Please wait a minute...
 
2222材料工程  2023, Vol. 51 Issue (1): 113-121    DOI: 10.11868/j.issn.1001-4381.2021.000790
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
热输入对Inconel 617镍基高温合金激光焊接接头显微组织与力学性能的影响
程昊1,2, 周炼刚1, 刘健3,*(), 王宇宁1, 仝凌云1, 都东2,*()
1 航天材料及工艺研究所, 北京 100076
2 清华大学 机械工程系, 北京 100084
3 中国航发北京航空材料研究院, 北京 100095
Effect of heat input on microstructure and mechanical properties of laser welded joint of Inconel 617 nickel-based superalloy
Hao CHENG1,2, Liangang ZHOU1, Jian LIU3,*(), Yuning WANG1, Lingyun TONG1, Dong DU2,*()
1 Aerospace Research Institute of Materials and Processing Technology, Beijing 100076, China
2 Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
3 AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(24786 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用两种热输入不同的焊接工艺参数对3 mm壁厚的Inconel 617镍基高温合金进行激光焊接。通过光学显微镜和扫描电子显微镜对焊接接头显微组织进行观察分析,并测试了焊接接头在室温(25℃)及高温(900℃)下的拉伸性能。结果表明:激光焊接热输入对Inconel 617焊接接头显微组织及力学性能影响明显。在高热输入(200 J/mm)条件下,焊缝正面宽度3.88 mm,熔化区中部晶粒尺寸粗大,取向杂乱,树枝晶二次枝晶间距较大(6.71 μm),枝晶间碳化物颗粒尺寸较为粗大,枝晶间Mo,Cr等合金元素的凝固偏析较为严重。焊接接头热影响区宽度约0.29 mm,在晶界和晶内形成了γ+碳化物共晶组织,这是由于焊接升温过程中,热影响区内球状碳化物颗粒与周边奥氏体发生组分液化,并在焊后凝固过程中形成共晶。低热输入(90 J/mm)工艺参数获得的焊缝正面宽度为2.28 mm,焊缝呈沿熔合线母材外延生长并沿热流方向定向凝固形成的柱状晶形态。焊缝中部树枝晶二次枝晶间距较小(2.26 μm),枝晶间碳化物颗粒尺寸细小,热影响区宽度约0.15 mm。室温(25℃)拉伸测试表明:高热输入下获得的焊接接头由于焊缝中固溶元素偏析造成的局部组织弱化,从焊缝中部破坏,强度与伸长率有所降低,低热输入条件下获得的焊接接头从母材破坏。而高温实验条件下(900℃),母材晶界发生弱化导致所有试样均从母材破坏。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程昊
周炼刚
刘健
王宇宁
仝凌云
都东
关键词 镍基高温合金激光焊接热输入显微组织力学性能    
Abstract

Inconel 617 nickel-based superalloy with 3 mm wall thickness was welded by laser beam using two different heat input welding parameters. The microstructure of the welded joint was observed by optical microscope and scanning electron microscope, and the mechanical properties of the welded joint at room temperature (25℃) and high temperature (900℃) were tested. The results show that the laser welding heat input has a significant effect on the microstructure and mechanical properties of Inconel 617 welded joints. The front width of the laser weld obtained by high heat input (200 J/mm) process parameters is 3.88 mm. The grain size in the middle of the weld fusion zone is coarse, and the grain orientation is disordered. The secondary dendrite arm spacing in the middle of the weld is large (6.71 μm). The carbide particle size between the dendrites is coarse, and the solidification microsegregation of Mo, Cr alloy elements is serious. The width of heat affected zone is about 0.29 mm. The eutectic structure of γ+carbide is formed in the grain boundary and grain interior. This is because during the heating process of the welding, the spherical carbide particles and the surrounding austenite in the heat-affected zone liquefy and the eutectic structure is formed during the solidification process after welding. The front width of the laser weld obtained by low heat input (90 J/mm) process parameters is 2.28 mm, the grains inside the weld are columnar which is formed by epitaxial growth along the fusion line and directional solidification along the heat flow direction. The secondary dendrite arm spacing in the middle of the weld is small (2.26 μm), the carbide particles between dendrites are small, and the width of heat affected zone is about 0.15 mm. The tensile strength test at room temperature (25℃) shows that the welded joints obtained under high heat input fracture from the middle of the weld, and the tensile strength and elongation decrease, which is caused by the segregation of solid solution elements in the weld. The welded joints obtained under low heat input fracture from the base metal. At high temperature (900℃), all samples fracture from the base metal, which is due to the weakening of the grain boundary of the base metal at high temperatures.

Key wordsnickel-based superalloy    laser welding    heat input    microstructure    mechanical property
收稿日期: 2021-08-19      出版日期: 2023-01-16
中图分类号:  TG456.7  
基金资助:国家自然科学基金航天先进制造联合基金(U1537205)
通讯作者: 刘健,都东     E-mail: jianliu_mse@163.com;dudong@tsinghua.edu.cn
作者简介: 都东(1962—),男,教授,博士,研究方向为智能焊接和增材制造以及机器人技术与成形制造装备,联系地址:北京市海淀区清华大学李兆基科技大楼A717(100084),E-mail: dudong@tsinghua.edu.cn
刘健(1989—),男,工程师,博士,研究方向为高温合金、激光材料加工和增材制造,联系地址:北京市81信箱1分箱(100095),E-mail: jianliu_mse@163.com
引用本文:   
程昊, 周炼刚, 刘健, 王宇宁, 仝凌云, 都东. 热输入对Inconel 617镍基高温合金激光焊接接头显微组织与力学性能的影响[J]. 材料工程, 2023, 51(1): 113-121.
Hao CHENG, Liangang ZHOU, Jian LIU, Yuning WANG, Lingyun TONG, Dong DU. Effect of heat input on microstructure and mechanical properties of laser welded joint of Inconel 617 nickel-based superalloy. Journal of Materials Engineering, 2023, 51(1): 113-121.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000790      或      http://jme.biam.ac.cn/CN/Y2023/V51/I1/113
Cr Co Mo Al C Fe Mg Si Ti Cu B Ni
20-24 10-15 8-10 0.8-1.5 0.05-0.15 3.0 1.0 1.0 0.6 0.5 0.006 Bal
Table 1  Inconel 617镍基高温合金的化学成分(质量分数/%)
Fig.1  Inconel 617镍基高温合金母材的OM(a)和SEM(b)照片
Test temperature/℃ Yield strength/MPa Tensile strength/MPa Elongation/%
25 436 834 53
900 170 82
Table 2  母材力学性能
No Laser power/W Welding speed/(mm·s-1) Heat input/(J·mm-1)
1 2000 10 200
2 2250 25 90
Table 3  焊接工艺参数
Fig.2  激光焊缝的横截面金相照片
(a)高热输入(200 J/mm); (b)低热输入(90 J/mm)
Fig.3  焊缝熔化区域的X射线衍射图谱
Fig.4  高热输入(200 J/mm)获得焊缝熔化区枝晶形貌OM照片
(a)焊缝边缘; (b), (c)焊缝中部
Fig.5  低热输入(90 J/mm)获得焊缝熔化区枝晶形貌OM照片
(a)焊缝边缘; (b), (c)焊缝中部
Fig.6  激光焊缝晶粒形态与晶粒取向EBSD照片
(a)高热输入(200 J/mm); (b)低热输入(90 J/mm)
Fig.7  焊缝熔化区枝晶间碳化物形貌SEM照片(1)与EDS能谱图(2)
(a)高热输入(200 J/mm); (b)低热输入(90 J/mm)
Heat input/(J·mm-1) C Al Ti Cr Fe Co Ni Mo
200 23.52 0.63 0.48 20.23 0.70 7.96 24.21 22.27
90 20.33 0.81 0.39 19.47 0.65 7.42 36.69 14.24
Table 4  焊缝熔化区枝晶间碳化物化学成分(质量分数/%)
Fig.8  热影响区显微组织SEM照片
(a)高热输入(200 J/mm); (b)低热输入(90 J/mm)
Fig.9  不同实验温度下焊接接头拉伸测试结果
(a)25 ℃; (b)900 ℃
Fig.10  焊接接头拉伸测试应力-位移曲线
Fig.11  拉伸试样断裂位置(1)与断口截面OM照片(2)
(a)200 J/mm, 25 ℃; (b)90 J/mm, 25 ℃; (c)200 J/mm, 900 ℃; (d)90 J/mm, 900 ℃
Fig.12  拉伸试样断口宏观(1)与微观(2)SEM照片
(a)200 J/mm, 25 ℃; (b)90 J/mm, 25 ℃; (c)200 J/mm, 900 ℃; (d)90 J/mm, 900 ℃
1 朱怀沈, 聂义宏, 赵帅, 等. 镍基617合金动态再结晶微观组织演变与预测[J]. 材料工程, 2018, 46 (6): 80- 87.
1 ZHU H S , NIE Y H , ZHAO S , et al. Microstructure evolution and prediction of alloy 617 during hot deformation based on dynamic recrystallization[J]. Journal of Materials Engineering, 2018, 46 (6): 80- 87.
2 REN W J , LU F G , NIE P L , et al. Effects of the long-time thermal exposure on the microstructure and mechanical properties of laser weldings of Inconel 617[J]. Journal of Materials Processing Technology, 2017, 247, 296- 305.
doi: 10.1016/j.jmatprotec.2017.05.003
3 王岩, 徐芳泓, 曾莉, 等. 700 ℃(A-USC)锅炉材料617B镍基高温合金热变形及持久行为[J]. 材料工程, 2018, 46 (7): 100- 105.
3 WANG Y , XU F H , ZENG L , et al. Hot deformation and creep rupture behaviors of 617B nickel-base superalloy for 700 ℃(A-USC) boilers[J]. Journal of Materials Engineering, 2018, 46 (7): 100- 105.
4 姚草根, 吕宏军, 贾新潮, 等. 金属热防护系统材料与结构研究进展[J]. 宇航材料工艺, 2005, (2): 10- 13.
doi: 10.3969/j.issn.1007-2330.2005.02.003
4 YAO C G , LV H J , JIA X C , et al. Development of metallic thermal protection system[J]. Aerospace Materials & Technology, 2005, (2): 10- 13.
doi: 10.3969/j.issn.1007-2330.2005.02.003
5 KATAYAMA S. Fundamentals and features of laser welding[M]//Fundamentals and details of laser welding. Singapore: Springer, 2020: 35-55.
6 CHENG H , KANG L , PANG J C , et al. Effect of the welding position on weld quality when laser welding Inconel 617 Ni-based superalloy[J]. Optics & Laser Technology, 2021, 139, 106962.
7 孙文君, 王善林, 谭观华, 等. 材料状态对GH4169高温合金激光焊接头组织与性能的影响[J]. 中国激光, 2020, 47 (10): 75- 84.
7 SUN W J , WANG S L , TAN G H , et al. Effect of material states on microstructure and properties of GH4169 superalloy laser-welded joint[J]. Chinese Journal of Lasers, 2020, 47 (10): 75- 84.
8 敖三三, 罗震, 单平, 等. Inconel601镍基高温合金激光焊焊缝的显微组织[J]. 中国有色金属学报, 2015, 25 (8): 2099- 2107.
8 AO S S , LUO Z , SHAN P , et al. Microstructure of Inconel 601 nickel-based superalloy laser welded joint[J]. The Chinese Journal of Nonferrous Metals, 2015, 25 (8): 2099- 2107.
9 王晓光, 刘奋成, 周宝升. GH3044合金激光焊接接头组织和变形均匀性[J]. 中国有色金属学报, 2019, 29 (11): 2549- 2560.
9 WANG X G , LIU F C , ZHOU B S . Microstructure and deformation uniformity of GH3044 alloy joints by laser beam welding[J]. The Chinese Journal of Nonferrous Metals, 2019, 29 (11): 2549- 2560.
10 YU K , JIANG Z G , LI C W , et al. Microstructure and mechanical properties of fiber laser welded GH3535 superalloy[J]. Journal of Materials Science & Technology, 2017, 33 (11): 1289- 1299.
11 SONAR T , BALASUBRAMANIAN V , MALARVIZHI S , et al. An overview on welding of Inconel 718 alloy—effect of welding processes on microstructural evolution and mechanical properties of joints[J]. Materials Characterization, 2021, 174, 110997.
12 ODABAŞI A , VNLV N , GÖLLER G , et al. A study on laser beam welding (LBW) technique: effect of heat input on the microstructural evolution of superalloy Inconel 718[J]. Metallurgical and Materials Transactions A, 2010, 41 (9): 2357- 2365.
13 SHARMA S K , BISWAS K , NATH A K , et al. Microstructural change during laser welding of Inconel 718[J]. Optik, 2020, 218, 165029.
14 LI S L , LI K J , CAI Z P , et al. Behavior of M23C6 phase in Inconel 617B superalloy during welding[J]. Journal of Materials Proces-sing Technology, 2018, 258, 38- 46.
15 ZHU Z W , MA X Q , JIANG P , et al. Planar-cellular-dendritic transformation in the fusion zone of a GH909 superalloy weldment[J]. Journal of Materials Research and Technology, 2021, 10, 960- 975.
16 REN W J , LU F G , YANG R J , et al. A comparative study on fiber laser and CO2 laser welding of Inconel 617[J]. Materials & Design, 2015, 76, 207- 214.
17 LIU W , LU F G , YANG R J , et al. Gleeble simulation of the HAZ in Inconel 617 welding[J]. Journal of Materials Processing Technology, 2015, 225, 221- 228.
18 REN W J , LU F G , YANG R J , et al. Liquation cracking in fiber laser welded joints of Inconel 617[J]. Journal of Materials Processing Technology, 2015, 226, 214- 220.
[1] 常海, 赵聪铭, 王翠菊. 挤压复合AZ91-(SiCP/AZ91)复合板材显微组织和力学性能[J]. 材料工程, 2023, 51(1): 16-25.
[2] 李淑波, 侯江涛, 孟繁婧, 刘轲, 王朝辉, 杜文博. CNTs/Mg-9Al复合材料微观组织、力学及导热性能[J]. 材料工程, 2023, 51(1): 26-35.
[3] 陈刚, 武凯, 孙宇, 贾贺鹏, 朱志雄, 胡峰峰. 搅拌摩擦沉积增材技术研究进展[J]. 材料工程, 2023, 51(1): 52-63.
[4] 王恩茂, 米振莉, 卫志超, 侯晓英, 钟勇. Q&P980镀锌高强钢电阻点焊工艺及液态金属脆化裂纹分布[J]. 材料工程, 2023, 51(1): 85-94.
[5] 岑耀东, 郭曜珲, 马潇, 陈林, 包喜荣. U75V重轨钢弯曲疲劳裂纹扩展行为[J]. 材料工程, 2023, 51(1): 122-129.
[6] 曾宏伟, 李红, 姚彧敏, 杨敏, 陶银萍, 任慕苏, 孙晋良. 热解碳含量对碳/碳-聚酰亚胺复合材料性能的影响[J]. 材料工程, 2023, 51(1): 148-154.
[7] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[8] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[9] 刘雄飞, 杜文博, 付军健, 王云峰, 李淑波, 朱训明, 王朝辉. Gd对Mg-xGd-1Er-1Zn-0.6Zr合金显微组织和腐蚀行为的影响[J]. 材料工程, 2022, 50(9): 159-168.
[10] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[11] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[12] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[13] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[14] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[15] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn