Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (5): 147-155    DOI: 10.11868/j.issn.1001-4381.2021.000803
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
硬质合金粉末挤出打印中增材制造工艺及其显微结构
陆腾轩, 孟晓燕(), 李狮弟, 邓欣
广东工业大学 机电工程学院, 广州 510006
Additive manufacturing process and microstructure during powder extrusion printing of cemented carbides
Tengxuan LU, Xiaoyan MENG(), Shidi LI, Xin DENG
School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
全文: PDF(15224 KB)   HTML ( 1 )  
输出: BibTeX | EndNote (RIS)      
摘要 

粉末挤出打印(PEP)是基于传统金属注塑成型和3D打印相结合的新型增材制造技术,具有打印材料范围广、打印成本低等巨大优势。以WC-13Co硬质合金的PEP增材制造为核心,以热塑性打印材料为重点研究对象,开发打印原料的材料体系,研究打印原料的均匀性、流变性能、成形性能、黏结剂的脱除工艺以及烧结工艺对打印件显微结构及力学性能的影响机制。独立开发了硬质合金PEP打印专用的有机黏结剂材料体系,通过EDS分析黏结剂在打印坯体中分散均匀性。采用两步法脱脂工艺可以完全脱除打印坯体中的黏结剂,并结合真空烧结,在1450 ℃下保温60 min,成功制备高性能硬质合金打印件。研究结果发现打印件线收缩率为17.8%,WC晶粒尺寸分布均匀,维氏硬度1410HV30。本研究采用PEP增材制造技术制备了高性能、打印件尺寸可控的硬质合金材料,为硬质合金的增材制造探索出一条有效的技术路线。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陆腾轩
孟晓燕
李狮弟
邓欣
关键词 硬质合金增材制造粉末挤出打印显微结构力学性能    
Abstract

Powder extrusion printing (PEP) is an additive manufacturing (AM) technology based on the combination of traditional metal injection molding and 3D printing, which has the advantages of wide range of printable materials and low cost. The PEP process of WC-13Co cemented carbide was studied, including the development and properties of thermoplastic printing materials, such as the dispersity, rheology and formability. The effects of debinding and sintering process on the microstructure and mechanical properties of the final parts were also investigated. The results show that the specialized binder for PEP of cemented carbides has been prepared successfully. EDS analysis demonstrates that the binder is uniformly dispersed in the green body. The binder can be effectively and totally removed from the green body by two-step debinding process. In combination with vacuum sintering at 1450 ℃ for 60 min, high performance of cemented carbide sample with the shrinkage rate of 17.8%, uniform distribution of WC grain size, and Vickers hardness of 1410HV30 is successfully fabricated. The result confirms that the PEP technology can be applied to prepare cemented carbide materials with high performance and controllable print size, which provides an effective technical route for additive manufacturing of cemented carbide.

Key wordscemented carbide    additive manufacturing    powder extrusion printing    microstructure    mechanical property
收稿日期: 2021-08-24      出版日期: 2022-05-23
中图分类号:  TB333  
基金资助:广东省前沿与关键技术创新专项(2017B090911006);季华实验室项目(X190061UZ190);2019佛山市科技创新团队项目(FS0AA-KJ919-4402-0023);河源市科技计划专项(河科000781)
通讯作者: 孟晓燕     E-mail: mengxy@gdut.edu.cn
作者简介: 孟晓燕(1985—), 女, 博士后, 主要从事金属、陶瓷增材制造的研究, 联系地址: 广东省广州市广东工业大学机电工程学院(510006), E-mail: mengxy@gdut.edu.cn
引用本文:   
陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
Tengxuan LU, Xiaoyan MENG, Shidi LI, Xin DENG. Additive manufacturing process and microstructure during powder extrusion printing of cemented carbides. Journal of Materials Engineering, 2022, 50(5): 147-155.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000803      或      http://jme.biam.ac.cn/CN/Y2022/V50/I5/147
Fig.1  原料粉末的扫描电子显微镜图片
(a)碳化钨原料; (b)钴粉原料; (c)球磨混合WC-13Co粉末
Fig.2  挤出打印工艺流程
Component Melting point/℃ Mass fraction/%
MW 67.8 50
PW 71.2 10
EVA 52.1 15
LDPE 125.8 20
SA 76.5 5
Table 1  黏结剂各组成的熔点及含量
Fig.3  不同材料的黏度曲线图
(a)剪切速率;(b)温度
Fig.4  WC-13Co粉末装载率52%的打印原料的显微照片(a)和W(b), Co(c), O(d), C(e)元素分布
No Layer thickness/mm Line width/mm Speed/(mm·s-1) Designed size Sample size
1 0.1 0.4 15 26 mm×7.8 mm×6.5 mm 26.1 mm×8.5 mm×6.7 mm
2 0.2 0.6 15 26 mm×7.8 mm×6.5 mm 26.1 mm×8.9 mm×7.0 mm
3 0.2 0.8 25 26 mm×7.8 mm×6.5 mm 26.5 mm×9.2 mm×7.2 mm
Table 2  三种PEP打印工艺参数及所制备样品尺寸
Fig.5  PEP打印硬质合金复杂结构零件
Fig.6  纯有机黏结剂(a)和WC-13Co粉末装载率52%的打印原料(b)的热重分析
Fig.7  一步法和两步法脱脂的脱脂率
Fig.8  打印样品经一步法(a)和两步法(b)脱脂的照片
Fig.9  硬质合金烧结工艺曲线
Fig.10  硬质合金粉末挤出打印样品
Fig.11  硬质合金真空烧结件的显微结构
1 CHEN Z , LI Z , LI J , et al. 3D printing of ceramics: a review[J]. Journal of the European Ceramic Society, 2019, 39 (4): 661- 687.
doi: 10.1016/j.jeurceramsoc.2018.11.013
2 MOSTAFAEI A , VECCHIS P R D , KATERINA A K , et al. Effect of binder saturation and drying time on microstructure and resulting properties of sinter-HIP binder-jet 3D-printed WC-Co composites[J]. Additive Manufacturing, 2021, 46, 102128.
doi: 10.1016/j.addma.2021.102128
3 NGO T D , KASHANI A , IMBALZANO G , et al. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges[J]. Composites: Part B, 2018, 143, 172- 196.
doi: 10.1016/j.compositesb.2018.02.012
4 CRAMER C L , AGUIRRE T G , WIEBER N R , et al. Binder jet printed WC infiltrated with pre-made melt of WC and Co[J]. International Journal of Refractory Metals and Hard Materials, 2020, 87, 105137.
doi: 10.1016/j.ijrmhm.2019.105137
5 ARAMIAN A , RAZAVI S M J , SADEGHIAN Z , et al. A review of additive manufacturing of cermets[J]. Additive Manufacturing, 2020, 33, 101130.
doi: 10.1016/j.addma.2020.101130
6 YANG Y , ZHANG C , WANG D , et al. Additive manufacturing of WC-Co hardmetals: a review[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108 (5/6): 1653- 1673.
7 GU D , SHI X , POPRAWE R , et al. Material-structure-performance integrated laser-metal additive manufacturing[J]. Science, 2021, 372 (6545): 1487.
doi: 10.1126/science.abg1487
8 FRAZIER W E . Metal additive manufacturing: a review[J]. Journal of Materials Engineering and Performance, 2014, 23 (6): 1917- 1928.
doi: 10.1007/s11665-014-0958-z
9 MOSTAFAEI A , ELLIOTT A M , BARNES J E , et al. Binder jet 3D printing—process parameters, materials, properties, modeling, and challenges[J]. Progress in Materials Science, 2021, 119, 100707.
10 ENNETI R K , PROUGH K C , WOLFE T A , et al. Sintering of WC-12%Co processed by binder jet 3D printing (BJ3DP) technology[J]. International Journal of Refractory Metals and Hard Materials, 2018, 71, 28- 35.
doi: 10.1016/j.ijrmhm.2017.10.023
11 SCHUBERT T , BRENINEK A , BERNTHALER T , et al. Investigations on additive manufacturing of WC-Co hard metals by laser beam melting[J]. Practical Metallography, 2017, 54 (9): 577- 595.
doi: 10.3139/147.110477
12 GONZALEZ-GUTIERREZ J , CANO S , SCHUSCHNIGG S , et al. Additive manufacturing of metallic and ceramic components by the material extrusion of highly-filled polymers: a review and future perspectives[J]. Materials, 2018, 11, 840.
doi: 10.3390/ma11050840
13 HU Z , LIU Y , QIAN Z , et al. The preparation of high-performance 96 W-2.7 Ni-1.3Fe alloy parts by powder extrusion 3D printing[J]. Materials Science and Engineering: A, 2021, 817, 141417.
doi: 10.1016/j.msea.2021.141417
14 张力, 杨现锋, 徐协文, 等. 熔融沉积法3D打印制备氧化锆陶瓷及其力学性能研究[J]. 无机材料学报, 2021, 36 (4): 436- 442.
14 ZHANG L , YANG X F , XU X W , et al. 3D Printed zirconia ceramics via fused deposit modeling and its mechanical properties[J]. Journal of Inorganic Materials, 2021, 36 (4): 436- 442.
15 SCHEITHAUER U , SCHWARZER E , RICHTER H , et al. Thermoplastic 3D printing-an additive manufacturing method for producing dense ceramics[J]. International Journal of Applied Ceramic Technology, 2015, 12 (1): 26- 31.
doi: 10.1111/ijac.12306
16 SCHEITHAUER U , BERGNER A , SCHWARZER E , et al. Studies on thermoplastic 3D printing of steel-zirconia composites[J]. Journal of Materials Research, 2014, 29 (17): 1931- 1940.
doi: 10.1557/jmr.2014.209
17 SCHEITHAUER U , POETSCHKE J , WEINGARTEN S , et al. Droplet-based additive manufacturing of hard metal components by thermoplastic 3D printing (T3DP)[J]. Journal of Ceramic Science and Technology, 2017, 8 (1): 155- 160.
18 刘双, 曹晓, 张嘉琪, 等. 流变技术在高分子表征中的应用: 如何正确地进行剪切流变测试[J]. 高分子学报, 2021, 52 (4): 406- 422.
18 LIU S , CAO X , ZHANG J Q , et al. Toward correct measurements of shear rheometry[J]. Acta Polymerica Sinca, 2021, 52 (4): 406- 422.
19 LENGAUER W , DURETEK I , FVRST M , et al. Fabrication and properties of extrusion-based 3D-printed hardmetal and cermet components[J]. International Journal of Refractory Metals and Hard Materials, 2019, 82, 141- 149.
doi: 10.1016/j.ijrmhm.2019.04.011
20 ANI M D S , MUCHTAR A , MUHAMAD N , et al. Binder removal via a two-stage debinding process for ceramic injection molding parts[J]. Ceramics International, 2014, 40 (2): 2819- 2824.
doi: 10.1016/j.ceramint.2013.10.032
21 LEE S , KIM D , KIM T , et al. Investigation on failure analysis and optimization of WC-Co hard metals after long-term use in a bottle cap forming machine[J]. International Journal of Refractory Metals and Hard Materials, 2018, 74, 99- 106.
doi: 10.1016/j.ijrmhm.2018.03.012
22 AIT-MANSOUR I , KRETZSCHMAR N , CHEKUROV S , et al. Design-dependent shrinkage compensation modeling and mechanical property targeting of metal FFF[J]. Progress in Additive Manufacturing, 2020, 5 (1): 51- 57.
doi: 10.1007/s40964-020-00124-8
23 FAN P , GUO J , ZAK FANG Z , et al. Effects of liquid-phase composition on its migration during liquid-phase sintering of cemented carbide[J]. Metallurgical and Materials Transactions A, 2009, 40 (8): 1995- 2006.
doi: 10.1007/s11661-009-9887-0
24 龙坚战. 烧结温度和时间对WC-24%Co硬质合金的WC晶粒形貌影响[J]. 硬质合金, 2017, 34 (6): 370- 377.
24 LONG J Z . Effects of sintering temperature and time on WC morphology of WC-24%Co cemented carbide[J]. Cemented Carbide, 2017, 34 (6): 370- 377.
25 GERMAN R M , SURI P , PARK S J . Review: liquid phase sintering[J]. Journal of Materials Science, 2009, 44 (1): 1- 39.
doi: 10.1007/s10853-008-3008-0
[1] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[2] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[3] 梁恩泉, 代宇, 白静, 周亚雄, 彭东剑, 王清正, 康楠, 林鑫. 退火态激光选区熔化成形AlSi10Mg合金组织与力学性能[J]. 材料工程, 2022, 50(5): 156-165.
[4] 韩启飞, 符瑞, 胡锦龙, 郭跃岭, 韩亚峰, 王俊升, 纪涛, 卢继平, 刘长猛. 电弧熔丝增材制造铝合金研究进展[J]. 材料工程, 2022, 50(4): 62-73.
[5] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[6] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
[7] 陈帅, 陶凤和, 贾长治, 孙河洋. 成形角度对选区激光熔化4Cr5MoSiV1钢组织和性能的影响[J]. 材料工程, 2022, 50(3): 122-130.
[8] 唐鹏钧, 房立家, 王兴元, 李沛勇, 张学军. 人工时效对激光选区熔化AlMg4.5Sc0.55Mn0.5Zr0.2合金显微组织和力学性能的影响[J]. 材料工程, 2022, 50(2): 84-93.
[9] 石磊, 李阳, 肖亦辰, 武传松, 刘会杰. 基于搅拌摩擦的金属固相增材制造研究进展[J]. 材料工程, 2022, 50(1): 1-14.
[10] 邵震, 崔雷, 王东坡, 陈永亮, 胡正根, 王非凡. 几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响[J]. 材料工程, 2022, 50(1): 25-32.
[11] 吴程浩, 刘涛, 高嵩, 石磊, 刘洪涛. 铝/钢异种金属的超声振动强化搅拌摩擦焊接工艺[J]. 材料工程, 2022, 50(1): 33-42.
[12] 徐学宏, 郑义珠, 陈吉平, 宁博, 刘晓忱. 缝合参数对泡沫夹层结构复合材料力学性能的影响[J]. 材料工程, 2022, 50(1): 132-137.
[13] 肖伟, 杨占旭, 乔庆东. 石墨电极表面聚丙烯腈纳米纤维膜的制备及性能[J]. 材料工程, 2021, 49(9): 60-68.
[14] 王庆娟, 吴金城, 王伟, 杜忠泽, 尹仁锟. 超高强β钛合金等温相转变特性及力学性能[J]. 材料工程, 2021, 49(9): 94-100.
[15] 孙昊飞, 肖志, 韦凯, 杨旭静, 齐军. 预弯曲变形对CP800复相钢力学性能的影响[J]. 材料工程, 2021, 49(8): 81-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn