Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (3): 50-59    DOI: 10.11868/j.issn.1001-4381.2021.000748
  高熵合金专栏 本期目录 | 过刊浏览 | 高级检索 |
微量W元素的添加对CoCrFeNiMnAl高熵合金的组织与性能的影响
张昊1,*(), 吴昊2, 唐啸天2, 罗涛2, 邓人钦2
1 长沙学院 机电工程学院, 长沙 410022
2 湖南大学 材料科学与工程学院, 长沙 410082
Effect of microscale W elements on microstructure and properties of CoCrFeNiMnAl high entropy alloys
Hao ZHANG1,*(), Hao WU2, Xiaotian TANG2, Tao LUO2, Renqin DENG2
1 College of Mechanical and Electrical Engineering, Changsha University, Changsha 410022, China
2 College of Materials Science and Engineering, Hunan University, Changsha 410082, China
全文: PDF(15762 KB)   HTML ( 2 )  
输出: BibTeX | EndNote (RIS)      
摘要 

高熵合金(HEAs)表现出比传统合金更为优异的耐磨耐蚀性能, 逐渐成为金属材料领域的研究热点。采用金属热还原法制备不同W含量的CoCrFeNiMnAlWx(x=0.12, 0.15, 0.19)高熵合金, 研究微量W元素的添加对CoCrFeNiMnAlWx高熵合金的相结构、微观组织与性能的影响。采用XRD, SEM和EDS等技术表征该合金的相结构、显微组织及元素分布, 利用材料表面性能测试仪和电化学工作站测定该合金的摩擦磨损性能和电化学腐蚀性能。结果表明: 不同W含量高熵合金均由两种不同晶格常数的BCC相组成, 随着W含量的增加, BCC1相微观相貌并没有明显的变化, 但是BCC2相的微观形貌和元素分布随W含量的变化而明显变化, 而耐磨损性能和耐腐蚀性能均有一定程度的提高, CoCrFeNiMnAlW0.19合金的摩擦因数和磨损率分别为0.684和1.06×10-5 mm3/(N·m), 磨损机制由黏着磨损转变为黏着磨损和磨粒磨损相结合, 最后再转变为摩擦磨损; 在3.5%NaCl溶液中的腐蚀电流密度从6.08×10-6 A/cm2减小到1.72×10-6 A/cm2, 腐蚀速率也逐渐减小。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张昊
吴昊
唐啸天
罗涛
邓人钦
关键词 高熵合金铝热反应相结构耐腐蚀性能耐磨损性能    
Abstract

High entropy alloys (HEAs) show better wear resistance and corrosion resistance than traditional alloys, which has gradually become a research hotspot in the field of metal materials. CoCrFeNiMnAlWx (x=0.12, 0.15, 0.19)high entropy alloys with different W content were prepared by metal thermal reduction. The effects of W addition on phase structure, microstructure and performance of CoCrFeNiMnAlWx high entropy alloy were investigated. The phase structure, microstructure and element distribution of the alloy were characterized by XRD, SEM and EDS. Surface performance tester and electrochemical workstation were adopted to detect corrosion resistance and wear resistance performance of CoCrFeNiMnAlWx high entropy alloy. Results show that the high entropy alloys with different W contents are both composed of BCC phases with two different lattice contents. There is no obvious change in the micro-tissue of the dendrites with the increase content of W. However, microstructure between dendrites changes significantly with the change of W content. The wear resistance and corrosion resistance have certain degree of improvement, the friction coefficient and wear rate of CoCrFeNiMnAlW0.19 alloy are 0.684 and 1.06×10-5 mm3/(N·m) respectively. The wear mechanism is converted from adhesive wear to the combination of adhesion wear and abrasive particle wear, and finally is transformed to friction wear. The wear resistance performance of CoCrFeNiMnAlWx high entropy alloy in 3.5% NaCl solution is increased with the increase of W content. Corrosion current density is decreased from 6.08×10-6 A/cm2 to 1.72×10-6 A/cm2, and the corrosion rate is gradually reduced.

Key wordshigh entropy alloy    thermite reaction    phase structure    corrosion resistance    wear resistance
收稿日期: 2021-08-09      出版日期: 2022-03-19
中图分类号:  TB31  
基金资助:国家自然科学基金项目(51971091)
通讯作者: 张昊     E-mail: zhanghao@ccsu.edu.cn
作者简介: 张昊(1981—),男,副教授,博士,研究方向:铝合金及铝基复合材料成型性能、快速凝固与喷射沉积等,联系地址:湖南省长沙市开福区长沙学院机电工程学院(410022),E-mail:zhanghao@ccsu.edu.cn
引用本文:   
张昊, 吴昊, 唐啸天, 罗涛, 邓人钦. 微量W元素的添加对CoCrFeNiMnAl高熵合金的组织与性能的影响[J]. 材料工程, 2022, 50(3): 50-59.
Hao ZHANG, Hao WU, Xiaotian TANG, Tao LUO, Renqin DENG. Effect of microscale W elements on microstructure and properties of CoCrFeNiMnAl high entropy alloys. Journal of Materials Engineering, 2022, 50(3): 50-59.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000748      或      http://jme.biam.ac.cn/CN/Y2022/V50/I3/50
Alloy Fe Cr Ni Mn Al Co W
W0.12-HEA 1 1 1 1 1 1 0.12
W0.15-HEA 1 1 1 1 1 1 0.15
W0.19-HEA 1 1 1 1 1 1 0.19
Table 1  不同W含量的CoCrFeNiMnAlWx各主元摩尔比
Fig.1  铝热反应装置示意图[23]
Fig.2  Wx-HEA (x=0.12, 0.15, 0.19)合金的XRD图谱(a)及BCC1相和BCC2相的晶格常数(b)
Fig.3  W0.12-HEA(a),W0.15-HEA(b)和W0.19-HEA(c)合金的SEM照片
Fig.4  W0.12-HEA(a),W0.15-HEA(b)和W0.19-HEA(c)合金的元素分布图
Alloys Region Atom fraction/%
Co Cr Fe Ni Mn Al W
W0.12-HEA Overall 16.22 17.30 16.24 15.60 16.15 16.46 2.03
Position A1(BCC1) 16.61 9.27 18.31 17.29 17.26 20.02 1.24
Position A2 7.36 24.5 8.82 9.70 6.49 7.92 35.21
Position A3(BCC2) 7.25 46.90 8.62 9.95 7.65 8.69 10.94
W0.15-HEA Overall 15.83 16.71 16.18 15.88 16.52 16.36 2.52
Position B1(BCC1) 16.89 9.91 17.69 16.47 17.70 19.64 1.70
Position B2(BCC2) 8.61 44.50 8.07 7.76 9.73 6.57 14.76
W0.19-HEA Overall 15.91 16.10 15.78 16.71 16.13 16.31 3.06
Position C1(BCC1) 16.64 11.16 15.76 17.38 16.31 20.29 1.47
Position C2(BCC2) 7.83 43.76 10.21 6.16 11.62 2.66 17.76
Table 2  Wx-HEA (x=0.12, 0.15, 0.19)合金的化学成分
Fig.5  Wx-HEA (x=0.12, 0.15, 0.19)高熵合金的硬度
Fig.6  Wx-HEA (x=0.12, 0.15, 0.19)合金的摩擦因数-时间曲线(a)和平均体积磨损量(b)
Alloy Friction coefficient Wear rate/(mm3·N-1·m-1)
W0.12-HEA 0.775 2.59×10-5
W0.15-HEA 0.731 1.41×10-5
W0.19-HEA 0.684 1.06×10-5
Table 3  Wx-HEA (x=0.12, 0.15, 0.19)合金的摩擦因数与磨损率
Fig.7  W0.12-HEA(a),W0.15-HEA(b)和W0.19-HEA(c)合金磨损实验后的表面形貌
Fig.8  Wx-HEA (x=0.12, 0.15, 0.19)合金的动态电势极化曲线
Alloy Corrosion potential/V Corrosion current density/(A·cm-2) Corrosion rate/(mm·a-1)
W0.12-HEA -0.390 6.08×10-6 0.126
W0.15-HEA -0.394 3.93×10-6 0.088
W0.19-HEA -0.442 1.72×10-6 0.038
Table 4  Wx-HEA (x=0.12, 0.15, 0.19)合金的腐蚀电位、腐蚀电流密度和腐蚀速率
Fig.9  不同W元素含量微观组织中BCC1和BCC2相结构分布示意图
(a)x=0.12;(b)x=0.15;(c)x=0.19
1 彭鹏, 汤爱涛, 佘加, 等. 超细晶镁合金的研究现状及展望[J]. 材料导报, 2019, 33 (9): 1526- 1534.
1 PENG P , TANG A T , SHE J , et al. Ultrafine grained magnesium alloys research: status quo and future directions[J]. Materials Reports, 2019, 33 (9): 1526- 1534.
2 YEH J W , CHEN S K , LIN S J , et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6 (5): 299- 303.
doi: 10.1002/adem.200300567
3 MU Y , ZHANG L , XU L , et al. Frictional wear and corrosion behavior of AlCoCrFeNi high-entropy alloy coatings synthesized by atmospheric plasma spraying[J]. Entropy, 2020, 22 (7): 740.
doi: 10.3390/e22070740
4 ABBASI E , DEHGHANI K . Treatment of CoCrFeMnNi(NbC) high-entropy alloys[J]. Journal of Materials Engineering and Performance, 2019, 28 (11): 6779- 6788.
doi: 10.1007/s11665-019-04439-8
5 LIAO W B , ZHANG H , LIU Z Y , et al. High strength and deformation mechanisms of Al0.3CoCrFeNi high-entropy alloy thin films fabricated by magnetron sputtering[J]. Entropy, 2019, 21 (2): 146.
doi: 10.3390/e21020146
6 MU K , JIA Y D , XU L , et al. Nano oxides reinforced high-entropy alloy coatings synthesized by atmospheric plasma spraying[J]. Materials Research Letters, 2019, 7 (8): 312- 319.
doi: 10.1080/21663831.2019.1604443
7 LISTYAWAN T A , LEE H , PARK N , et al. Microstructure and mechanical properties of CoCrFeMnNi high entropy alloy with ultrasonic nanocrystal surface modification process[J]. Journal of Materials Science & Technology, 2020, 57, 123- 130.
8 WANG Z , LI D Y , YAO Y Y , et al. Wettability, electron work function and corrosion behavior of CoCrFeMnNi high entropy alloy films[J]. Surface & Coatings Technology, 2020, 400, 126222.
9 RAZA A , ABDULAHAD S , KANG B , et al. Corrosion resistance of weight reduced AlxCrFeMoV high entropy alloys[J]. Applied Surface Science, 2019, 485, 368- 374.
doi: 10.1016/j.apsusc.2019.03.173
10 CHEN Y Y , DUVAL T , HUNG U D , et al. Microstructure and electrochemical properties of high entropy alloys-a comparison with type-304 stainless steel[J]. Corrosion Science, 2005, 47, 2257- 2279.
doi: 10.1016/j.corsci.2004.11.008
11 ZHENG S J , CAI Z B , PU J B , et al. A feasible method for the fabrication of VAlTiCrSi amorphous high entropy alloy film with outstanding anti-corrosion property[J]. Applied Surface Science, 2019, 483, 870- 874.
doi: 10.1016/j.apsusc.2019.03.338
12 LIU P , CHEN Y N , LIU Z J , et al. Surface modification of CrFe CoNiMo high entropy alloy induced by high-current pulsed electron beam[J]. Applied Surface Science, 2020, 504, 144453.
doi: 10.1016/j.apsusc.2019.144453
13 SHI Y Z , COLLINS L , BALKE N , et al. In-situ electrochemical-AFM study of localized corrosion of AlxCoCrFeNi high-entropy alloys in chloride solution[J]. Applied Surface Science, 2018, 439, 533- 544.
doi: 10.1016/j.apsusc.2018.01.047
14 NIU Z Z , WANG Y Z , GENG C , et al. Microstructural evolution, mechanical and corrosion behaviors of as-annealed CoCrFeNiMox (x=0, 0.2, 0.5, 0.8, 1) high entropy alloys[J]. Journal of Alloys and Compounds, 2020, 820, 153273.
doi: 10.1016/j.jallcom.2019.153273
15 NIU Z , XU J , WANG T , et al. Microstructure, mechanical properties and corrosion resistance of CoCrFeNiWx (x=0, 0.2, 0.5) high entropy alloys[J]. Intermetallics, 2019, 112, 106550.
doi: 10.1016/j.intermet.2019.106550
16 LI T X , MIAO J W , GUO E Y , et al. Tungsten-containing high-entropy alloys: a focused review of manufacturing routes, phase selection, mechanical properties, and irradiation resistance properties[J]. Tungsten, 2021, 3 (2): 181- 196.
doi: 10.1007/s42864-021-00081-x
17 李天昕, 卢一平, 曹志强, 等. 难熔高熵合金在反应堆结构材料领域的机遇与挑战[J]. 金属学报, 2021, 57 (1): 42- 54.
17 LI T X , LU Y P , CAO Z Q , et al. Opportunity and challenge of refractory high-entropy alloys in the field of reactor structural materials[J]. Acta Metallurgica Sinica, 2021, 57 (1): 42- 54.
18 KUMAR D , MAULIK O , SHARMA V K , et al. Understanding the effect of tungsten on corrosion behavior of AlCuCrFeMnWx high-entropy alloys in 3.5 wt.% NaCl solution[J]. Journal of Materials Engineering and Performance, 2018, 27 (9): 4481- 4488.
doi: 10.1007/s11665-018-3536-y
19 ZHOU R , CHEN G , LIU B , et al. Microstructures and wear behaviour of (FeCoCrNi)1-x(WC)x high entropy alloy composites[J]. International Journal of Refractory Metals and Hard Materials, 2018, 75, 56- 62.
doi: 10.1016/j.ijrmhm.2018.03.019
20 戴玮, 秦博, 颜恒维, 等. 钛铁合金制备研究现状[J]. 有色金属(冶炼部分), 2019, 5, 54- 59.
doi: 10.3969/j.issn.1007-7545.2019.07.011
20 DAI W , QIN B , YAN H W , et al. Current research status of preparation of Ti-Fe alloy[J]. Nonferrous Metals(Extractive Metallurgy), 2019, 5, 54- 59.
doi: 10.3969/j.issn.1007-7545.2019.07.011
21 喇培清, 吕蕊娇. 铝热反应制备纳米晶Fe3Al过程中熔体冷却的温度场模拟[J]. 兰州理工大学学报, 2010, 36 (3): 13- 17.
doi: 10.3969/j.issn.1673-5196.2010.03.004
21 LA P Q , LV R J . Temperature field simulation of melts in aluminothermic reaction for preparation of nanocrystalline Fe3Al block[J]. Journal of Lanzhou University of Technology, 2010, 36 (3): 13- 17.
doi: 10.3969/j.issn.1673-5196.2010.03.004
22 程楚, 豆志河, 张廷安, 等. 单位质量反应热对铝热法直接制备Ti-Al-V合金的影响[J]. 材料与冶金学报, 2017, 3 (25): 35- 39.
22 CHENG C , DOU Z H , ZHANG T A , et al. Effect of reaction heat per unit mass on direct preparation of Ti-Al-V alloy by thermite process[J]. Journal of Materials and Metallurgy, 2017, 3 (25): 35- 39.
23 CHEN G , LUO T , SHEN S , et al. Tungsten particles reinforced high-entropy alloy matrix composite prepared by in-situ reaction[J]. Journal of Alloys and Compounds, 2020, 865, 158037.
24 陈刚, 罗涛, 唐啸天, 等. 基于铝热反应多主元合金的成分调控[J]. 有色金属工程, 2021, 11 (9): 1- 10.
doi: 10.3969/j.issn.2095-1744.2021.09.001
24 CHEN G , LUO T , TANG X T , et al. Composition control of multi-principal component alloys based on thermite reaction[J]. Nonferrous Metals Engineering, 2021, 11 (9): 1- 10.
doi: 10.3969/j.issn.2095-1744.2021.09.001
25 陈刚, 罗涛, 沈书成, 等. 基于铝热反应FeCrNiCuAlSn0.5高熵合金涂层的制备[J]. 材料导报, 2020, 34 (17): 17047- 17051.
doi: 10.11896/cldb.20060192
25 CHEN G , LUO T , SHEN S C , et al. Preparation of FeCrNiCuAlSn0.5 high-entropy alloys coating by thermite reaction[J]. Materials Reports, 2020, 34 (17): 17047- 17051.
doi: 10.11896/cldb.20060192
26 温诗铸, 黄平. 摩擦学原理[M]. 北京: 清华大学出版社, 2012.
26 WEN S Z , HUANG P . Principles of tribology[M]. Beijing: Tsinghua University Press, 2012.
27 CHEN G , ZHU L , SHEN S , et al. FeCrNiMnAl high-entropy alloy coating by spray deposition and thermite reaction[J]. Surface Engineering, 2018, 35 (9): 809- 815.
28 FU Y , LI J , LUO H , et al. Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys[J]. Journal of Materials Science & Technology, 2021, 80 (21): 217- 233.
29 WANG Y , LIU Y H , LI G B , et al. Microstructure and flow accelerated corrosion resistance of Cr coatings electrodeposited in a trivalent chromium bath[J]. Surface & Coatings Technology, 2021, 422, 127527.
30 ZHOU Z , WANG L , ZHAO X , et al. Effects of W addition on the corrosion behaviors of FeCoNiCrMn high entropy alloy composites in the 3.5 wt.% NaCl solution[J]. Surfaces and Interfaces,
doi: 10.1016/j.surfin.2021.100956
[1] 于源, 乔竹辉, 任海波, 刘维民. 高熵合金摩擦磨损性能的研究进展[J]. 材料工程, 2022, 50(3): 1-17.
[2] 姜明明, 孙树峰, 王津, 王萍萍, 孙晓雨, 邵晶, 刘纪新, 曹爱霞, 孙维丽, 陈希章. 激光熔覆制备高熵合金涂层耐磨性研究进展[J]. 材料工程, 2022, 50(3): 18-32.
[3] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
[4] 胡广, 赵英杰, 马胜国, 张团卫, 赵聃, 王志华. 考虑位错密度和损伤的NiCoCrFe高熵合金晶体塑性有限元分析[J]. 材料工程, 2022, 50(3): 60-68.
[5] 计植耀, 马跃, 王清, 董闯. 高性能软磁合金的研究进展[J]. 材料工程, 2022, 50(3): 69-80.
[6] 李红, 韩祎, 曹健, MARIUSZ Bober, JACEK Senkara. 高熵合金在钎焊和表面工程领域的应用研究进展[J]. 材料工程, 2021, 49(8): 1-10.
[7] 汪荣香, 洪立鑫, 章晓波. 生物医用镁合金耐腐蚀性能研究进展[J]. 材料工程, 2021, 49(12): 14-27.
[8] 王鑫, 万义兴, 张平, 单彩霞, 谢莹莹, 梁秀兵. 难熔高熵合金NbMoTaWTi/Zr的高温氧化行为[J]. 材料工程, 2021, 49(12): 100-106.
[9] 魏水淼, 马盼, 季鹏程, 马永超, 王灿, 赵健, 于治水. 高熵合金增材制造研究进展[J]. 材料工程, 2021, 49(10): 1-17.
[10] 胡洁, 董中奇, 沈英明, 王杨, 杨俊雅. Mo元素对LaFe11.5Si1.5磁制冷材料耐腐蚀性能及磁性能的影响[J]. 材料工程, 2020, 48(8): 119-125.
[11] 孙博, 夏铭, 张志彬, 梁秀兵, 沈宝龙. 难熔高熵合金性能调控与增材制造[J]. 材料工程, 2020, 48(10): 1-16.
[12] 马明星, 王志新, 梁存, 周家臣, 张德良, 朱达川. CeO2掺杂对AlCoCrCuFe高熵合金的组织结构与摩擦磨损性能的影响[J]. 材料工程, 2019, 47(7): 106-111.
[13] 王桂芳, 刘忠侠, 张国鹏. 球磨时间对热压烧结制备TiC-CoCrFeNi复合材料微观组织及力学性能的影响[J]. 材料工程, 2019, 47(6): 94-100.
[14] 董雪, 马爽, 武晓霞, 那日苏. Fe52T2(T=Cr,Mn,Co,Ni)合金bcc与fcc相结构的第一性原理研究[J]. 材料工程, 2019, 47(3): 147-153.
[15] 丁宁, 金士杰, 彭良明, 雷明凯, 林莉. Al0.26CoCrFeNiMn高熵合金再结晶组织演变超声表征[J]. 材料工程, 2019, 47(12): 71-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn