Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (9): 113-119    DOI: 10.11868/j.issn.1001-4381.2021.000701
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
碳纤维丝束结构对碳纤维/酚醛复合材料烧蚀性能的影响
孔国强1, 安振河1, 魏化震1,*(), 李莹1, 邵蒙1, 于秋兵1, 纪校君2, 李居影1, 王康1
1 山东非金属材料研究所,济南 250031
2 北京新风航天装备有限公司,北京 100039
Effect of carbon fiber tow structure on ablative properties of carbon fiber/phenolic composites
Guoqiang KONG1, Zhenhe AN1, Huazhen WEI1,*(), Ying LI1, Meng SHAO1, Qiubing YU1, Xiaojun JI2, Juying LI1, Kang WANG1
1 Shandong Institute of Nonmetallic Materials, Jinan 250031, China
2 Beijing Xinfeng Machinery Factory, Beijing 100039, China
全文: PDF(805 KB)   HTML ( 4 )  
输出: BibTeX | EndNote (RIS)      
摘要 

以酚醛树脂为基体,以平纹碳布和短切碳纤维两种结构形式的碳纤维为增强剂,制备碳纤维增强的碳/酚醛复合材料。采用氧/乙炔烧蚀实验对复合材料的耐烧蚀性能进行了对比性研究,采用电子拉力试验机对复合材料的弯曲性能进行表征,采用扫描电镜对复合材料烧蚀形面进行观察,并通过固体火箭发动机对复合材料的烧蚀性能进行考核验证。研究结果表明: 以这两种结构形式的碳纤维为增强剂制备的碳/酚醛复合材料,其氧乙炔质量烧蚀率的大小与碳纤维丝束的大小具有正相关的特性,碳纤维丝束越小碳纤维质量烧蚀率越低,当碳纤维增强剂处于单丝状态时,复合材料的氧乙炔质量烧蚀率达到最低为0.046 g/s,并且碳纤维的型号规格对复合材料氧乙炔质量烧蚀率的影响变小。固体火箭发动机实验表明,单丝状态下的碳纤维/酚醛复合材料的抗烧蚀冲刷性能明显优于束状碳纤维/酚醛复合材料。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孔国强
安振河
魏化震
李莹
邵蒙
于秋兵
纪校君
李居影
王康
关键词 碳纤维丝束复合材料酚醛树脂质量烧蚀率线烧蚀率    
Abstract

Carbon fiber reinforced carbon/phenolic composites were prepared by using phenolic resin as matrix, plain carbon cloth and short carbon fiber as reinforcing agent. The ablation resistance of the composite was studied by oxygen/acetylene ablation test. The bending property of the composite was characterized by electronic tensile testing machine. The ablation surface of the composite was observed by scanning electron microscope. The ablation performance of the composite was verified by solid rocket motor. The results show that the mass ablation rate of oxyacetylene in carbon/phenolic composites prepared with these two structural forms of carbon fibers as reinforcements has a positive correlation with the size of carbon fiber tow. The smaller the carbon fiber tow, the lower the mass ablation rate of carbon fiber. When the carbon fiber reinforcer is in the single filament state, the oxyacetylene mass ablation rate of the composite is the lowest, which is 0.046 g/s, and the influence of carbon fiber type and specification on the mass ablation rate of oxyacetylene becomes smaller. The experimental results of solid rocket motor show that the ablation erosion resistance of carbon fiber/phenolic composites in monofilament state is obviously better than that of bundle carbon fiber/phenolic composites.

Key wordscarbon fiber tow    composites    phenolic    quality ablation rate    linear ablation rate
收稿日期: 2021-07-26      出版日期: 2022-09-20
中图分类号:  TQ342+.74  
通讯作者: 魏化震     E-mail: weihz53@sina.com
作者简介: 魏化震(1964—),男,研究员,博士,中国兵器首席专家, 研究方向为纤维增强树脂基复合材料,联系地址:山东省济南市天桥区田家庄东路3号山东非金属材料研究所(250031), E-mail:weihz53@sina.com
引用本文:   
孔国强, 安振河, 魏化震, 李莹, 邵蒙, 于秋兵, 纪校君, 李居影, 王康. 碳纤维丝束结构对碳纤维/酚醛复合材料烧蚀性能的影响[J]. 材料工程, 2022, 50(9): 113-119.
Guoqiang KONG, Zhenhe AN, Huazhen WEI, Ying LI, Meng SHAO, Qiubing YU, Xiaojun JI, Juying LI, Kang WANG. Effect of carbon fiber tow structure on ablative properties of carbon fiber/phenolic composites. Journal of Materials Engineering, 2022, 50(9): 113-119.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000701      或      http://jme.biam.ac.cn/CN/Y2022/V50/I9/113
Material Specification Manufacturer
HTA 1K carbon fiber plain fabric Area density:120 g/m2 Toho, Japan
HTA 3K carbon fiber plain fabric Area density:200 g/m2 Toho, Japan
T-700 12K carbon fiber plain fabric Area density: 200 g/m2 Toray, Japan
SL-1069 phenolic Solid content:55%;gel time:110 s Shandong institute of nonmetallic materials
S-157 phenolic Solid content:53%;gel time:90 s Shandong institute of nonmetallic materials
Table 1  碳布/酚醛复合材料所用原材料
Material Specification Manufacturer
Chopped T-800H fiber Length: 35 mm; fiber tow: 6K Toray, Japan
Chopped T-800S fiber Length: 35 mm; fiber tow: 6K Toray, Japan
Chopped T-700 fiber Length: 35 mm; fiber tow: 12K Toray, Japan
Chopped monofilament T-800S fiber Length: 35 mm Shandong institute of nonmetallic materials
Chopped monofilament T-700 fiber Length: 35 mm Shandong institute of nonmetallic materials
Table 2  短切碳纤维/酚醛复合材料所用原材料
Fig.1  单丝状碳纤维
Material Linear ablation rate/(mm·s-1) Mass ablation rate/(g·s-1) Bending strength/MPa Bending modulus/GPa Forming pressure/MPa
HTA 1K/SL-1069 -0.018 0.049 691.5 53.9 1.2(vacuum assisted)
HTA 3K/SL-1069 -0.017 0.072 615 58.5 4
HTA 3K/S-157 -0.033 0.078 253 35.8 4
T-700 12K/S-157 -0.028 0.081 361 46.8 4
Table 3  碳布/酚醛复合材料烧蚀性能和弯曲性能
Fig.2  碳/酚醛复合材料的表面形貌
(a)短切T700/酚醛;(b)短切T800 6K/酚醛;(c)单丝状T700 /酚醛
Material Linear ablation rate/(mm·s-1) Mass ablation rate/(g·s-1) Bending strength/MPa Bending modulus/GPa
T-800H 6K/S-157 0.002 0.068
T-800S 6K/S-157 -0.006 0.073
T-800S 12K/S-157 0.012 0.078
Monofilament T-700/S-157 -0.019 0.048 281 23.4
Monofilament T-800S/S-157 -0.017 0.046 239 31.6
T-700 12K/S-157 -0.028 0.083 184
T-700 24K/S-157 0.1218 0.116
Table 4  短切碳纤维/酚醛复合材料烧蚀性能
Fig.3  复合材料烧蚀形貌扫描电镜照片
(a)T-800S/S-157;(b)T-800H/S-157
Fig.4  烧蚀前(a)后(b)复合材料表面的扫描电镜图片
Material Working pressure of solid rocket motor/MPa Working time of solid rocket motor/s Nozzle ablation thickness/mm Nozzle ablation rate/(mm·s-1) Linear ablation rate of oxyacetylene/(mm·s-1) Mass ablation rate/(g·s-1)
Monofilament T700 carbon fiber/phenolic 6-7 15 2.5 0.17 -0.019 0.048
Chopped T800S carbon fiber/phenolic 4-5 22 7.5 0.34 -0.006 0.073
Table 5  固体火箭发动机地面实验考核验证结果
1 冯志海, 师建军, 孔磊, 等. 航天飞行器热防护系统低密度烧蚀防热材料研究进展[J]. 材料工程, 2020, 48 (8): 14- 24.
1 FENG Z H , SHI J J , KONG L , et al. Research progress in low-density ablative materials for thermal protection system of aerospace flight vehicles[J]. Journal of Materials Engineering, 2020, 48 (8): 14- 24.
2 刘国勤, 谢德龙. 酚醛树脂基复合材料的研究进展[J]. 河南化工, 2010, 27 (6): 21- 24.
doi: 10.3969/j.issn.1003-3467.2010.06.012
2 LIU G Q , XIE D L . Research progress of phenolic resin matrix composite[J]. Henan Chemical Industry, 2010, 27 (6): 21- 24.
doi: 10.3969/j.issn.1003-3467.2010.06.012
3 SCHOTT T, HERRING G C, MUNK M M, et al. Fiber-based measurement of bow-shock spectra for reentry flight testing[C]//Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando, Florida: 2010.
4 魏化震, 李莹, 安振河. ZrB2和POSS对C/酚醛树脂基复合材料烧蚀性能的影响[J]. 材料工程, 2011, (11): 38- 42.
4 WEI H Z , LI Y , AN Z H . Effect of ZrB2 and POSS on ablation properties of carbon fabric/phenolic composite[J]. Journal of Materials Engineering, 2011, (11): 38- 42.
5 李仲平. 防热复合材料发展与展望[J]. 复合材料学报, 2011, 28 (2): 1- 9.
5 LI Z P . Major advancement and development trends of TPS composites[J]. Acta Materiae Compositae Sinica, 2011, 28 (2): 1- 9.
6 袁海根, 曾金芳, 杨杰, 等. 防热抗烧蚀复合材料研究进展[J]. 化学推进剂与高分子材料, 2006, 4 (1): 21- 25.
doi: 10.3969/j.issn.1672-2191.2006.01.005
6 YUAN H G , ZENG J F , YANG J , et al. Research progress of high temperature thermoprotective and ablation resistant composite materials[J]. Chemical Propellants & Polymeric Materials, 2006, 4 (1): 21- 25.
doi: 10.3969/j.issn.1672-2191.2006.01.005
7 易法军, 梁军, 孟松鹤, 等. 防热复合材料的烧蚀机理与模型研究[J]. 固体火箭技术, 2000, 23 (4): 49- 57.
doi: 10.3969/j.issn.1006-2793.2000.04.012
7 YI F J , LIANG J , MENG S H , et al. Study on ablation mechanism and models of heatshield composites[J]. Journal of Solid Rocket Technology, 2000, 23 (4): 49- 57.
doi: 10.3969/j.issn.1006-2793.2000.04.012
8 肖军, 周惠娣, 李铁虎, 等. 导弹发射装置滑轨表面MoS2膜防护高温高速两相燃气流应用研究[J]. 摩擦学学报, 2003, (5): 435- 440.
doi: 10.3321/j.issn:1004-0595.2003.05.017
8 XIAO J , ZHOU H D , LI T H , et al. Protection of ablative adhesion and erosion of slide track of missile launcher by high-temperature two-phase exhaust using MoS2-based bonded solid lubricant film[J]. Tribology, 2003, (5): 435- 440.
doi: 10.3321/j.issn:1004-0595.2003.05.017
9 MORGAN R E, PRINCE A S, SELVIDGE S A, et al. Non-asbestos insulation testing using a plasma torch[C]//36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Las Vegas, NV: AIAA-2000: 3317.
10 张宗强, 匡松连, 尚龙, 等. 树脂基复合材料长时间烧蚀防热的应用研究[J]. 宇航材料工艺, 2007, 37 (6): 29- 31.
doi: 10.3969/j.issn.1007-2330.2007.06.008
10 ZHANG Z Q , KUANG S L , SHANG L , et al. Resin composites on long time ablation and thermal protection[J]. Aerospace Materials & Technology, 2007, 37 (6): 29- 31.
doi: 10.3969/j.issn.1007-2330.2007.06.008
11 李茂源, 卢林, 戴珍, 等. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33 (8): 1302- 1306.
11 LI M Y , LU L , DAI Z , et al. Enhanced ablation resistance of glass beads and ZrB2 modified SiO2 (f)-phenolic composites[J]. Materials Review, 2019, 33 (8): 1302- 1306.
12 WANG F Y , HUANG Z X , ZHANG G W , et al. Preparation and thermal stability of heat-resistant phenolic resin system constructed by multiple heat-resistant compositions containing boron and silicon[J]. High Performance Polymers, 2017, 29 (4): 493- 498.
doi: 10.1177/0954008316644971
13 张拜, 李旭东. 碳/酚醛防热复合材料体积烧蚀行为的数值模拟[J]. 华中科技大学学报(自然科学版), 2018, 35 (10): 2786- 2792.
13 ZHANG B , LI X D . Numerical simulation of volume ablation behavior of carbon/phenolic composite[J]. Journal of Huazhong University of Science and Technology(Nature Science Edition), 2018, 35 (10): 2786- 2792.
14 孟祥艳, 刘运传, 王康, 等. 酚醛树脂基复合材料的等离子烧蚀性能[J]. 材料科学与工程学报, 2016, 34 (3): 400- 403.
14 MENG X Y , LIU Y C , WANG K , et al. Plasma arc ablation behavior of phenolic resin based composites[J]. Journal of Materials Science and Engineering, 2016, 34 (3): 400- 403.
[1] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[2] 米玉洁, 宋明明, 张存瑞, 张贵恩, 王月祥, 常志敏. 羰基铁室温硫化硅橡胶复合材料的吸波性能[J]. 材料工程, 2022, 50(9): 120-126.
[3] 邢宇, 张代军, 王成博, 倪洪江, 李军, 陈祥宝. PEEK复合材料用碳纤维上浆剂研究进展[J]. 材料工程, 2022, 50(8): 70-81.
[4] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[5] 倪洪江, 邢宇, 戴霄翔, 李军, 张代军, 陈祥宝. 航空发动机用聚酰亚胺树脂基复合材料固化工艺及热稳定性能[J]. 材料工程, 2022, 50(7): 102-109.
[6] 吕双祺, 黄佳, 孙燕涛, 付尧明, 杨晓光, 石多奇. 莫来石纤维增强SiO2气凝胶复合材料压缩回弹性能实验与建模研究[J]. 材料工程, 2022, 50(7): 119-127.
[7] 杨智勇, 臧家俊, 方丹琳, 李翔, 李志强, 李卫京. 城轨列车制动盘SiCp/A356复合材料热疲劳裂纹扩展机理[J]. 材料工程, 2022, 50(7): 165-175.
[8] 彭斌意, 刘洋, 郑晓董, 李治国, 李国平, 胡建波, 王永刚. 激光选区熔化颗粒增强钛基复合材料的抗压性能[J]. 材料工程, 2022, 50(6): 36-48.
[9] 李军, 刘燕峰, 倪洪江, 张代军, 陈祥宝. 航空发动机用树脂基复合材料应用进展与发展趋势[J]. 材料工程, 2022, 50(6): 49-60.
[10] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[11] 于永涛, 刘元军. 原位聚合法制备铁氧体/聚苯胺吸波复合材料的研究进展[J]. 材料工程, 2022, 50(5): 90-99.
[12] 程子敬, 王凯峰, 张连洪. 基于微观尺度X射线断层扫描技术的短切碳纤维SMC复合材料失效分析[J]. 材料工程, 2022, 50(5): 130-138.
[13] 杜宗波, 时双强, 陈宇滨, 褚海荣, 杨程. 介电型石墨烯吸波复合材料研究进展[J]. 材料工程, 2022, 50(4): 74-84.
[14] 任美娟, 王淼, 吴芳辉, 贾虎, 叶明富, 文国强. 氮掺杂多孔碳负载铜钴纳米复合材料的制备及其电催化性能[J]. 材料工程, 2022, 50(4): 104-111.
[15] 惠阳, 刘贵民, 兰海, 杜建华. 连续制动条件下泡沫陶瓷/金属双连续相复合材料的摩擦磨损性能[J]. 材料工程, 2022, 50(4): 112-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn