Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (9): 70-77    DOI: 10.11868/j.issn.1001-4381.2021.000810
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
碳氯共掺杂介孔g-C3N4的气泡模板法制备及光催化性能
刘源, 赵华, 李会鹏(), 蔡天凤, 王禹程
辽宁石油化工大学 石油化工学院,辽宁 抚顺 113001
Preparation of carbon-chlorine co-doped mesoporous g-C3N4 by bubble template method and photocatalytic performance
Yuan LIU, Hua ZHAO, Huipeng LI(), Tianfeng CAI, Yucheng WANG
School of Petrochemical Engineering, Liaoning Shihua University, Fushun 113001, Liaoning, China
全文: PDF(1065 KB)   HTML ( 2 )  
输出: BibTeX | EndNote (RIS)      
摘要 

以三聚氰胺、葡萄糖和氯化铵为原料制备一种具有高比表面积的碳氯共掺杂介孔g-C3N4(C-Cl-CN)光催化剂,并考察其光催化降解罗丹明B(RhB)的性能。采用XRD,XPS,SEM,UV-Vis DRS和PL测试手段表征和分析催化剂的晶型结构、化学组成及微观形貌。结果表明:C-Cl-CN具有最高的比表面积(108.7 m2/g),降解RhB的速率常数达到0.02290 min-1,是纯g-C3N4的9.4倍,且具有良好的催化稳定性。葡萄糖和氯化铵在聚合过程中起到双气泡模板和元素掺杂剂的作用,一方面提升催化剂的比表面积,另一方面减小能带间隙,增强催化剂的光吸收性能。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘源
赵华
李会鹏
蔡天凤
王禹程
关键词 共掺杂石墨相氮化碳光催化降解    
Abstract

A carbon-chlorine co-doped mesoporous g-C3N4(C-Cl-CN) photocatalyst with a high specific surface area was prepared from melamine, glucose and ammonium chloride and its performance for photocatalytic degradation of rhodamine B(RhB) was investigated. The crystal structure, chemical composition and micro-morphology of the catalysts were characterized by X-ray diffraction pattern(XRD), X-ray photoelectron spectroscope(XPS), scanning electron microscope(SEM), UV-Vis diffuse reflection spectra(UV-Vis DRS) and photoluminescence(PL). The results show that C-Cl-CN has a high specific surface area(108.7 m2/g) and the rate constant of RhB degradation is 0.02290 min-1, which is 9.4 times higher than that of pure g-C3N4, and has excellent catalytic stability. Glucose and ammonium chloride act as double-bubble templates and elemental dopants in the polymerization process, which enhance the specific surface area of the catalyst on the one hand and reduce the energy bandgap, on the other hand, significantly enhance the light absorption performance of the catalyst.

Key wordsco-doping    graphite carbon nitride    photocatalysis    degradation
收稿日期: 2021-08-24      出版日期: 2022-09-20
中图分类号:  O69  
基金资助:辽宁省自然基金指导计划项目(2019-ZD-0057)
通讯作者: 李会鹏     E-mail: fslhp@sina.com
作者简介: 李会鹏(1973—),男,教授,博士,研究方向为现代催化剂研制与开发及清洁燃料生产,联系地址:辽宁省抚顺市望花区丹东路西段一号辽宁石油化工大学炼化楼1009(113001),E-mail: fslhp@sina.com
引用本文:   
刘源, 赵华, 李会鹏, 蔡天凤, 王禹程. 碳氯共掺杂介孔g-C3N4的气泡模板法制备及光催化性能[J]. 材料工程, 2022, 50(9): 70-77.
Yuan LIU, Hua ZHAO, Huipeng LI, Tianfeng CAI, Yucheng WANG. Preparation of carbon-chlorine co-doped mesoporous g-C3N4 by bubble template method and photocatalytic performance. Journal of Materials Engineering, 2022, 50(9): 70-77.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000810      或      http://jme.biam.ac.cn/CN/Y2022/V50/I9/70
Fig.1  制备催化剂的XRD谱图
Fig.2  制备催化剂的N2吸附-脱附等温线(a)和孔径分布图(b)
Sample SBET/(m2·g-1) Average pore diameter/nm Pore volume/(cm3·g-1)
CN 23.2 18.13 0.1051
C-CN 57.5 18.68 0.2686
Cl-CN 64.2 20.46 0.2889
C-Cl-CN 108.7 21.13 0.5738
Table 1  制备催化剂的结构性质
Fig.3  CN(a),C-CN(b),Cl-CN(c),C-Cl-CN(d)的SEM图和C-Cl-CN的EDS元素谱图(e)~(g)
Fig.4  CN(a),C-CN(b),Cl-CN(c),C-Cl-CN(d)~(e)的TEM图
Fig.5  制备催化剂的XPS谱图(a)总谱图; (b)C1s;(c)N1s;(d)Cl2p
Fig.6  制备催化剂的UV-Vis漫反射吸收光谱(a)、能带图(b)、VB XPS(c)和能级位置示意图(d)
Fig.7  制备催化剂的PL光谱图
Fig.8  制备催化剂的光催化降解RhB性能(a),-ln(C/C0)与反应时间t的关系(b),C-Cl-CN的稳定性(c)及捕获剂对降解性能的影响(d)
Fig.9  C-Cl-CN光催化降解RhB反应机理
1 WANG X C , MAEDA K , THOMAS A , et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8 (1): 76- 80.
doi: 10.1038/nmat2317
2 IQBAL W , YANG B , ZHAO X , et al. Facile one-pot synthesis of mesoporous g-C3N4 nanosheets with simultaneous iodine doping and N-vacancies for efficient visible-light-driven H2 evolution performance[J]. Catalysis Science & Technology, 2020, 10 (2): 549- 559.
3 谢桂香, 龚朋, 吕芬芬, 等. 原位构建P-N结复合材料及其可见光光催化性能[J]. 材料工程, 2021, 49 (3): 107- 114.
3 XIE G X , GONG P , LYU F F , et al. In-situ growth P-N heterojunction composite photocatalyst enhanced visible-light-driven photocatalytic performance[J]. Journal of Materials Engineering, 2021, 49 (3): 107- 114.
4 DONG Y G , WANG D H , ZHANG H , et al. Morphological control of tubular g-C3N4 and their visible-light photocatalytic pro-perties[J]. Materials Letters, 2017, 196, 100- 103.
doi: 10.1016/j.matlet.2017.03.005
5 ZHOU Y , LV W H , ZHU B L , et al. Template-free one-step synthesis of g-C3N4 nanosheets with simultaneous porous network and S-doping for remarkable visible-light-driven hydrogen evolution[J]. ACS Sustain Chem Eng, 2019, 7 (6): 5801- 5807.
doi: 10.1021/acssuschemeng.8b05374
6 ZHOU M J , HOU Z H , CHEN X B . Graphitic-C3N4 nanosheets: synergistic effects of hydrogenation and n/n junctions for enhanced photocatalytic activities[J]. Dalton Transactions, 2017, 46 (32): 10641- 10649.
doi: 10.1039/C7DT00761B
7 FAN C K , MIAO J L , XU G Q , et al. Graphitic carbon nitride nanosheets obtained by liquid stripping as efficient photocatalysts under visible light[J]. RSC Advances, 2017, 7, 37185- 37193.
doi: 10.1039/C7RA05732F
8 PARK S S , CHU S W , XUE C F , et al. Facile synthesis of mesoporous carbon nitrides using the incipient wetness method and the application as hydrogen adsorbent[J]. Journal of Materials Che-mistry, 2011, 21 (29): 10801- 10807.
doi: 10.1039/c1jm10849b
9 KADAM A N , KIM H , LEE S W . Low-temperature in situ fabrication of porous S-doped g-C3N4nanosheets using gaseous-bubble template for enhanced visible-light photocatalysis[J]. Ceramics International, 2020, 46 (18): 28481- 28489.
doi: 10.1016/j.ceramint.2020.08.005
10 周锋, 任向红, 强洪夫, 等. GO增强g-C3N4气凝胶的可见光响应及其光催化降解偏二甲肼废水[J]. 材料工程, 2021, 49 (11): 171- 178.
doi: 10.11868/j.issn.1001-4381.2020.001089
10 ZHOU F , REN X H , QIANG H F , et al. GO enhanced visible-light response of g-C3N4 aerogel and degradation of unsymmetrical dimethylhydrazine in wastewater[J]. Journal of Materials Engineering, 2021, 49 (11): 171- 178.
doi: 10.11868/j.issn.1001-4381.2020.001089
11 GHASHGHAEE M , AZIZI Z , GHAMBARIAN M . Conductivity tuning of charged triazine and heptazine graphitic carbon nitride (g-C3N4) quantum dots via nonmetal (B, O, S, P) doping: DFT calculations[J]. Journal of Physics and Chemistry of So-lids, 2020, 141, 109422.
doi: 10.1016/j.jpcs.2020.109422
12 YAN S C , LI Z S , ZOU Z G . Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation[J]. Langmuir, 2010, 26 (6): 3894- 3901.
doi: 10.1021/la904023j
13 LI Z , CHEN Q Y , LIN Q C , et al. Three-dimensional P-doped porous g-C3N4 nanosheets as an efficient metal-free photocatalyst for visible-light photocatalytic degradation of rhodamine B model pollutant[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 114, 249- 262.
doi: 10.1016/j.jtice.2020.09.019
14 CHU Y C , LIN T J , LIN Y R , et al. Influence of P, S, O-doping on g-C3N4 for hydrogel formation and photocatalysis: an experimental and theoretical study[J]. Carbon, 2020, 169, 338- 348.
doi: 10.1016/j.carbon.2020.07.053
15 MOHAMED M A , ZAIN M F , JEFFERY M L , et al. Constructing bio-templated 3D porous microtubular C-doped g-C3N4 with tunable band structure and enhanced charge carrier separation[J]. Applied Catalysis: B, 2018, 236, 265- 279.
doi: 10.1016/j.apcatb.2018.05.037
16 YI F T , GAN H H , JIN H F , et al. Sulfur-and chlorine-co-doped g-C3N4 nanosheets with enhanced active species generation for boosting visible-light photodegradation activity[J]. Separation and Purification Technology, 2020, 233, 115997.
doi: 10.1016/j.seppur.2019.115997
17 刘源, 赵华, 李会鹏, 等. 硫氯共掺杂g-C3N4纳米片光催化降解染料[J]. 中国环境科学, 2021, 41 (10): 4662- 4669.
doi: 10.3969/j.issn.1000-6923.2021.10.022
17 LIU Y , ZHAO H , LI H P , et al. Photocatalytic degradation of dyes by sulfur-and chlorine-co-doped g-C3N4 nanosheets[J]. China Environmental Science, 2021, 41 (10): 4662- 4669.
doi: 10.3969/j.issn.1000-6923.2021.10.022
18 SUN N , LIANG Y , MA X J , et al. Reduced oxygenated g-C3N4 with abundant nitrogen vacancies for visible-light photocatalytic applications[J]. Chemistry, 2017, 23 (61): 15466- 15473.
doi: 10.1002/chem.201703168
19 MA H Q , SHI Z Y , LI Q , et al. Preparation of graphitic carbon nitride with large specific surface area and outstanding N2 photofixation ability via a dissolve-regrowth process[J]. Journal of Physics and Chemistry of Solids, 2016, 99, 51- 58.
doi: 10.1016/j.jpcs.2016.08.008
20 LIU H H , CHEN D L , WANG Z Q , et al. Microwave-assisted molten-salt rapid synthesis of isotype triazine-/heptazine based g-C3N4 heterojunctions with highly enhanced photocatalytic hydrogen evolution performance[J]. Applied Catalysis: B, 2017, 203, 300- 313.
doi: 10.1016/j.apcatb.2016.10.014
21 HUANG H W , XIAO K , TIAN N , et al. Template-free precursor-surface-etching route to porous, thin g-C3N4 nanosheets for enhancing photocatalytic reduction and oxidation activity[J]. Journal of Materials Chemistry: A, 2017, 5 (33): 17452- 17463.
doi: 10.1039/C7TA04639A
22 PANNERI S , GANGULY P , MOHAN M , et al. Photoregenerable, bifunctional granules of carbon-doped g-C3N4 as adsorptive photocatalyst for the efficient removal of tetracycline antibiotic[J]. ACS Sustainable Chemistry & Engineering, 2017, 5 (2): 1610- 1618.
23 LIANG L , CONG Y F , WANG F X , et al. Hydrothermal pre-treatment induced cyanamide to prepare porous g-C3N4 with boosted photocatalytic performance[J]. Diamond and Related Materials, 2019, 98, 107499.
doi: 10.1016/j.diamond.2019.107499
24 WANG T , LIU J , ZHANG Y S , et al. Use of a non-thermal plasma technique to increase the number of chlorine active sites on biochar for improved mercury removal[J]. Chemical Engineering Journal, 2018, 331, 536- 544.
doi: 10.1016/j.cej.2017.09.017
25 FAN L W , ZHANG H , ZHANG P P , et al. One-step synthesis of chlorinated graphene by plasma enhanced chemical vapor de-position[J]. Applied Surface Science, 2015, 347, 632- 635.
doi: 10.1016/j.apsusc.2015.04.147
[1] 李思骏, 邵兰兴, 冯丽, 程琥, 庄金亮. 二维Ce-MOFs纳米片的合成及可见光介导脱羧氧化性能[J]. 材料工程, 2022, 50(9): 89-96.
[2] 张铭泰, 余少彬, 李希成, 冯萃敏, 石梦童, 汪长征, 王强. 新型复合纳米材料用于光催化降解染料废水的研究进展[J]. 材料工程, 2022, 50(7): 59-68.
[3] 赵卫峰, 郝宁, 张改, 钱慧锦, 马爱洁, 周宏伟, 陈卫星. 苝四羧酸二酰亚胺修饰增强g-C3N4光催化性能[J]. 材料工程, 2022, 50(3): 98-106.
[4] 张文娟, 寇苗. 二维材料MXene在水处理领域的应用[J]. 材料工程, 2021, 49(9): 14-26.
[5] 褚召冉, 陈功, 赵雪伶, 林东海, 陈诚. 光子晶体在光催化领域的研究进展[J]. 材料工程, 2021, 49(8): 43-53.
[6] 李华鹏, 董旭晟, 孙彬, 周国伟. TiO2/MXene纳米复合材料的可控制备及在光催化和电化学中的应用研究进展[J]. 材料工程, 2021, 49(8): 54-62.
[7] 施琦, 丁龙, 龙红明, 王毅璠, 春铁军. 纳米形貌对Ce-V催化剂降解氯苯活性影响[J]. 材料工程, 2021, 49(8): 162-168.
[8] 晏秘, 薛云, 申妍铭, 程琥, 庄金亮. 分级结构苯并噻二唑聚合物应用于可见光诱导硫醚选择性氧化[J]. 材料工程, 2021, 49(7): 64-70.
[9] 韩超越, 候冰娜, 郑泽邻, 徐文静, 沈惠玲, 李征征. 功能高分子材料的研究进展[J]. 材料工程, 2021, 49(6): 55-65.
[10] 孙丽娟, 苏义平, 赵志成, 魏启亮, 李颖楷, 李顺. 光热协同增强氮化碳锚定FeOx纳米复合材料催化活化过一硫酸盐降解罗丹明B[J]. 材料工程, 2021, 49(6): 156-163.
[11] 田亚强, 赵冠璋, 刘芸, 张源, 郑小平, 陈连生. 生物可降解医用镁合金体内外降解行为研究进展[J]. 材料工程, 2021, 49(5): 24-37.
[12] 葛玉杰, 吴姣, 何志强, 王国华, 刘金香. g-C3N4基异质耦合光催化剂制备及在环境污染物去除领域的研究进展[J]. 材料工程, 2021, 49(4): 23-33.
[13] 向小倩, 廖小刚, 李纲, 胡学步, 田甜. 分级微/纳结构ZnO的制备及其光催化性能[J]. 材料工程, 2021, 49(4): 150-158.
[14] 谢桂香, 龚朋, 吕芬芬, 胡志彪. 原位构建P-N结复合材料及其可见光光催化性能[J]. 材料工程, 2021, 49(3): 107-114.
[15] 鲍艳, 高璐, 史秀娟, 贾顺田. 空心柱状CuS的制备及其降解染料性能[J]. 材料工程, 2021, 49(2): 136-142.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn