Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (3): 60-68    DOI: 10.11868/j.issn.1001-4381.2021.000713
  高熵合金专栏 本期目录 | 过刊浏览 | 高级检索 |
考虑位错密度和损伤的NiCoCrFe高熵合金晶体塑性有限元分析
胡广1,2,3, 赵英杰1,2,3, 马胜国1,2,3, 张团卫1,2,3, 赵聃1,2,3,*(), 王志华1,2,3
1 太原理工大学 机械与运载工程学院 应用力学研究所, 太原 030024
2 材料强度与结构冲击山西省重点实验室, 太原 030024
3 太原理工大学 力学国家级实验教学示范中心, 太原 030024
Crystal plasticity finite element analysis of NiCoCrFe high entropy alloy considering dislocation density and damage
Guang HU1,2,3, Yingjie ZHAO1,2,3, Shengguo MA1,2,3, Tuanwei ZHANG1,2,3, Dan ZHAO1,2,3,*(), Zhihua WANG1,2,3
1 Institute of Applied Mechanics, College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2 Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan 030024, China
3 Mechanics National Experimental Teaching Demonstration Center, Taiyuan University of Technology, Taiyuan 030024, China
全文: PDF(10344 KB)   HTML ( 3 )  
输出: BibTeX | EndNote (RIS)      
摘要 

结合实验和晶体塑性有限元方法研究准静态加载NiCoCrFe高熵合金有限变形过程中的宏观和微观力学响应、损伤行为以及微观结构演化。使用电子背散射衍射技术(EBSD)对拉伸实验变形前后NiCoCrFe的微观结构进行表征。通过修改强化模型和流动准则分别在CPFEM模型中引入位错密度内部状态变量和连续介质损伤因子, 并结合拉伸实验应力-应变曲线确定NiCoCrFe相关的模型参数。结果表明: 考虑位错密度和损伤的CPFEM模型可以有效地描述NiCoCrFe宏观和微观力学响应。CPFEM模型合理预测NiCoCrFe颈缩区域的变形形状和尺寸, 其中实验获得的颈缩区域长度比预测结果小7%, CPFEM预测的颈缩区域宽度比实验结果大23%。CPFEM模型预测NiCoCrFe拉伸变形后的织构演化同EBSD表征结果大致相同, 均表现为弱的(100)//RD以及强的(111)//RD纤维织构。在三维微观结构损伤分析中, CPFEM模型预测的损伤在应力集中以及位错密度集中的晶界处萌生, 表现为晶间损伤机制, 并且随着变形的增加损伤逐渐向晶粒内部扩展。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡广
赵英杰
马胜国
张团卫
赵聃
王志华
关键词 高熵合金晶体塑性有限元损伤位错密度织构    
Abstract

Macroscopic and microscopic mechanical responses, damage behavior and microstructure evolution of NiCoCrFe high entropy alloys (HEAs) during finite deformation under quasi-static loading were investigated by experiments and crystal plasticity finite element method. The microstructure of NiCoCrFe before and after tensile deformation was characterized by electron backscattering diffraction technique(EBSD). The internal state variables of dislocation density and continuum damage factors were introduced into the CPFEM model by modifying the strengthening model and the flow criterion, and the NiCoCrFe related model parameters were determined by combining the stress-strain curves of the tensile test. The results show that the CPFEM model considering the dislocation density and damage can effectively describe the macroscopic and microscopic mechanical responses of NiCoCrFe. CPFEM model can reasonably predict the deformation shape and size of NiCoCrFe necking region, among which, the length of the necking region obtained in the experiment is 7% smaller than the predicted result, and the width of the necking region predicted by CPFEM is 23% larger than the experimental result. The texture evolution predicted by CPFEM model after NiCoCrFe tensile deformation is in good agreement with the results that characterized by EBSD, showing weak (100)//RD and strong (111)//RD fiber texture. In the analysis of the 3D micro- structure damage, the damage predicted by the current CPFEM model appears as an inter-granular damage mechanism at the grain boundary where stress and dislocation density are concentrated, and the damage gradually expands to the grain interior with the increase of deformation.

Key wordshigh entropy alloy    crystal plasticity finite element    damage    dislocation density    texture
收稿日期: 2021-07-29      出版日期: 2022-03-19
中图分类号:  TB301  
  O344.1  
基金资助:国家自然科学基金(11602158);国家自然科学基金(12072220);国家自然科学基金(11572214);山西省自然科学基金(201901D111088);中国博士后基金(2020M673473)
通讯作者: 赵聃     E-mail: zhaodan@tyut.edu.cn
作者简介: 赵聃(1985—),男,副教授,博士,研究方向为多尺度晶体塑性本构模型,联系地址:山西省太原市迎泽西大街79号太原理工大学科学楼506(030024),E-mail: zhaodan@tyut.edu.cn
引用本文:   
胡广, 赵英杰, 马胜国, 张团卫, 赵聃, 王志华. 考虑位错密度和损伤的NiCoCrFe高熵合金晶体塑性有限元分析[J]. 材料工程, 2022, 50(3): 60-68.
Guang HU, Yingjie ZHAO, Shengguo MA, Tuanwei ZHANG, Dan ZHAO, Zhihua WANG. Crystal plasticity finite element analysis of NiCoCrFe high entropy alloy considering dislocation density and damage. Journal of Materials Engineering, 2022, 50(3): 60-68.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000713      或      http://jme.biam.ac.cn/CN/Y2022/V50/I3/60
Fig.1  实验试件标距段尺寸(a)和划分网格后的三维宏观多晶模型及边界条件(b)
Fig.2  NiCoCrFe合金EBSD反极图
(a)退火后;(b)变形后
Fig.3  NiCoCrFe合金极图
(a)退火后;(b)拉伸实验后;(c)CPFEM拉伸模拟
Fig.4  CPFEM模型中工程应力-应变曲线,颈缩区域形状和尺寸对比(a),CPFEM模拟颈缩区域损伤晶粒(图 4(a2)中黄色圆形区域)Mises应力,损伤因子以及滑移系最大剪切应变演化曲线(b)
m ρint/mm-2 μ/MPa b/nm k1/mm-1 k2 τ0/MPa γini γmax Dmax M
20 0.001 5×105 84000 0.252 1.5×105 11 86 0.45 0.49 0.8 3
Table 1  NiCoCrFe晶体塑性模型相关参数
Fig.5  CPFEM模拟工程应变35%时Mises应力(a), 对数应变(b), 位错密度(c)以及损伤(d)分布云图(试样标距段)
Fig.6  三维微观多晶模型及施加的边界条件
Fig.7  工程应变30%时Mises应力(a)和位错密度(b)分布云图,工程应变37%时最大剪切应变(c)和损伤(d)分布云图
Fig.8  A1~A4晶粒晶界附近不同区域Mises应力随应变的演化曲线及损伤分布云图
1 YEH J W , CHEN S K , LIN S J , et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6 (5): 299- 303.
doi: 10.1002/adem.200300567
2 吕昭平, 雷智锋, 黄海龙, 等. 高熵合金的变形行为及强韧化[J]. 金属学报, 2018, 54 (11): 85- 98.
2 LU Z P , LEI Z F , HUANG H L , et al. Deformation behavior and toughening of high-entropy alloys[J]. Acta Metallurgica Sinica, 2018, 54 (11): 85- 98.
3 TSAI M H , YEH J W . High-entropy alloys: a critical review[J]. Materials Research Letters, 2014, 2 (3): 107- 123.
doi: 10.1080/21663831.2014.912690
4 FU Z , JIANG L , WARDINI J L , et al. A high-entropy alloy with hierarchical nanoprecipitates and ultrahigh strength[J]. Science Advances, 2018, 4 (10): 8712.
doi: 10.1126/sciadv.aat8712
5 MING K , BI X , JIAN W . Realizing strength-ductility combination of coarse-grained Al0.2Co1.5CrFeNi1.5Ti0.3 alloy via nano-sized, coherent precipitates[J]. International Journal of Plasticity, 2017, 100, 177- 197.
6 QIU Y , THOMAS S , FABIJANIC D , et al. Microstructural evolution, electrochemical and corrosion properties of AlxCoCrFeNiTiy high entropy alloys[J]. Materials and Design, 2019, 170, 107698.
doi: 10.1016/j.matdes.2019.107698
7 SHI Y Z , YANG B , XIE X , et al. Corrosion of AlxCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pi-tting behavior[J]. Corrosion Science, 2017, 119, 33- 45.
doi: 10.1016/j.corsci.2017.02.019
8 LIU J , GUO X , LIN Q , et al. Excellent ductility and serration feature of metastable CoCrFeNi high-entropy alloy at extremely low temperatures[J]. Science China Materials, 2018, 62 (6): 853- 863.
9 SENKOV O N , SCOTT J M , SENKOVA S V , et al. Microstructure and elevated temperature properties of a refractory TaNb HfZrTi alloy[J]. Journal of Materials Science, 2012, 47 (9): 4062- 4074.
doi: 10.1007/s10853-012-6260-2
10 ZHANGT W , MA S G , ZHAO D , et al. Simultaneous enhancement of strength and ductility in a NiCoCrFe high-entropy alloy upon dynamic tension: micromechanism and constitutive modeling[J]. International Journal of Plasticity, 2020, 124, 226- 246.
doi: 10.1016/j.ijplas.2019.08.013
11 WANG Y , LIU B , YAN K , et al. Probing deformation mechanisms of a FeCoCrNi high-entropy alloy at 293 and 77 K using in situ neutron diffraction[J]. Acta Materialia, 2018, 154, 79- 89.
doi: 10.1016/j.actamat.2018.05.013
12 ROTERS F , EISENLOHR P , HANTCHERLI L , et al. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications[J]. Acta Materialia, 2010, 58, 1152- 1211.
doi: 10.1016/j.actamat.2009.10.058
13 PEIRCE D , ASARO R J , NEEDLEMAN A . An analysis of non-uniform and localized deformation in ductile single crystals[J]. Acta Metallurgica, 1982, 30 (6): 1087- 1119.
doi: 10.1016/0001-6160(82)90005-0
14 胡春燕, 刘新灵, 陶春虎, 等. 气膜孔分布对DD6单晶高温合金持久性能及断裂行为的影响[J]. 材料工程, 2016, 44 (5): 93- 100.
14 HU C Y , LIU X L , TAO C H , et al. Influence of cooling holes distribution on stress rupture property and fracture behavior of single crystal superalloy DD6[J]. Journal of Materials Engineering, 2016, 44 (5): 93- 100.
15 KNEZEVIC M , CARPENTER J S , LOVATO M L , et al. Deformation behavior of the cobalt-based superalloy Haynes 25: experimental characterization and crystal plasticity modeling[J]. Acta Materialia, 2014, 63, 162- 168.
doi: 10.1016/j.actamat.2013.10.021
16 ARDELJAN M , BEYERLEIN I J , KNEZEVIC M . A dislocation density based crystal plasticity finite element model: application to a two-phase polycrystalline HCP/BCC composites[J]. Journal of the Mechanics & Physics of Solids, 2014, 66, 16- 31.
17 WANG Y Y , SUN X , WANG Y D , et al. A mechanism-based model for deformation twinning in polycrystalline FCC steel[J]. Materials Science and Engineering: A, 2014, 607 (23): 206- 218.
18 孙朝阳, 郭祥如, 黄杰, 等. 耦合孪生的TWIP钢单晶体塑性变形行为模拟研究[J]. 金属学报, 2015, 51 (3): 357- 363.
18 SUN C Y , GUO X R , HUANG J , et al. Modelling of plastic deformation on coupling twinning of single crystal TWIP steel[J]. Acta Metallurgica Sinica, 2015, 51 (3): 357- 363.
19 GAO T J , ZHAO D , ZHANG T W , et al. Strain-rate-sensitive mechanical response, twinning, and texture features of NiCo CrFe high-entropy alloy: experiments, multi-level crystal plasti-city and artificial neural networks modeling[J]. Journal of Alloys and Compounds, 2020, 845, 155911.
doi: 10.1016/j.jallcom.2020.155911
20 KIM J B , YOONJ W . Necking behavior of AA 6022-T4 based on the crystal plasticity and damage models[J]. International Journal of Plasticity, 2015, 73, 3- 23.
doi: 10.1016/j.ijplas.2015.06.013
21 LV P , ZHANG T W , ZHAO D , et al. Effects of stress states and strain rates on mechanical behavior and texture evolution of the CoCrFeNi high-entropy alloy: experiment and simulation[J]. Journal of Alloys and Compounds, 2021, 851, 156779.
doi: 10.1016/j.jallcom.2020.156779
22 HUANG Y. A user-material subroutine incorporating single crystal plasticity in the ABAQUS finite element program[D]. Cambridge, US: Harvard University, 1991.
23 PEIRCE D , ASARO R J , NEEDLEMAN A . Material rate dependence and localized deformation in crystalline solids[J]. Acta Metallurgica, 1983, 31 (12): 1951- 1976.
doi: 10.1016/0001-6160(83)90014-7
24 季灏, 吴玉瑞, 沈耀. 基于林位错强化的晶体塑性模型的稳定性缺陷及改进[J]. 塑性工程学报, 2017, 24 (2): 141- 148.
24 JI H , WU Y R , SHEN Y . Stability defect and modification of crystal plasticity model based on forest dislocation strengthening[J]. Journal of Plasticity Engineering, 2017, 24 (2): 141- 148.
25 KOCKS U F . Laws for work-hardening and low-temperature creep[J]. J Eng Mater Tech, 1976, 98 (1): 76- 85.
doi: 10.1115/1.3443340
26 柳玉启, 胡平. 金属材料平面应变拉伸变形局部化有限元分析[J]. 应用力学学报, 1995, (2): 17- 22.
26 LIU Y Q , HU P . Finite element analysis of plane strain tensile deformation localization of metallic materials[J]. Chinese Journal of Applied Mechanics, 1995, (2): 17- 22.
27 YAN B Y , JIANG S Y , LI H , et al. Crystal plasticity finite element simulation of NiTi shape memory alloy under canning compression based on constitutive model containing dislocation density[J]. Mechanics of Materials, 2021, 157, 103830.
doi: 10.1016/j.mechmat.2021.103830
[1] 张小丽, 冯晓伟, 申勇峰. D6A钢在轧制过程中的强韧化机理[J]. 材料工程, 2022, 50(4): 172-180.
[2] 于源, 乔竹辉, 任海波, 刘维民. 高熵合金摩擦磨损性能的研究进展[J]. 材料工程, 2022, 50(3): 1-17.
[3] 姜明明, 孙树峰, 王津, 王萍萍, 孙晓雨, 邵晶, 刘纪新, 曹爱霞, 孙维丽, 陈希章. 激光熔覆制备高熵合金涂层耐磨性研究进展[J]. 材料工程, 2022, 50(3): 18-32.
[4] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
[5] 张昊, 吴昊, 唐啸天, 罗涛, 邓人钦. 微量W元素的添加对CoCrFeNiMnAl高熵合金的组织与性能的影响[J]. 材料工程, 2022, 50(3): 50-59.
[6] 计植耀, 马跃, 王清, 董闯. 高性能软磁合金的研究进展[J]. 材料工程, 2022, 50(3): 69-80.
[7] 李红, 韩祎, 曹健, MARIUSZ Bober, JACEK Senkara. 高熵合金在钎焊和表面工程领域的应用研究进展[J]. 材料工程, 2021, 49(8): 1-10.
[8] 张祥林, 孟庆春, 许名瑞, 曾本银, 程小全, 孙炜. 吸湿后碳纤维复合材料正交层板拉伸疲劳性能[J]. 材料工程, 2021, 49(8): 169-177.
[9] 郭洪宝, 洪智亮, 李开元, 梅文斌. 2D-C/SiC复合材料轴向加载泊松效应[J]. 材料工程, 2021, 49(8): 178-183.
[10] 柏跃磊, 尹航, 宋广平, 赫晓东, 齐欣欣, 高进, 郝兵兵, 张金泽. 高韧性三元层状陶瓷:从MAX相到MAB相[J]. 材料工程, 2021, 49(5): 1-23.
[11] 洪智亮, 张巧君, 李开元, 郭洪宝, 张程煜, 刘永胜. SiC/SiC复合材料在高温空气中的氧化行为[J]. 材料工程, 2021, 49(5): 144-150.
[12] 王鑫, 万义兴, 张平, 单彩霞, 谢莹莹, 梁秀兵. 难熔高熵合金NbMoTaWTi/Zr的高温氧化行为[J]. 材料工程, 2021, 49(12): 100-106.
[13] 安子乾, 舒茂盛, 程羽佳, 郭鑫, 程小全. 3钉带衬套复合材料/金属接头拉伸疲劳性能[J]. 材料工程, 2021, 49(12): 164-174.
[14] 支盛兴, 李兴刚, 袁家伟, 李永军, 马鸣龙, 石国梁, 张奎. 挤压态AZ40镁合金热变形行为及热加工图分析[J]. 材料工程, 2021, 49(11): 136-146.
[15] 魏水淼, 马盼, 季鹏程, 马永超, 王灿, 赵健, 于治水. 高熵合金增材制造研究进展[J]. 材料工程, 2021, 49(10): 1-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn