Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (6): 27-35    DOI: 10.11868/j.issn.1001-4381.2021.000737
  增材制造专栏 本期目录 | 过刊浏览 | 高级检索 |
Al含量对选区激光熔化AlxCoCrFeNi (x=0.3, 0.5, 0.7, 1.0)的显微组织及纳米压痕的影响
邓操, 李瑞迪(), 袁铁锤, 牛朋达
中南大学 粉末冶金国家重点实验室, 长沙 410083
Influence of Al content on microstructure and nanoindentation of selective laser melting AlxCoCrFeNi (x=0.3, 0.5, 0.7, 1.0)
Cao DENG, Ruidi LI(), Tiechui YUAN, Pengda NIU
State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
全文: PDF(15823 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用气雾化法制备预合金粉末, 通过选区激光熔化(selective laser melting, SLM)制备AlxCoCrFeNi(x=0.3, 0.5, 0.7, 1.0)高熵合金。通过X射线衍射仪、扫描电镜以及纳米压痕实验, 综合分析AlxCoCrFeNi的物相、微观组织、硬度、杨氏模量及蠕变曲线, 探讨Al含量对AlxCoCrFeNi显微组织及纳米压痕的影响。结果表明: Al含量对物相组织有显著影响, 其中Al0.3CoCrFeNi与Al0.5CoCrFeNi为FCC结构, Al0.7CoCrFeNi和Al1.0CoCrFeNi为BCC/B2结构。Al0.3CoCrFeNi和Al0.5CoCrFeNi主要由等轴晶组成, Al0.7CoCrFeNi和Al1.0CoCrFeNi主要由柱状晶组成。随Al含量增加, 孔隙及裂纹等缺陷增加。在Al0.3CoCrFeNi和Al0.5CoCrFeNi中没有观察到明显的熔池形貌。随Al含量增加, 样品残余应力增加。随Al含量增加, 硬度增加, 由Al0.3CoCrFeNi的447HV增加至Al1.0CoCrFeNi的567HV。Al0.3CoCrFeNi杨氏模量约为273 GPa, Al0.5CoCrFeNi约为233 GPa, Al0.7CoCrFeNi和Al1.0CoCrFeNi杨氏模量相近, 分别为240 GPa和242 GPa, 硬度与杨氏模量的变化主要与组织及物相有关。与传统蠕变曲线不同, AlxCoCrFeNi的纳米压痕蠕变曲线只包括瞬时蠕变和稳态蠕变两个阶段, 其蠕变机制主要为位错蠕变, 其中Al0.7CoCrFeNi具有最好的抗蠕变性能。Al0.3CoCrFeNi具有最好的打印成形性, 其屈服强度为702 MPa, 伸长率为27.5%。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓操
李瑞迪
袁铁锤
牛朋达
关键词 选区激光熔化AlxCoCrFeNi显微组织纳米压痕    
Abstract

AlxCoCrFeNi(x=0.3,0.5,0.7,1.0)high-entropy alloy was fabricated by selective laser melting (SLM),and pre-alloyed powder was prepared by gas atomization.The phase composition, microstructure, hardness, Young’s modulus and creep curve of AlxCoCrFeNi were comprehensively analyzed through X-ray diffractometer, scanning electron microscope and nanoindentation experiments, respectively. The influence of Al content on the microstructure and nanoindentation of AlxCoCrFeNi was discussed.The results show that Al0.3CoCrFeNi and Al0.5CoCrFeNi are FCC structure, while Al0.7CoCrFeNi and Al1.0CoCrFeNi are BCC/B2 structure. The microstructure of Al0.3CoCrFeNi and Al0.5CoCrFeNi are mainly composed of equiaxed crystals, while Al0.7CoCrFeNi and Al1.0CoCrFeNi are mainly composed of columnar crystals. It indicates that the content of Al has great influence on the microstructure of AlxCoCrFeNi high-entropy alloy.With the increase of Al content, defects such as pores and cracks in the specimens increase. There is no obvious molten pool morphology observed in Al0.3CoCrFeNi and Al0.5CoCrFeNi. The residual stress increases with the increase of Al content. The hardness and Young’s modulus of the samples were measured. It was found that with the increase of Al content,the hardness of the sample increases from 447HV to 567HV.The Young’s modulus of Al0.3CoCrFeNi is about 273 GPa, and Al0.5CoCrFeNi is about 233 GPa,while Al0.7CoCrFeNi and Al1.0CoCrFeNi are about 240 GPa and 242 GPa,respectively. The changes in hardness and Young’s modulus are mainly related to the microstructure and phases of specimens. Different from the traditional creep curve, the creep curve of AlxCoCrFeNi includes only two stages, which are instantaneous creep and steady-state creep. The creep mechanism is mainly dislocation creep. Among the samples, Al0.7CoCrFeNi has the best creep resistance. Al0.3CoCrFeNi has the best print formability, with the yield strength of 702 MPa, and the elongation is 27.5%.

Key wordsselective laser melting    AlxCoCrFeNi    microstructure    nanoindentation
收稿日期: 2021-08-04      出版日期: 2022-06-20
中图分类号:  TG144  
基金资助:山东省自然科学基金(ZR2020ZD04)
通讯作者: 李瑞迪     E-mail: liruidi@csu.edu.cn
作者简介: 李瑞迪(1983—),男,研究员,博士生导师,主要从事金属增材制造、粉末快速烧结等方面的研究,联系地址:湖南省长沙市中南大学粉末冶金研究院(410083),E-mail: liruidi@csu.edu.cn
引用本文:   
邓操, 李瑞迪, 袁铁锤, 牛朋达. Al含量对选区激光熔化AlxCoCrFeNi (x=0.3, 0.5, 0.7, 1.0)的显微组织及纳米压痕的影响[J]. 材料工程, 2022, 50(6): 27-35.
Cao DENG, Ruidi LI, Tiechui YUAN, Pengda NIU. Influence of Al content on microstructure and nanoindentation of selective laser melting AlxCoCrFeNi (x=0.3, 0.5, 0.7, 1.0). Journal of Materials Engineering, 2022, 50(6): 27-35.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000737      或      http://jme.biam.ac.cn/CN/Y2022/V50/I6/27
Pre-alloyed Al Co Cr Fe Ni Others
Al1.0CoCrFeNi 7.79 20.8 20.0 22.2 29.21
Al0.7CoCrFeNi 5.91 22.8 21.6 22.5 27.19
Al0.5CoCrFeNi 4.13 21.9 21.1 22.3 30.57
Al0.3CoCrFeNi 3.72 23.4 22.3 25.3 25.1 0.18
Table 1  AlxCoCrFeNi合金粉末的化学成分 (质量分数/%)
Fig.1  不同铝含量AlxCoCrFeNi的粉末形貌
(a)Al0.3CoCrFeNi; (b)Al0.5CoCrFeNi; (c)Al0.7CoCrFeNi; (d)Al1.0CoCrFeNi; (e)图(d)中局部放大粉末形貌
Percent to unload/% Surface approach velocity/(nm·s-1) Allowable drift rate/(nm·s-1) Peak hold time/s Time to load/s Surface approach sensitivity/% Poisson’s ratio
90 10 2.05 200 20 25 0.25
Table 2  室温纳米压痕参数
Fig.2  SLM成形AlxCoCrFeNi样品的X射线衍射图谱
Fig.3  SLM成形AlxCoCrFeNi的SEM图
(a)Al0.3CoCrFeNi; (b)Al0.5CoCrFeNi; (c)Al0.7CoCrFeNi; (d)Al1.0CoCrFeNi
Fig.4  SLM成形Al0.3CoCrFeNi的EPMA元素分布图
Fig.5  不同Al含量SLM样品的残余应力
Fig.6  不同最大载荷下的AlxCoCrFeNi载荷-位移曲线
(a)Al0.3CoCrFeNi; (b)Al0.5CoCrFeNi; (c)Al0.7CoCrFeNi; (d)Al1.0CoCrFeNi
Fig.7  AlxCoCrFeNi的杨氏模量与维氏硬度
Fig.8  在不同最大载荷下保压阶段的蠕变位移曲线
(a)Al0.3CoCrFeNi; (b)Al0.5CoCrFeNi; (c)Al0.7CoCrFeNi; (d)Al1.0CoCrFeNi
Fig.9  Al0.3CoCrFeNi的应力-应变曲线
1 YEH J W , CHEN S K , LIN S J , et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Adv Eng Mater, 2004, 6 (5): 299- 303.
doi: 10.1002/adem.200300567
2 LI Z , KÖRMANN F , GRABOWSKI B , et al. Ab initio assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity[J]. Acta Materialia, 2017, 136, 262- 270.
doi: 10.1016/j.actamat.2017.07.023
3 LEE C P , CHANG C C , CHEN Y Y , et al. Effect of the aluminium content of AlxCrFe1.5MnNi0.5 high-entropy alloys on the corrosion behaviour in aqueous environments[J]. Corrosion Science, 2008, 50 (7): 2053- 2060.
doi: 10.1016/j.corsci.2008.04.011
4 YANG Y , LUO X , MA T , et al. Effect of Al on characterization and properties of AlxCoCrFeNi high entropy alloy prepared via electro-deoxidization of the metal oxides and vacuum hot pressing sintering process[J]. Journal of Alloys and Compounds, 2021, 864, 158717.
doi: 10.1016/j.jallcom.2021.158717
5 JIANG L , LU Y , DONG Y , et al. Annealing effects on the microstructure and properties of bulk high-entropy CoCrFeNiTi0.5 alloy casting ingot[J]. Intermetallics, 2014, 44, 37- 43.
doi: 10.1016/j.intermet.2013.08.016
6 LI R , WANG M , LI Z , et al. Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: crack-inhibiting and multiple strengthening mechanisms[J]. Acta Materialia, 2020, 193, 83- 98.
doi: 10.1016/j.actamat.2020.03.060
7 林泽桓, 李瑞迪, 祝弘滨, 等. 送粉式激光增材制造Al-Mg-Sc-Zr合金的微观组织与力学性能[J]. 中南大学学报(自然科学版), 2020, 51 (11): 3055- 3063.
doi: 10.11817/j.issn.1672-7207.2020.11.006
7 LIN Z H , LI R D , ZHU H B , et al. Microstructure and mechanical properties of Al-Mg-Sc-Zr alloy by powder feeding laser additive manufacturing[J]. Journal of Central South University(Science and Technology), 2020, 51 (11): 3055- 3063.
doi: 10.11817/j.issn.1672-7207.2020.11.006
8 郑聃, 李瑞迪, 袁铁锤, 等. 选区激光熔化与定向能量沉积NiTi形状记忆合金组织与性能的对比研究[J]. 中南大学学报(自然科学版), 2021, 28 (4): 1028- 1042.
8 ZHENG D , LI R D , YUAN T C , et al. Microstructure and mechanical property of additively manufactured NiTi alloys: a comparison between selective laser melting and directed energy deposition[J]. Journal of Central South University(Science and Technology), 2021, 28 (4): 1028- 1042.
9 王银, 王悦婷, 李瑞迪, 等. 选区激光熔化金属材料中的霍尔-佩奇关系[J]. 中南大学学报(自然科学版), 2021, 28 (4): 1043- 1057.
9 WANG Y , WANG Y T , LI R D , et al. Hall-Petch relationship in selective laser melting additively manufactured metals: using grain or cell size[J]. Journal of Central South University(Science and Technology), 2021, 28 (4): 1043- 1057.
10 NIU P D , LI R D , YUAN T C , et al. Microstructures and properties of an equimolar AlCoCrFeNi high entropy alloy printed by selective laser melting[J]. Intermetallics, 2019, 104, 24- 32.
doi: 10.1016/j.intermet.2018.10.018
11 JOSEPH J , HODGSON P , JARVIS T , et al. Effect of hot isostatic pressing on the microstructure and mechanical properties of additive manufactured AlxCoCrFeNi high entropy alloys[J]. Materials Science and Engineering: A, 2018, 733, 59- 70.
doi: 10.1016/j.msea.2018.07.036
12 HUANG L F , SUN Y N , AMAR A , et al. Microstructure evolution and mechanical properties of AlxCoCrFeNi high-entropy alloys by laser melting deposition[J]. Vacuum, 2021, 183, 109875.
doi: 10.1016/j.vacuum.2020.109875
13 BHOWMIK A , LEE J , BRITTON T B , et al. Deformation behaviour of[J]. Acta Materialia, 2018, 145, 516- 531.
doi: 10.1016/j.actamat.2017.12.002
14 CHEN T , TAN L , LU Z , et al. The effect of grain orientation on nanoindentation behavior of model austenitic alloy Fe-20Cr-25Ni[J]. Acta Materialia, 2017, 138, 83- 91.
doi: 10.1016/j.actamat.2017.07.028
15 SAKHAROVA N A , OLIVEIRA M C , ANTUNES J M , et al. On the determination of the film hardness in hard film/substrate composites using depth-sensing indentation[J]. Ceramics International, 2013, 39 (6): 6251- 6263.
doi: 10.1016/j.ceramint.2013.01.046
16 MUTHUPANDI G , LIM K R , NA Y S , et al. Pile-up and sink-in nanoindentation behaviors in AlCoCrFeNi multi-phase high entropy alloy[J]. Materials Science and Engineering: A, 2017, 696, 146- 154.
doi: 10.1016/j.msea.2017.04.045
17 SUN Y , CHEN P , LIU L , et al. Local mechanical properties of AlxCoCrFeNi high entropy alloy characterized using nanoindentation[J]. Intermetallics, 2018, 93, 85- 88.
doi: 10.1016/j.intermet.2017.11.010
18 SOURAV A , YEBAJI S , THANGARAJU S . Structure-property relationships in hot forged AlxCoCrFeNi high entropy alloys[J]. Materials Science and Engineering: A, 2020, 793, 139877.
doi: 10.1016/j.msea.2020.139877
19 SUN Z , TAN X , WANG C , et al. Reducing hot tearing by grain boundary segregation engineering in additive manufacturing: example of an AlxCoCrFeNi high-entropy alloy[J]. Acta Materialia, 2021, 204, 116505.
doi: 10.1016/j.actamat.2020.116505
20 XU Z , ZHANG H , LI W , et al. Microstructure and nanoindentation creep behavior of CoCrFeMnNi high-entropy alloy fabricated by selective laser melting[J]. Additive Manufacturing, 2019, 28, 766- 771.
doi: 10.1016/j.addma.2019.06.012
21 JOSEPH J , JARVIS T , WU X , et al. Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted AlxCoCrFeNi high entropy alloys[J]. Materials Science and Engineering: A, 2015, 633, 184- 193.
doi: 10.1016/j.msea.2015.02.072
[1] 陈帅, 陶凤和, 贾长治, 孙河洋. 成形角度对选区激光熔化4Cr5MoSiV1钢组织和性能的影响[J]. 材料工程, 2022, 50(3): 122-130.
[2] 唐鹏钧, 房立家, 王兴元, 李沛勇, 张学军. 人工时效对激光选区熔化AlMg4.5Sc0.55Mn0.5Zr0.2合金显微组织和力学性能的影响[J]. 材料工程, 2022, 50(2): 84-93.
[3] 邢宇轩, 郭英奎, 陈磊, 赵壮志, 王玉金. 气压浸渗法制备ZrC-W-Cu复合材料的显微组织与力学性能[J]. 材料工程, 2021, 49(7): 124-132.
[4] 李晓宇, 姜良宝, 刘家希, 王敏博, 李佳明, 颜悦. 化学强化铝硅酸盐玻璃表面微观力学行为的有限元模拟[J]. 材料工程, 2021, 49(7): 148-157.
[5] 杨晓琨, 熊柏青, 李锡武, 闫丽珍, 李志辉, 张永安, 李亚楠, 温凯. Li含量对Al-Mg-Si合金时效析出行为的影响[J]. 材料工程, 2021, 49(6): 100-108.
[6] 覃鑫, 祁文军, 左小刚. TC4钛合金表面激光熔覆NiCrCoAlY-Cr3C2复合涂层的摩擦和高温抗氧化性能[J]. 材料工程, 2021, 49(12): 107-114.
[7] 甘致聪, 王硕, 山圣峰, 张兵, 贾元智, 马明臻. 微量硼对Ti-Fe-Cu-Sn-Nb合金力学性能的影响[J]. 材料工程, 2021, 49(11): 156-162.
[8] 蔡颖军, 王刚, 檀财旺, 王秒, 赵禹. AgCu/泡沫Cu/AgCu复合钎料对ZrB2-SiC/Inconel 600合金钎焊接头组织与性能的影响[J]. 材料工程, 2021, 49(10): 72-81.
[9] 吴桢, 陆政, 刘闪光, 罗传彪. 微量Ag对ZL114A铝合金组织和力学性能的影响[J]. 材料工程, 2021, 49(1): 82-88.
[10] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[11] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[12] 赵辉, 赵菲, 杨长龙, 韩钰, 靳东, 李红英. 时效处理对Al-Zr-Sc(-Er)合金组织和性能的影响[J]. 材料工程, 2020, 48(5): 112-119.
[13] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[14] 李国伟, 梁亚红, 陈芙蓉, 韩永全. 7075铝合金脉冲变极性等离子弧焊接头的双级时效行为[J]. 材料工程, 2020, 48(2): 140-147.
[15] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn