 89-95.
[11] 冯广杰, 李卓然, 朱洪羽, 徐慨. SiC陶瓷真空钎焊接头显微组织和性能[J]. 材料工程, 2015, 43(1): 1-5.
[12] 王艳晶, 柳乐, 宋玫锦. Y微合金化高铌TiAl基合金微观组织研究[J]. 材料工程, 2015, 43(1): 66-71.
[13] 李涌泉, 谢发勤, 吴向清, 姚小飞. 温度对TiAl合金表面Si-Al-Y共渗层组织结构的影响[J]. 材料工程, 2014, 0(6): 22-27.
[14] 张仁勇, 王霞, 施岱艳, 陈勇彬, 鞠岚, 张金钟. 316L不锈钢管的膨胀性能[J]. 材料工程, 2014, 0(6): 79-83.
[15] 杨硕, 林健, 杨上陆, 雷永平, 孔德凝. 钢/铝CMT接头熔合面积对接头抗剪强度及破坏模式的影响[J]. 材料工程, 2014, 0(4): 34-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn