Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (8): 107-114    DOI: 10.11868/j.issn.1001-4381.2021.000785
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
多层石墨烯对钛合金摩擦学性能的影响
周银1,*(), 乔畅1, 邹家栋1, 郭洪锍2, 王树奇3
1 泰州学院 船舶与机电工程学院, 江苏 泰州 225300
2 江苏省特种设备安全监督检验研究院 泰州分院, 江苏 泰州 225300
3 江苏大学 材料科学与工程学院, 江苏 镇江 212013
Effect of multilayer graphene on tribological property of titanium alloy
Yin ZHOU1,*(), Chang QIAO1, Jiadong ZOU1, Hongliu GUO2, Shuqi WANG3
1 School of Shipping and Mechatronic Engineering, Taizhou University, Taizhou 225300, Jiangsu, China
2 Taizhou Branch of Jiangsu Special Equipment Safety Supervision and Inspection Research Institute, Taizhou 225300, Jiangsu, China
3 School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
全文: PDF(1012 KB)   HTML ( 1 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用液相剥离法制备多层石墨烯(MLG)及MLG/Fe2O3复合纳米材料,将MLG,MLG/Fe2O3及MLG+Fe2O3直接添加至钛合金与钢的滑动界面上,通过干滑动摩擦磨损实验测试TC11合金的摩擦磨损行为。采用X射线衍射仪、激光拉曼光谱仪、扫描电子显微镜、3D激光扫描显微镜及能谱仪对磨损表面及亚表面的结构、形貌、成分进行分析。结果表明:只添加MLG时,TC11合金磨损失重及摩擦因数的变化趋势与未添加时类似,但磨损更严重。磨面上只含金属Ti,呈现出黏着痕迹、塑性撕裂、犁沟等黏着、磨粒磨损特征,基体发生塑性变形。添加MLG/Fe2O3复合和MLG+Fe2O3机械混合纳米材料时,磨损失重及摩擦因数在一定滑动转数范围内始终保持极低值,处于0附近。磨面上留有MLG和Fe2O3等物相,摩擦层为双层结构,呈现出典型的黑色、灰色区域。转数增至25000转时,添加复合材料时形成的双层摩擦层消失,转变为严重磨损,而添加混合材料时形成的双层摩擦层仍稳定存在。单独的MLG不能改善钛合金的摩擦磨损性能,在含Fe2O3摩擦层基础上添加MLG,形成的双层摩擦层兼具润滑和承载功能,可显著提高钛合金的减摩性和抗磨性。机械混合添加剂诱导形成的双层摩擦层中,因MLG层多且相对含量较高,钛合金表现出更为优异的摩擦学性能。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周银
乔畅
邹家栋
郭洪锍
王树奇
关键词 钛合金多层石墨烯纳米材料摩擦层协同效应摩擦磨损性能    
Abstract

Multilayer graphene(MLG) and MLG/Fe2O3composite nanomaterials were prepared by liquid-phase stripping. The prepared MLG, MLG/Fe2O3composite nanomaterials and MLG+Fe2O3mechanically mixed nanomaterials were directly added onto the titanium alloy/steel sliding interface. Subsequently, the dry sliding friction and wear tests were performed, and the friction and wear behavior of TC11 alloys was measured. The X-ray diffractometer, laser Raman spectrometer, scanning electron microscopy, 3D laser scanning microscopy and energy spectrometer were employed to analyze the structure, morphology and component of the worn surface and subsurface for TC11 alloys. The results show that, as for the single additive of MLG, the variation tendency of wear loss and friction coefficient for TC11 alloy is similar to that without any additives. There is only Ti and no other phases on the worn surface. The characteristics of adhesive wear and abrasive wear are presented, which are manifested as plastic tearing, adhesive traces and furrows. Underneath the tribo-layer, there exist a plastic layer, which means that TC11 alloy substrate suffers a plastic deformation during sliding. When MLG/Fe2O3composite nanomaterials and MLG+Fe2O3mechanically mixed nanomaterials are selected as the additives, the wear loss and friction coefficient invariably maintain extremely low values and close to zero, in a certain range of sliding revolutions. There retain the phases of MLG and Fe2O3 on the worn surface. The typical black regions and grey regions are observed, and the tribo-layers are presented a double-layer structure. With an increase of cycles to 25000, the double-layer tribo-layer form with the addition of composite nanomaterials disappear, and the severe wear appears. However, as for the addition of mechanically mixed nanomaterials, the double-layer tribo-layer steadily exists. Therefore, the single addition of MLG is unable to improve the friction and wear properties of titanium alloy. With an addition of MLG to the Fe2O3-contained tribo-layer, a new tribo-layer, i.e. double-layer tribo-layer is formed. This layer simultaneously possesses lubrication and bearing function, resulting in a significant improvement for the friction reduction and wear resistance of titanium alloys. Especially, the titanium alloys present more excellent tribological properties with the addition of mechanically mixed nanomaterials, because of more layers and higher content of MLG in the double-layer tribo-layer.

Key wordstitanium alloy    multilayer graphene    nanomaterial    tribo-layer    synergistic effect    friction and wear property
收稿日期: 2021-08-18      出版日期: 2022-08-16
中图分类号:  TH117.1  
基金资助:江苏省自然科学基金项目(BK20201231);江苏高校"青蓝工程"(71620211008);江苏省高等学校自然科学研究项目(18KJB430025);江苏省高端结构材料重点实验室开放基金资助项目(hsm1807);泰州市科技支撑计划项目(TS201820);泰州学院高层次人才科研启动基金项目(TZXY2017QDJJ013);泰州学院大学生创新训练计划项目(2020CXXL052)
通讯作者: 周银     E-mail: 626819302@qq.com
作者简介: 周银(1988—),男,讲师,博士,研究方向为金属材料摩擦磨损及减摩抗磨新材料设计与开发,联系地址:江苏省泰州市济川东路93号泰州学院办公楼D1812(225300),E-mail: 626819302@qq.com
引用本文:   
周银, 乔畅, 邹家栋, 郭洪锍, 王树奇. 多层石墨烯对钛合金摩擦学性能的影响[J]. 材料工程, 2022, 50(8): 107-114.
Yin ZHOU, Chang QIAO, Jiadong ZOU, Hongliu GUO, Shuqi WANG. Effect of multilayer graphene on tribological property of titanium alloy. Journal of Materials Engineering, 2022, 50(8): 107-114.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000785      或      http://jme.biam.ac.cn/CN/Y2022/V50/I8/107
Material Mass fraction/%
Al Mo Zr Si Ti Cr C Mn Fe
TC11 alloy 5.84 3.54 1.57 0.32 Bal
GCr15 steel 0.30 1.65 1.03 0.35 Bal
Table 1  TC11合金和GCr15钢的化学成分
Fig.1  销、盘工作状态示意图
Fig.2  不同添加条件下TC11合金磨损失重随转数的变化
Fig.3  不同添加条件下TC11合金/GCr15钢滑动体系的摩擦因数
Fig.4  不同添加条件下TC11合金磨损表面的XRD(a)和Raman(b)谱图
Fig.5  不同添加条件下TC11合金磨损表面SEM形貌
(a)无添加-20000转; (b)MLG-20000转; (c)MLG/Fe2O3-20000转; (d)MLG/Fe2O3-25000转; (e)MLG+Fe2O3-20000转; (f)MLG+Fe2O3-25000转
Fig.6  图 5(c)中标记区域的EDS分析
(a)区域1;(b)区域2
Fig.7  不同添加条件下TC11合金磨损表面及亚表面剖面形貌
(a)无添加-20000转; (b)MLG-20000转; (c)MLG/Fe2O3-20000转; (d)MLG/Fe2O3-25000转; (e)MLG+Fe2O3-20000转; (f)MLG+Fe2O3-25000转
1 刘剑桥, 刘佳, 唐毓金, 等. 钛合金在骨科植入领域的研究进展[J]. 材料工程, 2021, 49 (8): 11- 25.
1 LIU J Q , LIU J , TANG Y J , et al. Research progress in titanium alloy in the field of orthopaedic implants[J]. Journal of Materials Engineering, 2021, 49 (8): 11- 25.
2 LEYENS C , PETERS M . Titanium and titanium alloys: fundamentals and applications[M]. Springer: Verlag, 2003.
3 STRAFFELINI G , MOLINARI A . Mild sliding wear of Fe-0.2%C, Ti-6%Al-4%V and Al-7072: a comparative study[J]. Tribo-logy Letters, 2011, 41 (1): 227- 238.
doi: 10.1007/s11249-010-9705-2
4 QIU M , ZHANG Y Z , YANG J H , et al. Microstructural and tribological characteristics of Ti-6Al-4V alloy against GCr15 under high speed and dry sliding[J]. Materials Science and Engineering: A, 2006, 434 (1/2): 71- 75.
5 李新星, 王红侠, 施剑峰, 等. TC11钛合金表面保护性摩擦氧化层的形成及作用[J]. 材料工程, 2020, 48 (10): 141- 147.
5 LI X X , WANG H X , SHI J F , et al. Formation and function of protective tribo-oxide layers on TC11 titanium alloy surface[J]. Journal of Materials Engineering, 2020, 48 (10): 141- 147.
6 WANG L , ZHANG Q Y , LI X X , et al. Dry sliding wear behavior of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy[J]. Metallurgical and Materials Transactions A, 2014, 45 (4): 2284- 2296.
doi: 10.1007/s11661-013-2167-z
7 WANG L , ZHANG Q Y , LI X X , et al. Severe-to-mild wear transition of titanium alloys as a function of temperature[J]. Tribology Letters, 2014, 53 (3): 511- 520.
doi: 10.1007/s11249-013-0289-5
8 LI X X , ZHANG Q Y , ZHOU Y , et al. Severe and mild wear of titanium alloys[J]. Tribology Letters, 2016, 61 (2): 1- 9.
9 ZHANG Q Y , ZHOU Y , LI X X , et al. Accelerated formation of tribo-oxide layer and its effect on sliding wear of a titanium alloy[J]. Tribology Letters, 2016, 63 (1): 1- 13.
doi: 10.1007/s11249-016-0692-9
10 KANDANUR S S , RAFIEE M A , YAVARI F , et al. Suppression of wear in graphene polymer composites[J]. Carbon, 2012, 50 (9): 3178- 3183.
doi: 10.1016/j.carbon.2011.10.038
11 WANG H , XIE G Y , ZHU Z G , et al. Enhanced tribological performance of the multi-layer graphene filled poly(vinyl chloride) composites[J]. Composites Part: A, 2014, 67, 268- 273.
doi: 10.1016/j.compositesa.2014.09.011
12 GUTIERREZ-GONZALEZ C F , SMIRNOV A , CENTENO A , et al. Wear behavior of graphene/alumina composite[J]. Cera-mics International, 2015, 41 (6): 7434- 7438.
doi: 10.1016/j.ceramint.2015.02.061
13 LLORENTE J , ROMAN-MANSO B , MIRANZO P , et al. Tribological performance under dry sliding conditions of graphene/silicon carbide composites[J]. Journal of the European Ceramic Society, 2016, 36 (3): 429- 435.
doi: 10.1016/j.jeurceramsoc.2015.09.040
14 ZHAI W Z , SHI X L , WANG M , et al. Grain refinement: a mechanism for graphene nanoplatelets to reduce friction and wear of Ni3Al matrix self-lubricating composites[J]. Wear, 2014, 310 (1/2): 33- 40.
15 ZHAI W Z , SHI X L , YAO J , et al. Investigation of mechanical and tribological behaviors of multilayer graphene reinforced Ni3Al matrix composites[J]. Composites Part: B, 2015, 70, 149- 155.
doi: 10.1016/j.compositesb.2014.10.052
16 XU Z S , SHI X L , ZHAI W Z , et al. Preparation and tribological properties of TiAl matrix composites reinforced by multilayer graphene[J]. Carbon, 2014, 67, 168- 177.
doi: 10.1016/j.carbon.2013.09.077
17 乔玉林, 赵海朝, 臧艳, 等. 多层石墨烯水分散体系的摩擦磨损性能研究[J]. 摩擦学学报, 2014, 34 (5): 523- 530.
17 QIAO Y L , ZHAO H C , ZANG Y , et al. Friction and wear pro-perties of water-dispersing system of multilayer grapheme[J]. Tribology, 2014, 34 (5): 523- 530.
18 PORWAL H , TATARKO P , SAGGAR R , et al. Tribological properties of silica-graphene nano-platelet composites[J]. Ceramics International, 2014, 40 (8): 12067- 12074.
doi: 10.1016/j.ceramint.2014.04.046
19 GUIDERDONI C , PAVLENKO E , TURQ V , et al. The preparation of carbon nanotube (CNT)/copper composites and the effect of the number of CNT walls on their hardness, friction and wear properties[J]. Carbon, 2013, 58 (2): 185- 197.
20 KATO H . Effects of supply of fine oxide particles onto rubbing steel surfaces on severe-mild wear transition and oxide film formation[J]. Tribology International, 2008, 41 (41): 735- 742.
21 KATO H , KOMAI K . Tribofilm formation and mild wear by tribo-sintering of nanometer-sized oxide particles on rubbing steel surfaces[J]. Wear, 2007, 262 (1/2): 36- 41.
22 FENG X , KWON S , PARK J Y , et al. Superlubric sliding of graphene nanoflakes on graphene[J]. ACS Nano, 2013, 7 (2): 1718- 1724.
23 FILLETER T , MCCHESNEY J L , BOSTWICK A , et al. Friction and dissipation in epitaxial graphene films[J]. Physical Review Letters, 2009, 102 (8): 086102.
24 LEE C , LI Q , KALB W , et al. Frictional characteristics of atomically thin sheets[J]. Science, 2010, 328 (5974): 76- 80.
[1] 姚凯, 闵小华. 变形温度与应变速率耦合作用对TWIP效应Ti-15Mo合金力学性能的影响[J]. 材料工程, 2022, 50(8): 133-142.
[2] 张铭泰, 余少彬, 李希成, 冯萃敏, 石梦童, 汪长征, 王强. 新型复合纳米材料用于光催化降解染料废水的研究进展[J]. 材料工程, 2022, 50(7): 59-68.
[3] 王喆, 肖明颖, 高华兵, 董涛, 李海新, 杨振林, 果春焕, 姜风春. 钛合金/钢异种连接接头组织与性能研究进展[J]. 材料工程, 2022, 50(5): 11-19.
[4] 张晟, 曾俊彦, 尚方方, 曾祥琼. 电子皮肤热点核心材料及其在生命健康领域中的应用研究进展[J]. 材料工程, 2022, 50(2): 23-37.
[5] 吴鹏, 陈诚, 赵雪伶, 林东海. 纳米材料模拟酶应用进展[J]. 材料工程, 2022, 50(2): 62-72.
[6] 王庆娟, 吴金城, 王伟, 杜忠泽, 尹仁锟. 超高强β钛合金等温相转变特性及力学性能[J]. 材料工程, 2021, 49(9): 94-100.
[7] 刘剑桥, 刘佳, 唐毓金, 王立强. 钛合金在骨科植入领域的研究进展[J]. 材料工程, 2021, 49(8): 11-25.
[8] 李华鹏, 董旭晟, 孙彬, 周国伟. TiO2/MXene纳米复合材料的可控制备及在光催化和电化学中的应用研究进展[J]. 材料工程, 2021, 49(8): 54-62.
[9] 武永丽, 熊毅, 陈正阁, 查小琴, 岳赟, 刘玉亮, 张金民, 任凤章. 超音速微粒轰击对TC11钛合金组织和疲劳性能的影响[J]. 材料工程, 2021, 49(5): 137-143.
[10] 覃鑫, 祁文军, 左小刚. TC4钛合金表面激光熔覆NiCrCoAlY-Cr3C2复合涂层的摩擦和高温抗氧化性能[J]. 材料工程, 2021, 49(12): 107-114.
[11] 甘致聪, 王硕, 山圣峰, 张兵, 贾元智, 马明臻. 微量硼对Ti-Fe-Cu-Sn-Nb合金力学性能的影响[J]. 材料工程, 2021, 49(11): 156-162.
[12] 周璇, 郑云飞, 贾绮林, 张斐然. 新型二维层状纳米材料的抗菌研究进展[J]. 材料工程, 2021, 49(1): 55-64.
[13] 周亚利, 杨秋月, 张文玮, 刘田文, 何威, 吴珍, 伍铭, 谭元标. 具有层片状α相组织的TB8钛合金热变形行为及本构方程[J]. 材料工程, 2021, 49(1): 75-81.
[14] 顾善群, 张代军, 刘燕峰, 邹齐, 陈祥宝, 李军, 付善龙. 聚酰亚胺纤维/双马树脂复合材料抗高速冲击性能[J]. 材料工程, 2021, 49(1): 119-125.
[15] 王欣, 许春玲, 李臻熙, 裴传虎, 汤智慧. 喷丸强度和表面覆盖率对TC4钛合金室温疲劳性能的影响[J]. 材料工程, 2020, 48(9): 138-143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn