Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (6): 61-74    DOI: 10.11868/j.issn.1001-4381.2021.000784
  综述 本期目录 | 过刊浏览 | 高级检索 |
陶瓷基高温自润滑复合涂层的制备及摩擦学性能研究进展
刘庆帅1, 刘秀波1,2,3,*(), 刘一帆1, 张林2, 孟元1, 刘怀菲1
1 中南林业科技大学 材料表界面科学与技术湖南省重点实验室, 长沙 410004
2 安徽工业大学 先进金属材料绿色制备与表面技术教育部重点实验室, 安徽 马鞍山 243002
3 中南林业科技大学 工程流变学湖南省重点实验室, 长沙 410004
Research progress in preparation and tribological property of ceramic-based high-temperature self-lubricating composite coatings
Qingshuai LIU1, Xiubo LIU1,2,3,*(), Yifan LIU1, Lin ZHANG2, Yuan MENG1, Huaifei LIU1
1 Hunan Province Key Laboratory of Materials Surface/Interface Science & Technology, Central South University of Forestry & Technology, Changsha 410004, China
2 Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, Anhui University of Technology, Maanshan 243002, Anhui, China
3 Hunan Province Key Laboratory of Engineering Rheology, Central South University of Forestry & Technology, Changsha 410004, China
全文: PDF(11128 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

摩擦磨损大多数情况下不利于机械设备, 我国作为机械制造大国, 降低摩擦磨损对工业进步及可持续发展有重大意义。陶瓷基高温自润滑复合涂层作为工业应用中常见体系之一, 主要以硬质陶瓷为基体, 并掺杂润滑材料作为第二相组成, 使其一方面继承陶瓷相优异的高温稳定性及强度, 另一方面提高在常见摩擦环境下的润滑性能, 因此被广泛应用于船舶、航空航天、生物科技、高速列车等领域, 受到研究人员的广泛关注与探索。本文以陶瓷基高温自润滑复合涂层为中心, 首先阐述复合涂层及固体润滑材料的基本分类; 其次综述不同制备方法的最新研究进展, 重点关注工艺参数对制备陶瓷基高温自润滑涂层性能的影响及改善方法; 然后归纳改善陶瓷基高温自润滑复合涂层表面摩擦学性能的关键因素, 探讨了提升减摩耐磨性能的可行性和研究潜力; 最后总结目前陶瓷基高温自润滑复合涂层存在的问题, 主要有以下2点: (1)对复合涂层的物相分析仍以解释现象为主, 没有完整的理论基础; (2)对不同制备工艺下复合涂层结构和摩擦学性能的改善手段较单一。因此提出相应的解决办法以及未来可能的发展方向: (1) 研究陶瓷基体和不同润滑相、附加组元、高温环境的协同作用机理, 建立系统的理论基础; (2)针对不同制备工艺的成型机理, 重点研究工艺参数的协同作用对复合涂层微观结构形成的影响, 扩展制备工艺的改善方法。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘庆帅
刘秀波
刘一帆
张林
孟元
刘怀菲
关键词 陶瓷基高温耐磨复合涂层固体润滑制备工艺摩擦学性能    
Abstract

In most cases, friction and wear are not conducive to mechanical equipment. As a large country in machinery manufacturing, reducing friction and wear is of great significance to industrial progress and sustainable development. Ceramic-based composite coating is one of the common systems in industrial applications. It uses ceramic materials as the matrix and dopes with lubricating materials as the second phase. On the one hand, it inherits the excellent high temperature stability and strength of the ceramic phases; on the other hand, it improves the lubricating performance in the common friction environment. Therefore, it is widely used in ships, aerospace, biotechnology and high speed trains, etc., and it has received extensive attention and exploration by researchers. Ceramic-based high-temperature self-lubricating composite coatings were focused on in this paper. First, the basic classification of coatings and solid lubricating materials were explained. Then the present researches progress was reviewed, meanwhile, the influence of process parameters on the performance of ceramic-based high-temperature self-lubricating coatings and improvement methods were focused on. Hence the key factors for improving the surface tribological properties of ceramic-based high-temperature self-lubricating composite coatings were summarized, and the feasibility or research potential of improving the friction reducing and wear-resistant performance was discussed. Finally, the current shortcomings of ceramic-based high-temperature self-lubricating composite coatings were summarized in two points: (1) the phase analysis of composite coatings is still focusing on the phenomenon, and without complete theoretical basis; (2) the methods for improving the structure and tribological properties of composite coatings under different preparation processes are relatively simple. Therefore, the corresponding solutions and possible development orientation were proposed preliminarily: (1) further explore the synergistic mechanisms between the ceramic-based and different lubricating phases, additional components, high temperature environment, and establish the theoretical basis of the system; (2) for the different forming mechanisms of preparation processes, the influence of the synergistic effect of process parameters on the microstructure of the composite coating needed to be focused on, expanding the improvement method of the preparation process.

Key wordsceramic-based high-temperature wear-resistant composite coatings    solid lubrication    preparation process    tribological property
收稿日期: 2021-08-19      出版日期: 2022-06-20
中图分类号:  TG146.4  
  TH117.1  
基金资助:国家自然科学基金项目(52075559);湖南省重点研发计划项目(2022GK2030);湖南省自然科学基金项目(2021JJ31161);先进金属材料绿色制备与表面技术教育部重点实验室开放基金(GFST2021KF03);湖南省研究生科研创新资助项目(CX20210864)
通讯作者: 刘秀波     E-mail: liuxiubosz@163.com
作者简介: 刘秀波(1968—),男,教授,博士,主要研究方向为材料表面工程与摩擦学、激光加工,联系地址:湖南省长沙市韶山南路498号中南林业科技大学材料表界面科学与技术湖南省重点实验室(410004),E-mail: liuxiubosz@163.com
引用本文:   
刘庆帅, 刘秀波, 刘一帆, 张林, 孟元, 刘怀菲. 陶瓷基高温自润滑复合涂层的制备及摩擦学性能研究进展[J]. 材料工程, 2022, 50(6): 61-74.
Qingshuai LIU, Xiubo LIU, Yifan LIU, Lin ZHANG, Yuan MENG, Huaifei LIU. Research progress in preparation and tribological property of ceramic-based high-temperature self-lubricating composite coatings. Journal of Materials Engineering, 2022, 50(6): 61-74.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000784      或      http://jme.biam.ac.cn/CN/Y2022/V50/I6/61
Matrix Solid lubricant Additional component
Inorganic solid lubricant Organic solid lubricant Composite solid lubricant
Oxides: Al2O3, ZrO2, TiO2 Soft metals:Ag, In, Au, Cu, Ni, Pb Polyimide (PI), polytetrafluoroethylene(PTFE), polyetheretherketone(PEEK), polyethylene(PE) MoS2+Ag h-BN+MoS2 Metallic materials: Cr, Co, Fe, Ti, Zr, Mo, W, Ca
Carbides: TiC, WC, SiC Lamellar structures: h-BN, graphite WS2+Cu BaF2-CaF2+Ag
Nitrides: Si3N4, TiN Sulfides: MoS2, WS2 Fluorides: CaF2, BaF2, LiF Graphit+BaF2-CaF2
Borides: TiB2, CrB2 New high-temperature lubricating materials: Ti3 SiC2, SrSO4 h-BN+Ni
Table 1  陶瓷基高温自润滑耐磨复合涂层材料体系[14, 18-21]
Typical material Lubrication mechanism Temperature range (air)/℃ Advantage Shortcoming Ref
Graphite, WS2, MoS2 Transformed into a low- shear strength structure during work <600 Low friction and wear, low cost Easily exidized at high temperature [23]
Ag, Au, Ni Soft metal diffuses to the contact surface for lubrication 300-500 Good oxidation stability, temperature self-regulation The metallic lubricating phase in the coating easily diffuses to the surface and is exhausted [25]
ZnO, NiO, molybdates,h-BN Formation of a lubricating oxidizing phase on the contact surface 500-1000 Low friction coefficient, self-healing of wear scar Severe wear at low temperature [20]
CaF2, BaF2 Brittle fracture to plastic deformation 500-900 High thermal stability, low friction coefficient Easily volatile and decomposes, serious abrasion at low temperature [24]
Table 2  常见润滑材料的适用温度及摩擦学性能
Fig.1  HFMV辅助激光熔覆过程中涂层微观结构演变示意图[35]
(a)预置层熔化;(b)在高频微波加热下熔化预置层和衬底;(c)固化过程中涂层的微观结构;(d)振动下的断裂结构;(e)精细结构;(f)涂层的固化和形成
Fig.2  基体和涂层的磨损表面形貌[35]
(a)基体; (b)ATN;(c)ATN1W;(d)ATN2W;(e)ATN3 W;(f)HFMV下的ATN2W涂层
Fig.3  YSZ-MoS2复合涂层制备工艺流程[44]
Fig.4  磁控溅射成型过程示意图[51]
Preparation process Advantage Disadvantage Ref
Laser cladding Uniform and dense coating structure, high bonding strength, low dilution rate, no pollution High laser temperature, less material system selectivity, easily crack [37-38]
Plasma spraying Controllable heating, small deformation of the workpiece, easy to operate Low material utilization, easy to produce porosity, low bonding strength [40-42]
Chemical vapor deposition Unrestricted material shape, controllable coating composition Small material selectivity, long molding time, thinner coating, easy to produce impurities [50]
Magnetron sputtering Controllable coating density and purity, small crystal defects; green and safe Waste material, poor adhesion [62-63]
Table 3  陶瓷基高温自润滑复合涂层不同制备技术的优缺点
Fig.5  陶瓷基高温自润滑复合涂层自润滑原理[65]
(a)无滑动摩擦阶段; (b)摩擦的初始阶段; (c)润滑膜形成阶段
Fig.6  300 ℃(a)及700 ℃(b)下含8% MoS2涂层的拉曼光谱[72]
Fig.7  激光表面织构工件示意图[74]
Fig.8  3种热喷涂NiCr/Cr3C2-BaF2-CaF2涂层的摩擦因数(a)和磨损率(b)随温度变化曲线[75]
1 刘乃强, 吴修德, 魏世忠, 等. 陶瓷复合涂层的制备方法[J]. 现代制造技术与装备, 2016, (6): 108- 109.
doi: 10.3969/j.issn.1673-5587.2016.06.051
1 LIU N Q , WU X D , WEI S Z , et al. Preparation method of ceramic composite coating[J]. Modern Manufacturing Technology Equipment, 2016, (6): 108- 109.
doi: 10.3969/j.issn.1673-5587.2016.06.051
2 WU G , XU C , XIAO G , et al. An advanced self-lubricating ceramic composite with the addition of core-shell structured h-BN@ Ni powders[J]. International Journal of Refractory Metals & Hard Materials, 2018, 72, 276- 285.
3 CHEN J , SUN Q , CHEN W , et al. High-temperature tribological behaviors of ZrO2/h-BN/SiC composite under air and vacuum environments[J]. Tribology International, 2021, 154, 106748.
doi: 10.1016/j.triboint.2020.106748
4 ROSENKRANZ A , COSTA H L , BAYKARA M Z , et al. Synergetic effects of surface texturing and solid lubricants to tailor friction and wear-a review[J]. Tribology International, 2021, 155, 106792.
doi: 10.1016/j.triboint.2020.106792
5 ZHU S , CHENG J , QIAO Z , et al. High temperature solid-lubricating materials: a review[J]. Tribology International, 2019, 133, 206- 223.
doi: 10.1016/j.triboint.2018.12.037
6 XING H , LIU B , SUN J , et al. Mechanical properties of Si3N4 ceramics from an in-situ synthesized α-Si3N4/β-Si3N4 composite powder[J]. Ceramics International, 2017, 43 (2): 2150- 2154.
doi: 10.1016/j.ceramint.2016.10.196
7 DEMIRSKYI D , BORODIANSKA H , SAKKA Y , et al. Ultra-high elevated temperature strength of TiB2-based ceramics consolidated by spark plasma sintering[J]. Journal of the European Ceramic Society, 2017, 37 (1): 393- 397.
doi: 10.1016/j.jeurceramsoc.2016.08.009
8 CHEN Z , GUO N , JI L , et al. Synthesis of CaF2 nanoparticles coated by SiO2 for improved Al2O3/TiC self-lubricating ceramic composites[J]. Nanomaterials, 2019, 9 (11): 1522.
doi: 10.3390/nano9111522
9 刘巧沐, 黄顺洲, 何爱杰. 碳化硅陶瓷基复合材料在航空发动机上的应用需求及挑战[J]. 材料工程, 2019, 47 (2): 1- 10.
doi: 10.3969/j.issn.1673-1433.2019.02.001
9 LIU Q M , HUANG S Z , HE A J . Application requirements and challenges of CMC-SiC composites on aero-engine[J]. Journal of Materials Engineering, 2019, 47 (2): 1- 10.
doi: 10.3969/j.issn.1673-1433.2019.02.001
10 FU J , LI M , LIU G , et al. Robust ceramic based self-lubricating coating on Al-Si alloys prepared via PEO and spin-coating methods[J]. Wear, 2020, 458, 203405.
11 KUMAR R , BANGA H K , SINGH H , et al. An outline on modern day applications of solid lubricants[J]. Materials Today: Proceedings, 2020, 28, 1962- 1967.
doi: 10.1016/j.matpr.2020.05.558
12 LI X , ZHANG C H , ZHANG S , et al. Manufacturing of Ti3SiC2 lubricated Co-based alloy coatings using laser cladding technology[J]. Optics & Laser Technology, 2019, 114, 209- 215.
13 齐子辰. 陶瓷基复合材料的应用前景[J]. 商品与质量, 2017, (33): 177.
doi: 10.3969/j.issn.1006-656X.2017.33.167
13 QI Z C . The application prospects of ceramic matrix composites[J]. Commodities and Quality, 2017, (33): 177.
doi: 10.3969/j.issn.1006-656X.2017.33.167
14 袁晓静, 关宁, 侯根良, 等. 高温固体自润滑涂层的制备及可靠性的研究进展[J]. 材料导报, 2020, 34 (5): 5061- 5067.
14 YUAN X J , GUAN N , HOU G L , et al. Research progress on the preparation and reliability of high-temperature solid self-lubricating coatings[J]. Materials Reports, 2020, 34 (5): 5061- 5067.
15 KOVALCIKOVA A , HÚLAN M , SEDLÁK R , et al. Thermal shock resistance of Si3N4/hBN ceramic composites[J]. Key Engineering Materials, 2018, 784, 73- 78.
doi: 10.4028/www.scientific.net/KEM.784.73
16 WU H Y , YE Y M , LU H Q , et al. Tribological behavior of laser thermal sprayed Cr3C2-NiCr+ 10% Ni/MoS2composite coating on H13 hot work mould steel[J]. Materials Research Express, 2020, 7 (1): 016599.
doi: 10.1088/2053-1591/ab5ec6
17 WANG D , LIU X , ZHANG Q , et al. Investigation on the corrosion resistance of the CuO-Al2O3 composite coating prepared by micro-arc oxidation[J]. Materials Letters, 2021, 288, 129396.
doi: 10.1016/j.matlet.2021.129396
18 王晋枝, 姜淑文, 朱小鹏. 添加WS2/MoS2固体润滑剂的自润滑复合涂层研究进展[J]. 材料导报, 2019, 33 (17): 2868- 2872.
doi: 10.11896/cldb.18060197
18 WANG J Z , JIANG S W , ZHU X P . Research progress of self-lubricating composite coatings added with WS2/MoS2 solid lubricants[J]. Materials Reports, 2019, 33 (17): 2868- 2872.
doi: 10.11896/cldb.18060197
19 孟祥军, 刘海青, 刘秀波, 等. 固体润滑剂在激光熔覆中的应用[J]. 应用激光, 2020, 40 (3): 539- 546.
19 MENG X J , LIU H Q , LIU X B , et al. Application of solid lubricants in laser cladding[J]. Applied Laser, 2020, 40 (3): 539- 546.
20 TORRES H , RODRÍGUEZ R M , PRAJASH B . Tribological behaviour of self-lubricating materials at high temperatures[J]. International Materials Reviews, 2018, 63 (5): 309- 340.
doi: 10.1080/09506608.2017.1410944
21 汪阳, 刘秀波, 欧阳春生, 等. 三元层状固体润滑Ti3SiC2复合材料的制备与摩擦学研究进展[J]. 表面技术, 2020, 49 (1): 142- 153.
21 WANG Y , LIU X B , OUYANG C S , et al. Preparation and tribological research progress of ternary layered solid lubricant Ti3SiC2 composites[J]. Surface Technology, 2020, 49 (1): 142- 153.
22 牛永平, 王亮, 杜三明, 等. 不同温度下PTFE纳米复合材料摩擦学性能的研究[J]. 塑料工业, 2011, 39 (7): 83- 86.
22 NIU Y P , WANG L , DU S M , et al. Study on the tribological properties of PTFE nanocomposites at different temperatures[J]. Plastics Industry, 2011, 39 (7): 83- 86.
23 SLINEY H E . The use of silver in self-lubricating coatings for extreme temperatures[J]. Tribology Transactions, 1986, 29 (3): 370- 376.
24 CHEN J M , HOU G L , CHEN J , et al. Composition versus friction and wear behavior of plasma sprayed WC-(W, Cr)2C-Ni/Ag/BaF2-CaF2 self-lubricating composite coatings for use up to 600 ℃[J]. Applied Surface Science, 2012, 261, 584- 592.
doi: 10.1016/j.apsusc.2012.08.060
25 YUAN J , ZHU Y , ZHENG X , et al. Fabrication and evaluation of atmospheric plasma spraying WC-Co-Cu-MoS2 composite coatings[J]. Journal of Alloys & Compounds, 2011, 509 (5): 2576- 2581.
26 ZHU L , XUE P , LAN Q , et al. Recent research and development status of laser cladding: a review[J]. Optics & Laser Technology, 2021, 138, 106915.
27 SUN S , MA Z , LIU Y , et al. Ablation mechanism and properties of SiO2 modified ZrB2-SiC coatings fabricated on C/C composites via plasma spraying technology[J]. Surface & Coatings Technology, 2020, 381, 125132.
28 MANAWI Y M , SAMARA A , Al-ANSARI T , et al. A review of carbon nanomaterials' synthesis via the chemical vapor deposition (CVD) method[J]. Materials, 2018, 11 (5): 822.
doi: 10.3390/ma11050822
29 VUCHKOV T , YAQUB T B , EVARISTO M , et al. Synthesis, microstructural and mechanical properties of self-lubricating Mo-Se-C coatings deposited by closed-field unbalanced magnetron sputtering[J]. Surface & Coatings Technology, 2020, 394, 125889.
30 GAO Q , YAN H , QIN Y , et al. Laser cladding Ti-Ni/TiN/TiW+ TiS/WS2 self-lubricating wear resistant composite coating on Ti-6Al-4V alloy[J]. Optics & Laser Technology, 2019, 113, 182- 191.
31 ZHU R , ZHANG P , YU Z , et al. Microstructure and wide temperature range self-lubricating properties of laser cladding NiCrAlY/Ag2O/Ta2O5 composite coating[J]. Surface & Coatings Technology, 2020, 383, 125248.
32 YAN H , LIU K , ZHANG P , et al. Fabrication and tribological behaviors of Ti3SiC2/Ti5Si3/TiC/Ni-based composite coatings by laser cladding for self-lubricating applications[J]. Optics & Laser Technology, 2020, 126, 106077.
33 ZHANG L , ZHAO Z , BAI P , et al. In-situ synthesis of TiC/graphene/Ti6Al4V composite coating by laser cladding[J]. Materials Letters, 2020, 270, 127711.
doi: 10.1016/j.matlet.2020.127711
34 LIU X B , ZHENG C , LIU Y F , et al. A comparative study of laser cladding high temperature wear-resistant composite coating with the addition of self-lubricating WS2 and WS2/(Ni-P) encapsulation[J]. Journal of Materials Processing Technology, 2013, 213 (1): 51- 58.
doi: 10.1016/j.jmatprotec.2012.07.017
35 WANG F , LI C , SUN S , et al. Al2O3/TiO2-Ni-WC composite coatings designed for enhanced wear performance by laser cladding under high-frequency micro-vibration[J]. JOM, 2020, 72 (11): 4060- 4068.
doi: 10.1007/s11837-020-04322-1
36 LI C , LI S , ZENG M , et al. Effect of high-frequency micro-vibration on microstructure and properties of laser cladding aluminum coatings[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103 (1): 1633- 1642.
37 刘海青, 刘秀波, 孟祥军, 等. 金属基体激光熔覆陶瓷基复合涂层的裂纹成因及控制方法[J]. 材料导报, 2013, 27 (11): 60- 63.
doi: 10.3969/j.issn.1005-023X.2013.11.011
37 LIU H Q , LIU X B , MENG X J , et al. Crack formation mechanism and controlling methods of laser clad ceramic matrix composite coatings on metal substrate[J]. Materials Reports, 2013, 27 (11): 60- 63.
doi: 10.3969/j.issn.1005-023X.2013.11.011
38 王冉, 王玉玲, 姜芙林, 等. 激光熔覆制备陶瓷涂层研究现状[J]. 青岛理工大学学报, 2020, 41 (6): 81- 87.
doi: 10.3969/j.issn.1673-4602.2020.06.012
38 WANG R , WANG Y L , JIANG F L , et al. Research status of ceramic coatings prepared by laser cladding[J]. Journal of Qingdao University of Technology, 2020, 41 (6): 81- 87.
doi: 10.3969/j.issn.1673-4602.2020.06.012
39 ZHOU D , GUILLON O , VAßEN R . Development of YSZ thermal barrier coatings using axial suspension plasma spraying[J]. Coatings, 2017, 7 (8): 120.
doi: 10.3390/coatings7080120
40 YANG K , RONG J , FENG J , et al. Excellent wear resistance of plasma-sprayed amorphous Al2O3-Y3Al5O12 ceramic coating[J]. Surface & Coatings Technology, 2017, 326, 96- 102.
41 CHEN L , YANG G J , LI C X , et al. Hierarchical formation of intrasplat cracks in thermal spray ceramic coatings[J]. Journal of Thermal Spray Technology, 2016, 25 (5): 959- 970.
doi: 10.1007/s11666-016-0420-x
42 LI Q , SONG P , HE X , et al. Plastic metallic-barrier layer for crack propagation within plasma-sprayed Cu/ceramic coatings[J]. Surface & Coatings Technology, 2019, 360, 259- 268.
43 邱正. Ti(C, N)基自润滑涂层制备及摩擦学性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
43 QIU Z. Preparation and tribological properties of Ti(C, N)-based self-lubricating coating[D]. Harbin: Harbin Engineering University, 2019.
44 LI S , ZHAO X , AN Y , et al. YSZ/MoS2 self-lubricating coating fabricated by thermal spraying and hydrothermal reaction[J]. Ceramics International, 2018, 44 (15): 17864- 17872.
doi: 10.1016/j.ceramint.2018.06.258
45 ZHAO D , LI S , ZHAO X , et al. Preparation and vacuum tribological properties of composite coatings fabricated by effective introduction of soft metal Ag into spray-formed YSZ templates[J]. Applied Surface Science, 2020, 518, 146176.
doi: 10.1016/j.apsusc.2020.146176
46 LI Y , WU Y , WANG W , et al. Microstructure and mechanical properties of the Ni-B-Ti composite coating on TA2 prepared by pre-plating and laser remelting[J]. Surface & Coatings Technology, 2021, 405, 126567.
47 WANG X , LIN Z , BIN S , et al. Effects of deposition parameters on HFCVD diamond films growth on inner hole surfaces of WC-Co substrates[J]. Transactions of Nonferrous Metals Society of China, 2015, 25 (3): 791- 802.
doi: 10.1016/S1003-6326(15)63665-2
48 杨钢宜, 李国栋, 熊翔, 等. 温度对CVD制备Ti-Si-C涂层中Ti3SiC2形成规律的影响[J]. 粉末冶金材料科学与工程, 2014, 19 (5): 797- 804.
doi: 10.3969/j.issn.1673-0224.2014.05.020
48 YANG G Y , LI G D , XIONG X , et al. The influence of temperature on the formation of Ti3SiC2 in Ti-Si-C coating prepared by CVD[J]. Materials Science and Engineering of Powder Metallurgy, 2014, 19 (5): 797- 804.
doi: 10.3969/j.issn.1673-0224.2014.05.020
49 TU C , HUANG Q , XIONG X , et al. Wear behavior of SiC/PyC composite materials prepared by electromagnetic-field-assisted CVI[J]. Transactions of Nonferrous Metals Society of China, 2015, 25 (3): 856- 862.
doi: 10.1016/S1003-6326(15)63674-3
50 相炳坤, 朱其豹, 王信智, 等. 一种减少化学气相沉积过程中杂质沉积的装置及方法: CN102787305A[P]. 2012-11-21.
50 XIANG B K, ZHU Q B, WANG X Z, et al. A device and method for reducing impurity deposition in chemical vapor deposition: CN102787305A[P]. 2012-11-21.
51 张新宇. 直流、射频磁控溅射制备Al2O3薄膜工艺探索及其性能的研究[D]. 太原: 中北大学, 2017.
51 ZHANG X Y. Research on the process exploration and properties of Al2O3 thin films prepared by DC and RF magnetron sputtering[D]. Taiyuan: North University of China, 2017.
52 张延帅, 周晖, 万志华, 等. 靶功率对射频磁控溅射制备MoS2-Sb2O3复合薄膜结构和性能的影响[J]. 润滑与密封, 2011, 36 (7): 70- 74.
doi: 10.3969/j.issn.0254-0150.2011.07.017
52 ZHANG Y S , ZHOU H , WAN Z H , et al. The influence of target power on the structure and properties of MoS2-Sb2O3 composite films prepared by radio frequency magnetron sputtering[J]. Lubrication Engineering, 2011, 36 (7): 70- 74.
doi: 10.3969/j.issn.0254-0150.2011.07.017
53 BOBZIN K , BRÖGELMANN T , KRUPPE N C , et al. Tribological studies on self-lubricating (Cr, Al) N+ Mo: S coatings at elevated temperature[J]. Surface & Coatings Technology, 2018, 353, 282- 291.
54 BAKHIT B , PETROV I , GREENE J E , et al. Controlling the B/Ti ratio of TiBx thin films grown by high-power impulse magnetron sputtering[J]. Journal of Vacuum Science & Technology A, 2018, 36 (3): 030604.
55 MOHAMMADTAHERI M , YANG Q , LI Y , et al. The effect of deposition parameters on the structure and mechanical properties of chromium oxide coatings deposited by reactive magnetron sputtering[J]. Coatings, 2018, 8 (3): 111.
doi: 10.3390/coatings8030111
56 NOMURA M , MA B X , HORIUCHI O , et al. Study on machining accuracy in micro-endmilling[J]. Key Engineering Materials, 2012, 516, 349- 354.
doi: 10.4028/www.scientific.net/KEM.516.349
57 GRIGORE E , RUSET C , LUCULESCU C . The structure and properties of VN-VCN-VC coatings deposited by a high energy ion assisted magnetron sputtering method[J]. Surface & Coatings Technology, 2011, 205, 29- 32.
58 CONTRERAS E , GALINDEZ Y , RODAS M A , et al. CrVN/TiN nanoscale multilayer coatings deposited by DC unbalanced magnetron sputtering[J]. Surface & Coatings Technology, 2017, 332, 214- 222.
59 WANG Y , LEE J W , DUH J G . Mechanical strengthening in self-lubricating CrAlN/VN multilayer coatings for improved high-temperature tribological characteristics[J]. Surface & Coatings Technology, 2016, 303, 12- 17.
60 陈亚军, 郁佳琪, 赵婕宇, 等. 磁控溅射高温固体自润滑涂层的研究与进展[J]. 材料导报, 2018, 31 (3): 32- 37.
60 CHEN Y J , YU J Q , ZHAO J Y , et al. Research and progress of magnetron sputtering high temperature solid self-lubricating coatings[J]. Materials Reports, 2018, 31 (3): 32- 37.
61 王恩青, 李淼磊, 朱萍, 等. 沉积温度对磁控溅射制备V-Al-Si-N硬质涂层结构及性能的影响[J]. 真空科学与技术学报, 2015, (8): 1005- 1010.
61 WANG E Q , LI M L , ZHU P , et al. The effect of deposition temperature on the structure and properties of V-Al-Si-N hard coatings prepared by magnetron sputtering[J]. Chinese Journal of Vacuum Science and Technology, 2015, (8): 1005- 1010.
62 SIDELEV D V , KRIVOBOKOV V P . Angular thickness distribution and target utilization for hot Ni target magnetron sputtering[J]. Vacuum, 2019, 160, 418- 420.
doi: 10.1016/j.vacuum.2018.12.001
63 弥谦, 杭凌侠, 郭忠达, 等. 磁约束磁控溅射方法及利用该方法制备的磁控溅射装置: CN101348897[P]. 2009-01-21.
63 MI Q, HANG L X, GUO Z D, et al. Magnetic confinement magnetron sputtering method and magnetron sputtering device prepared by the method: CN10134897[P]. 2009-01-21.
64 BLAU P J , YUST C S . Microfriction studies of model self-lubricating surfaces[J]. Surface and Coatings Technology, 1993, 62 (1): 380- 387.
65 WU Y X , WANG F X , CHENG Y Q , et al. A study of the optimization mechanism of solid lubricant concentration in self-lubricating composite[J]. Wear, 1997, 205 (1/2): 64- 70.
66 ARCHARD J F . Contact and rubbing of flat surfaces[J]. Journal of Applied Physics, 1953, 24 (8): 981- 988.
doi: 10.1063/1.1721448
67 CHEN J , ZHOU H D , ZHAO X Q , et al. Microstructural characterization and tribological behavior of HVOF sprayed NiMoAl coating from 20 ℃ to 800 ℃[J]. Journal of Thermal Spray Technology, 2015, 24 (3): 348- 356.
doi: 10.1007/s11666-014-0142-x
68 XIAO B , LIU J , LIU F , et al. Effects of microstructure evolution on the oxidation behavior and high-temperature tribological properties of AlCrN/TiAlSiN multilayer coatings[J]. Ceramics International, 2018, 44 (18): 23150- 23161.
doi: 10.1016/j.ceramint.2018.09.125
69 SAHOO C K , MASANTA M . Microstructure and tribological behaviour of TiC-Ni-CaF2 composite coating produced by TIG cladding process[J]. Journal of Materials Processing Technology, 2017, 243, 229- 245.
doi: 10.1016/j.jmatprotec.2016.12.028
70 BONDAREY A V , GOLIZADEH M , SHVYNDINA N V , et al. Microstructure, mechanical, and tribological properties of Ag-free and Ag-doped VCN coatings[J]. Surface & Coatings Technology, 2017, 331, 77- 84.
71 王华明, 于荣莉, 李锁歧. 激光熔敷NiO/Al2O3陶瓷基自润滑耐磨复合材料涂层组织与耐磨性[J]. 摩擦学学报, 2002, 22 (4): 157- 160.
71 WANG H M , YU R L , LI S Q . Microstructure and tribological properties of laser clad NiO/Al2O3 self-lubrication wear-resistant ceramic matrix composite coatings[J]. Tribology, 2002, 22 (4): 157- 160.
72 MURATORE C , VOEVODIN A A . Molybdenum disulfide as a lubricant and catalyst in adaptive nanocomposite coatings[J]. Surface & Coatings Technology, 2006, 201 (7): 4125- 4130.
73 雷阿利, 李高宏, 冯拉俊, 等. 等离子喷涂Cu-Al2O3梯度涂层的组织与耐磨性分析[J]. 焊接学报, 2008, (5): 65- 68.
doi: 10.3321/j.issn:0253-360X.2008.05.017
73 LEI A L , LI G H , FENG L J , et al. Microstructure and wear resistance analysis of plasma sprayed Cu-Al2O3 gradient coating[J]. Transactions of the China Welding Institution, 2008, (5): 65- 68.
doi: 10.3321/j.issn:0253-360X.2008.05.017
74 FAN H , SU Y , SONG J , et al. Design of "double layer" texture to obtain superhydrophobic and high wear-resistant PTFE coatings on the surface of Al2O3/Ni layered ceramics[J]. Tribology International, 2019, 136, 455- 461.
doi: 10.1016/j.triboint.2019.04.004
75 黄传兵, 杜令忠, 张伟刚, 等. 三种热喷涂工艺制备NiCr/Cr3C2-BaF2·CaF2涂层的结构与性能[J]. 航空材料学报, 2009, 29 (6): 70- 76.
doi: 10.3969/j.issn.1005-5053.2009.6.014
75 HUANG C B , DU L Z , ZHANG W G , et al. Structure and properties of NiCr/Cr3C2-BaF2·CaF2 coatings prepared by three thermal spraying processes[J]. Journal of Aeronautical Materials, 2009, 29 (6): 70- 76.
doi: 10.3969/j.issn.1005-5053.2009.6.014
76 HAN T , XIAO M , ZHANG Y , et al. Laser cladding Ni-Ti-Cr alloy coatings with different process parameters[J]. Materials and Manufacturing Processes, 2019, 34 (15): 1710- 1718.
doi: 10.1080/10426914.2019.1686521
77 FAUCHAIS P , VARDELLE M , GOUTIER S . Latest researches advances of plasma spraying: from splat to coating formation[J]. Journal of Thermal Spray Technology, 2016, 25 (8): 1534- 1553.
doi: 10.1007/s11666-016-0435-3
78 NYUTU E K , SUIB S L . Experimental design in the deposition of BN interface coatings on SiC fibers by chemical vapor deposition[J]. Surface & Coatings Technology, 2006, 201 (6): 2741- 2748.
79 SCHMIDT S , HÖGLUND C , JENSEN J , et al. Low-temperature growth of boron carbide coatings by direct current magnetron sputtering and high-power impulse magnetron sputtering[J]. Journal of Materials Science, 2016, 51 (23): 10418- 10428.
doi: 10.1007/s10853-016-0262-4
[1] 黄英, 陈晨, 李超, 王佳明, 张帅, 张政, 贾全兴, 路梦伟, 韩小鹏, 高小刚. 柔性储能电池电极的设计、制备与应用[J]. 材料工程, 2022, 50(4): 1-14.
[2] 雷磊, 伍雨驰, 程子晋, 刘莉, 郑靖. 牙科陶瓷材料的摩擦学性能研究进展[J]. 材料工程, 2022, 50(2): 1-11.
[3] 杨礼河, 陈绪望, 张建国, 孙玉德. 纳米G/Fe3O4复合材料的制备及其摩擦学性能[J]. 材料工程, 2021, 49(2): 143-148.
[4] 王港, 刘秀波, 刘一帆, 祝杨, 欧阳春生, 孟元, 罗迎社. 304不锈钢激光熔覆Co-Ti3SiC2自润滑复合涂层微观组织与摩擦学性能[J]. 材料工程, 2021, 49(11): 105-115.
[5] 王勉, 刘秀波, 欧阳春生, 罗迎社, 陈德强. 304不锈钢激光原位合成自润滑涂层的宽温域摩擦学性能[J]. 材料工程, 2021, 49(1): 133-143.
[6] 尹艳丽, 于鹤龙, 周新远, 宋占永, 王红美, 王文宇, 刘晓亭, 徐滨士. 基于正交实验方法的蛇纹石润滑油添加剂摩擦学性能[J]. 材料工程, 2020, 48(7): 146-153.
[7] 谢红梅, 蒋斌, 戴甲洪, 唐昌平, 李权, 潘复生. 石墨烯和氧化石墨烯水基润滑添加剂在镁合金冷轧中的摩擦学行为[J]. 材料工程, 2020, 48(3): 66-74.
[8] 王晓辉, 罗海文. 飞机起落架用超高强度不锈钢的研究及应用进展[J]. 材料工程, 2019, 47(9): 1-12.
[9] 冀光普, 何秀芳, 廖海峰, 戴乐阳, 孙迪, 蔡谷昌. 等离子体辅助球磨制备表面修饰片状纳米Cu粉及摩擦学性能[J]. 材料工程, 2019, 47(6): 114-120.
[10] 周仲炎, 庄宿国, 杨霞辉, 王勉, 罗迎社, 刘煜, 刘秀波. Ti6Al4V合金激光原位合成自润滑复合涂层高温摩擦学性能[J]. 材料工程, 2019, 47(3): 101-108.
[11] 吴雪梅, 杨绿, 周元康, 曹阳. 超微坡缕石/Cu复合粉体作为润滑油添加剂的摩擦学性能[J]. 材料工程, 2018, 46(9): 88-94.
[12] 徐祥, 杨明, 梁益龙, 张世伟, 龚乾江. 响应面法对一种新型摩擦材料的性能优化及其磨损机理[J]. 材料工程, 2018, 46(9): 101-108.
[13] 杨瑞, 齐哲, 杨金华, 焦健. 氧化物/氧化物陶瓷基复合材料及其制备工艺研究进展[J]. 材料工程, 2018, 46(12): 1-9.
[14] 张鉴炜, 石刚, 江大志. Buckypaper/环氧复合材料加压滤渗浸渍法制备工艺研究[J]. 材料工程, 2016, 44(7): 1-6.
[15] 华希俊, 王蓉, 周万, 刘凯, 符永宏, 纪敬虎. 45钢的黏结型激光微织构表面摩擦学性能及固体润滑机理分析[J]. 材料工程, 2015, 43(9): 39-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn