Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (7): 40-50    DOI: 10.11868/j.issn.1001-4381.2021.000833
  陶瓷增材制造专栏 本期目录 | 过刊浏览 | 高级检索 |
光固化3D打印陶瓷浆料及流变性研究进展
李文利1, 周宏志2, 刘卫卫1, 于海宁1, 王晶1, 巩磊1, 邢占文1,*()
1 苏州大学 机电工程学院, 江苏 苏州 215131
2 湖南理工学院 机械工程学院, 湖南 岳阳 414006
Research progress in ceramic slurries and rheology via photopolymerization-based 3D printing
Wenli LI1, Hongzhi ZHOU2, Weiwei LIU1, Haining YU1, Jing WANG1, Lei GONG1, Zhanwen XING1,*()
1 School of Mechanical and Electric Engineering, Soochow University, Suzhou 215131, Jiangsu, China
2 College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
全文: PDF(4222 KB)   HTML ( 7 )  
输出: BibTeX | EndNote (RIS)      
摘要 

基于光固化技术原理的陶瓷3D打印因可制备尺寸精度高、表面光洁度好、显微结构均匀和力学性能优异的复杂结构陶瓷零件而备受关注,是实现高性能陶瓷零件增材制造的重要技术手段之一。该技术的核心是制备同时具有高固含量和良好打印适性要求的陶瓷浆料,其组成对固化效果和打印进程有着至关重要的影响。本文综述了立体光固化(stereolithography,SL)和数字光处理(digital light processing,DLP)两种主流光固化3D打印方法用于光固化陶瓷打印的技术方案和工作原理,比较了两者的优缺点。围绕近年来在陶瓷浆料领域的研究工作,讨论了单体/低聚物和稀释剂、分散剂、陶瓷颗粒物理性质以及固含量等对黏度、剪切稀化/增稠行为、黏弹性、屈服应力等流变行为的影响,并提出了光固化3D打印陶瓷浆料的主要发展趋势和面临的挑战,为构建高固含量光固化3D打印陶瓷浆料提供了一般性指导原则。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李文利
周宏志
刘卫卫
于海宁
王晶
巩磊
邢占文
关键词 陶瓷光固化3D打印固含量流变行为    
Abstract

Ceramic 3D printing based on stereolithography has attracted wide attention because it can fabricate complex ceramic components with high dimensional accuracy, good surface finish, uniform microstructure, and excellent mechanical properties. It is one of the important technical means to achieve high-performance parts by additive manufacturing. The core of the technology is to prepare ceramic slurries with high solid loading and good printability, and its composition has a vital influence on the curing effect and printing process. In this review, two main additive manufacturing methods, stereolithography (SL) and digital light processing (DLP), commonly used in ceramic 3D printing were introduced, and advantages and disadvantages of the two methods were compared. Based on the research work in the field of ceramic slurries in recent years, the effects of monomer/oligomer and diluent, dispersant, physical properties of ceramic particles and solid loading on viscosity, shear thinning/thickening behavior, viscoelasticity, yield stress were discussed. Finally, the main development trends and challenges of ceramic slurries via stereolithography were put forward in, and a general guiding principle for the construction of ceramic slurries with high solid loading was provided.

Key wordsceramic    photopolymerization    3D printing    solid loading    rheological behavior
收稿日期: 2021-08-31      出版日期: 2022-07-18
中图分类号:  TB321  
基金资助:苏州市重点产业技术创新项目(SYG202040);苏州市重点产业技术创新项目(SGC2021063);江苏省三维打印装备与制造重点实验室开放基金项目(3DL202103);江苏省重点研发计划项目(BE2018010-4)
通讯作者: 邢占文     E-mail: xingzhanwen@suda.edu.cn
作者简介: 邢占文(1981—), 男, 副教授, 博士, 研究方向: 陶瓷增材制造技术与应用, 联系地址: 江苏省苏州市济学路8号苏州大学机电工程学院(215131), E-mail: xingzhanwen@suda.edu.cn
引用本文:   
李文利, 周宏志, 刘卫卫, 于海宁, 王晶, 巩磊, 邢占文. 光固化3D打印陶瓷浆料及流变性研究进展[J]. 材料工程, 2022, 50(7): 40-50.
Wenli LI, Hongzhi ZHOU, Weiwei LIU, Haining YU, Jing WANG, Lei GONG, Zhanwen XING. Research progress in ceramic slurries and rheology via photopolymerization-based 3D printing. Journal of Materials Engineering, 2022, 50(7): 40-50.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000833      或      http://jme.biam.ac.cn/CN/Y2022/V50/I7/40
Fig.1  光固化3D打印技术原理
(a)立体光固化;(b)数字光处理
Fig.2  光固化陶瓷浆料的主要组成
Monomer Functionality Viscosity/(mPa·s) Refractive index Reference
2-HEA 1 10 1.445 [42-43]
HEMA 1 11 1.453 [17]
ACMO 1 12-15 1.512 [12, 44]
IBOA 1 2-9 1.476 [45-46]
HDDA 2 5-10 1.455 [10, 31-33]
DEGDA 2 12 1.463 [47]
PEG400DA 2 26 1.465 [32, 44, 48]
TPGDA 2 10-15 1.450 [9, 49]
NPGPO2DA 2 17 1.446 [45]
TMPTA 3 80-140 1.474 [10, 35, 50]
DPHA 5/6 4000-7000 1.488 [37]
Table 1  陶瓷浆料中常用的光固化单体
Diluent Viscosity/(mPa·s) Refractive index Reference
Phenoxyethanol (POE) 1.539 [17]
Glycerol (glycerin) 950 1.474 [51-52]
Polyethylene glycol (PEG) 60-100 1.465 [18]
Decahydronaphthalene (decalin) 2-3 1.474 [46]
Butoxyethyl acetate (BEA) 2 1.413 [37]
Butyl phthalate (DBP) 6-7 1.490 [6]
Camphor Solid [53]
Table 2  陶瓷浆料中常用的稀释剂
Name Chemical description Reference
Oleic acid Unsaturated carboxylic acid (18 carbons) [31, 54-55]
KH560 Silane coupling 3-glycidoxypropylthrimethoxysilane [12, 44]
Anti-Terra-U100 Salt of unsaturated polyamine amides and low-molecular acidic polyesters [5]
BYK-W 969 A solution of a hydroxy-functional alkylammonium salt of an acidic copolymer [56]
Disper BYK-111 Copolymer with an acid group [35, 57-58]
Solsperse 41000 100% active polymeric dispersant compatible with UV-curable systems [13, 15]
Variquac CC 42 NS Polypropoxy quaternary ammonium chloride [44, 59-60]
Table 3  陶瓷浆料中常用的分散剂
Ceramic Particle size/μm Solid loading/% Viscosity/(mPa·s) Reference
Alumina 0.4 45 1620 [34]
Alumina 0.4 40 2020 [42]
Alumina 0.6 44.2 25000(30 s-1) [12]
Zirconia 0.09 45 2300 [13]
Zirconia 0.385 40 2900 [59]
Alumina+zirconia 0.4+0.2 40 380 [48]
Alumina+zirconia 0.430+0.143 50 32000(30 s-1) [5]
Silica 2.29 50 110 [8]
Calcium phosphate 1.57 48 160 [53]
Hydroxyapatite 3.97 40 3700(10 s-1) [24]
Zirconia 13+0.02(70∶30) 50 6200(30 s-1) [35]
Alumina 1.66 58 [40]
Table 4  典型陶瓷浆料组成中颗粒粒径、固含量和黏度
Fig.3  不同固含量陶瓷浆料黏度曲线[38]
Fig.4  随形非接触支撑策略示意图[5]
1 CHEN Z W , LI Z Y , LI J J , et al. 3D printing of ceramics: a review[J]. Journal of the European Ceramic Society, 2019, 39 (4): 661- 687.
2 刘雨, 陈张伟. 陶瓷光固化3D打印技术研究进展[J]. 材料工程, 2020, 48 (9): 1- 12.
2 LIU Y , CHEN Z W . Research progress in photopolymerization-based 3D printing technology of ceramics[J]. Journal of Materials Engineering, 2020, 48 (9): 1- 12.
3 RASAKI S A , XIONG D Y , XIONG S F , et al. Photopolymerization-based additive manufacturing of ceramics: a systematic review[J]. Journal of Advanced Ceramics, 2021, 10 (3): 442- 471.
doi: 10.1007/s40145-021-0468-z
4 ZAKERI S , VIPPOLA M , LEVANEN E . A comprehensive review of the photopolymerization of ceramic resins used in stereolithography[J]. Additive Manufacturing, 2020, 35, 101177.
doi: 10.1016/j.addma.2020.101177
5 LI M S , LIU W W , NIE J B , et al. Influence of yttria-stabilized zirconia content on rheological behavior and mechanical properties of zirconia-toughened alumina fabricated by paste-based stereolithography[J]. Journal of Materials Science, 2021, 56 (4): 2887- 2899.
doi: 10.1007/s10853-020-05494-6
6 NIE J B , LI M S , LIU W W , et al. The role of plasticizer in optimizing the rheological behavior of ceramic pastes intended for stereolithography-based additive manufacturing[J]. Journal of the European Ceramic Society, 2021, 41 (1): 646- 654.
doi: 10.1016/j.jeurceramsoc.2020.08.013
7 ZHANG K Q , HE R J , DING G J , et al. Digital light processing of 3Y-TZP strengthened ZrO2 ceramics[J]. Materials Science and Engineering: A, 2020, 774, 138768.
doi: 10.1016/j.msea.2019.138768
8 GRIFFITH M L , HALLORAN J W . Freeform fabrication of ceramics via stereolithography[J]. Journal of the American Ceramic Society, 1996, 79 (10): 2601- 2608.
9 SANTOLIQUIDO O , COLOMBO P , ORTONA A . Additive manufacturing of ceramic components by digital light processing: a comparison between the "bottom-up" and the "top-down" approaches[J]. Journal of the European Ceramic Society, 2019, 39 (6): 2140- 2148.
doi: 10.1016/j.jeurceramsoc.2019.01.044
10 ZHANG K Q , HE R J , XIE C , et al. Photosensitive ZrO2 suspensions for stereolithography[J]. Ceramics International, 2019, 45 (9): 12189- 12195.
doi: 10.1016/j.ceramint.2019.03.123
11 LIAN Q , YANG F , XIN H , et al. Oxygen-controlled bottom-up mask-projection stereolithography for ceramic 3D printing[J]. Ceramics International, 2017, 43 (17): 14956- 14961.
doi: 10.1016/j.ceramint.2017.08.014
12 XING H Y , ZOU B , LAI Q G , et al. Preparation and characterization of UV curable Al2O3 suspensions applying for stereolithography 3D printing ceramic microcomponent[J]. Powder Technology, 2018, 338, 153- 161.
doi: 10.1016/j.powtec.2018.07.023
13 BORLAF M , SZUBRA N , SERRA-CAPDEVILA A , et al. Fabrication of ZrO2 and ATZ materials via UV-LCM-DLP additive manufacturing technology[J]. Journal of the European Ceramic Society, 2020, 40 (4): 1574- 1581.
doi: 10.1016/j.jeurceramsoc.2019.11.037
14 BORLAF M , SERRA-CAPDEVILA A , COLOMINAS C , et al. Development of UV-curable ZrO2 slurries for additive manufacturing (LCM-DLP) technology[J]. Journal of the European Ceramic Society, 2019, 39 (13): 3797- 3803.
doi: 10.1016/j.jeurceramsoc.2019.05.023
15 CHEN F , ZHU H , WU J M , et al. Preparation and biological evaluation of ZrO2 all-ceramic teeth by DLP technology[J]. Ceramics International, 2020, 46 (8): 11268- 11274.
doi: 10.1016/j.ceramint.2020.01.152
16 吴甲民, 杨源祺, 王操, 等. 陶瓷光固化技术及其应用[J]. 机械工程学报, 2020, 56 (19): 221- 238.
16 WU J M , YANG Y Q , WANG C , et al. Photopolymerization technologies for ceramics and their applications[J]. Journal of Mechanical Engineering, 2020, 56 (19): 221- 238.
17 KOTZ F , ARNOLD K , BAUER W , et al. Three-dimensional printing of transparent fused silica glass[J]. Nature, 2017, 544 (7650): 337- 339.
doi: 10.1038/nature22061
18 XING Z W , LIU W W , CHEN Y , et al. Effect of plasticizer on the fabrication and properties of alumina ceramic by stereolithography-based additive manufacturing[J]. Ceramics International, 2018, 44 (16): 19939- 19944.
doi: 10.1016/j.ceramint.2018.07.259
19 GENTRY S P , HALLORAN J W . Absorption effects in photopolymerized ceramic suspensions[J]. Journal of the European Ceramic Society, 2013, 33 (10): 1989- 1994.
doi: 10.1016/j.jeurceramsoc.2013.03.004
20 LAKHDAR Y , TUCK C , BINNER J , et al. Additive manufacturing of advanced ceramic materials[J]. Progress in Materials Science, 2021, 116 (2-3): 100736.
21 CHARTIER T , DUPAS C , LASGORCEIX M , et al. Additive manufacturing to produce complex 3D ceramic parts[J]. Journal of Ceramic Science and Technology, 2015, 6 (2): 95- 104.
22 HALLORAN J W . Ceramic stereolithography: additive manufacturing for ceramics by photopolymerization[J]. Annual Review of Materials Research, 2016, 46 (46): 19- 40.
23 杨飞, 连芩, 武向权, 等. 陶瓷面曝光快速成型工艺研究[J]. 机械工程学报, 2017, 53 (7): 138- 144.
23 YANG F , LIAN Q , WU X Q , et al. Ceramics fabrication using rapid prototyping of mask projection stereolithography[J]. Journal of Mechanical Engineering, 2017, 53 (7): 138- 144.
24 YAO Y X , QIN W , XING B H , et al. High performance hydroxyapatite ceramics and a triply periodic minimum surface structure fabricated by digital light processing 3D printing[J]. Journal of Advanced Ceramics, 2021, 10 (1): 39- 48.
doi: 10.1007/s40145-020-0415-4
25 HUANG R J , JIANG Q G , WU H D , et al. Fabrication of complex shaped ceramic parts with surface-oxidized Si3N4 powder via digital light processing based stereolithography method[J]. Ceramics International, 2019, 45 (4): 5158- 5162.
doi: 10.1016/j.ceramint.2018.11.116
26 LI W L , LIU W W , QI F , et al. Determination of micro-mechanical properties of additive manufactured alumina ceramics by nanoindentation and scratching[J]. Ceramics International, 2019, 45 (8): 10612- 10618.
doi: 10.1016/j.ceramint.2019.02.128
27 LI W L , NIE J B , LI M S , et al. Additive manufactured 3Y-TZP ceramics: study of micromechanical behavior by nanoindentation and microscratch method[J]. International Journal of Applied Ceramic Technology, 2020, 17 (3): 854- 863.
doi: 10.1111/ijac.13459
28 LI W L , LIU W W , LI M S , et al. Nanoscale plasticity behavior of additive-manufactured zirconia-toughened alumina ceramics during nanoindentation[J]. Materials, 2020, 13 (4): 1006.
doi: 10.3390/ma13041006
29 LIU W W , LI M S , NIE J B , et al. Synergy of solid loading and printability of ceramic paste for optimized properties of alumina via stereolithography-based 3D printing[J]. Journal of Materials Research and Technology, 2020, 9 (5): 11476- 11483.
doi: 10.1016/j.jmrt.2020.08.038
30 梁栋, 何汝杰, 方岱宁. 陶瓷材料与结构增材制造技术研究现状[J]. 现代技术陶瓷, 2017, 38 (4): 231- 247.
30 LIANG D , HE R J , FANG D N . Development of additive manufacturing of ceramics[J]. Advanced Ceramics, 2017, 38 (4): 231- 247.
31 WEI Y H , ZHAO D Y , CAO Q L , et al. Stereolithography-based additive manufacturing of high-performance osteoinductive calcium phosphate ceramics by a digital light-processing system[J]. ACS Biomaterials Science & Engineering, 2020, 6 (3): 1787- 1797.
32 WANG W , SUN J X , GUO B B , et al. Fabrication of piezoelectric nano-ceramics via stereolithography of low viscous and non-aqueous suspensions[J]. Journal of the European Ceramic Society, 2020, 40 (3): 682- 688.
doi: 10.1016/j.jeurceramsoc.2019.10.033
33 LIU X Y , ZOU B , XING H Y , et al. The preparation of ZrO2-Al2O3 composite ceramic by SLA-3D printing and sintering processing[J]. Ceramics International, 2020, 46 (1): 937- 944.
doi: 10.1016/j.ceramint.2019.09.054
34 ZHANG S , SHA N , ZHAO Z . Surface modification of α-Al2O3 with dicarboxylic acids for the preparation of UV-curable ceramic suspensions[J]. Journal of the European Ceramic Society, 2017, 37 (4): 1607- 1616.
doi: 10.1016/j.jeurceramsoc.2016.12.013
35 SONG S Y , PARK M S , LEE D , et al. Optimization and characterization of high-viscosity ZrO2 ceramic nanocomposite resins for supportless stereolithography[J]. Materials & Design, 2019, 180, 107960.
36 CHEN Z W , LI J J , LIU C B , et al. Preparation of high solid loading and low viscosity ceramic slurries for photopolymerization-based 3D printing[J]. Ceramics International, 2019, 45 (9): 11549- 11557.
doi: 10.1016/j.ceramint.2019.03.024
37 JOHANSSON E , LIDSTROM O , JOHANSSON J , et al. Influence of resin composition on the defect formation in alumina manufactured by stereolithography[J]. Materials, 2017, 10 (2): 138.
doi: 10.3390/ma10020138
38 CAMERON T , ALEXANDER L Y , JOHN F F . Springer handbook of experimental fluid mechanics[M]. Berlin, Heidelberg: Springer, 2007.
39 LI H , LIU Y S , LI W B , et al. The effect of sintering on the properties of calcium oxide promoted alumina-based ceramic cores via 3D printing[J]. Materials Chemistry and Physics, 2021, 263, 124443.
doi: 10.1016/j.matchemphys.2021.124443
40 LI H , LIU Y S , LIU Y S , et al. Influence of debinding holding time on mechanical properties of 3D-printed alumina ceramic cores[J]. Ceramics International, 2021, 47 (4): 4884- 4894.
doi: 10.1016/j.ceramint.2020.10.061
41 LI H , LIU Y S , LIU Y S , et al. Evolution of the microstructure and mechanical properties of stereolithography formed alumina cores sintered in vacuum[J]. Journal of the European Ceramic Society, 2020, 40 (14): 4825- 4836.
doi: 10.1016/j.jeurceramsoc.2019.11.047
42 WOZNIAK M , DE HAZAN Y , GRAULE T , et al. Rheology of UV curable colloidal silica dispersions for rapid prototyping applications[J]. Journal of the European Ceramic Society, 2011, 31 (13): 2221- 2229.
doi: 10.1016/j.jeurceramsoc.2011.05.004
43 ADAKE C V , BHARGAVA P , GANDHI P . Effect of surfactant on dispersion of alumina in photopolymerizable monomers and their UV curing behavior for microstereolithography[J]. Ceramics International, 2015, 41 (4): 5301- 5308.
doi: 10.1016/j.ceramint.2014.12.066
44 SUN J X , BINNER J , BAI J M . Effect of surface treatment on the dispersion of nano zirconia particles in non-aqueous suspensions for stereolithography[J]. Journal of the European Ceramic Society, 2019, 39 (4): 1660- 1667.
doi: 10.1016/j.jeurceramsoc.2018.10.024
45 JANG K J , KANG J H , FISHER J G . Effect of the volume fraction of zirconia suspensions on the microstructure and physical properties of products produced by additive manufacturing[J]. Dental Materials, 2019, 35 (5): e97- e106.
doi: 10.1016/j.dental.2019.02.001
46 TOMECKOVA V , HALLORAN JW . Flow behavior of polymerizable ceramic suspensions as function of ceramic volume fraction and temperature[J]. Journal of the European Ceramic Society, 2011, 31 (14): 2535- 2542.
doi: 10.1016/j.jeurceramsoc.2011.01.019
47 SOKOLOV P S , KOMISSARENKO D A , DOSOVITSKⅡ G A , et al. Rheological properties of zirconium oxide suspensions in acrylate monomers for use in 3D printing[J]. Glass and Ceramics, 2018, 75 (1): 55- 59.
48 ZHENG T Q , WANG W , SIN J X , et al. Development and evaluation of Al2O3-ZrO2 composite processed by digital light 3D printing[J]. Ceramics International, 2020, 46 (7): 8682- 8688.
doi: 10.1016/j.ceramint.2019.12.102
49 SCHMIDT J , ELSAYED H , BERNARDO E , et al. Digital light processing of wollastonite-diopside glass-ceramic complex structures[J]. Journal of the European Ceramic Society, 2018, 38 (13): 4580- 4584.
doi: 10.1016/j.jeurceramsoc.2018.06.004
50 CHEN Z W , LIU C B , LI J J , et al. Mechanical properties and microstructures of 3D printed bulk cordierite parts[J]. Ceramics International, 2019, 45 (15): 19257- 19267.
doi: 10.1016/j.ceramint.2019.06.174
51 WANG Y Y , WANG Z Y , LIU S H , et al. Additive manufacturing of silica ceramics from aqueous acrylamide based suspension[J]. Ceramics International, 2019, 45 (17): 21328- 21332.
doi: 10.1016/j.ceramint.2019.07.118
52 WU H D , LIU W , HE R X , et al. Fabrication of dense zirconia-toughened alumina ceramics through a stereolithography-based additive manufacturing[J]. Ceramics International, 2017, 43 (1): 968- 972.
doi: 10.1016/j.ceramint.2016.10.027
53 LEE Y H , LEE J B , MAENG W Y , et al. Photocurable ceramic slurry using solid camphor as novel diluent for conventional digital light processing (DLP) process[J]. Journal of the European Ceramic Society, 2019, 39 (14): 4358- 4365.
doi: 10.1016/j.jeurceramsoc.2019.05.069
54 LI K H , ZHAO Z . The effect of the surfactants on the formulation of UV-curable SLA alumina suspension[J]. Ceramics International, 2017, 43 (6): 4761- 4767.
doi: 10.1016/j.ceramint.2016.11.143
55 ZHANG J J , WEI L Y , MENG X X , et al. Digital light processing-stereolithography three-dimensional printing of yttria-stabilized zirconia[J]. Ceramics International, 2020, 46 (7): 8745- 8753.
doi: 10.1016/j.ceramint.2019.12.113
56 KOMISSARENKO D A , SOKOLOV P S , EVSTIGNEEVA A D , et al. Rheological and curing behavior of acrylate-based suspensions for the DLP 3D printing of complex zirconia parts[J]. Materials, 2018, 11 (12): 2350.
doi: 10.3390/ma11122350
57 LI X B , ZHONG H , ZHANG J X , et al. Dispersion and properties of zirconia suspensions for stereolithography[J]. International Journal of Applied Ceramic Technology, 2020, 17 (1): 239- 247.
58 CHEN Z , SUN X H , SHANG Y P , et al. Dense ceramics with complex shape fabricated by 3D printing: a review[J]. Journal of Advanced Ceramics, 2021, 10 (2): 195- 218.
59 LI X B , ZHONG H , ZHANG J X , et al. Fabrication of zirconia all-ceramic crown via DLP-based stereolithography[J]. International Journal of Applied Ceramic Technology, 2020, 17 (3): 844- 853.
60 LI X B , ZHONG H , ZHANG J X , et al. Powder characteristics on the rheological performance of resin-based zirconia suspension for stereolithography[J]. Journal of Inorganic Materials, 2019, 35 (2): 231- 235.
61 聂光临, 黎业华, 盛鹏飞, 等. 表面改性对光固化3D打印Al2O3陶瓷性能的影响[J]. 中国建材科技, 2021, 30 (3): 79- 83.
61 NIE G L , LI Y H , SHENG P F , et al. Effect of surface modification on performance of Al2O3 ceramics prepared by a stereolithography-based 3D printing[J]. China Building Materials Science & Technology, 2021, 30 (3): 79- 83.
62 SCHWENTENWEIN M , HOMA J . Additive manufacturing of dense alumina ceramics[J]. International Journal of Applied Ceramic Technology, 2015, 12 (1): 1- 7.
63 HINCZEWSKI C , CORBEL S , CHARTIER T . Ceramic suspensions suitable for stereolithography[J]. Journal of the European Ceramic Society, 1998, 18 (6): 583- 590.
64 LEWIS J A . Colloidal processing of ceramics[J]. Journal of the American Ceramic Society, 2000, 83 (10): 2341- 2359.
65 DUFAUD O , MARCHAL P , CORBEL S . Rheological properties of PZT suspensions for stereolithography[J]. Journal of the European Ceramic Society, 2002, 22 (13): 2081- 2092.
66 M'BARKI A , BOCQUET L , STEVENSON A . Linking rheology and printability for dense and strong ceramics by direct ink writing[J]. Scientific Reports, 2017, 7, 6017.
67 ZENG Y , YAN Y Z , YAN H F , et al. 3D printing of hydroxyapatite scaffolds with good mechanical and biocompatible properties by digital light processing[J]. Journal of Materials Science, 2018, 53 (9): 6291- 6301.
68 ALAZZAWI M K , ROHN C L , BEYOGLU B , et al. Rheological assessment of cohesive energy density of highly concentrated stereolithography suspensions[J]. Ceramics International, 2020, 46 (6): 8473- 8477.
69 HE L , SONG X . Supportability of a high-yield-stress slurry in a new stereolithography-based ceramic fabrication process[J]. JOM, 2018, 70 (3): 407- 412.
70 HERSCHEL W H , BULKLEY R . Konsistenzmessungen von gummi-benzollösungen[J]. Kolloid-Zeitschrift, 1926, 39 (4): 291- 300.
71 WU X Q , LIAN Q , LI D C , et al. Influence of boundary masks on dimensions and surface roughness using segmented exposure in ceramic 3D printing[J]. Ceramics International, 2019, 45 (3): 3687- 3697.
72 LASGORCEIX M , CHAMPION E , CHARTIER T . Shaping by microstereolithography and sintering of macro-micro-porous silicon substituted hydroxyapatite[J]. Journal of the European Ceramic Society, 2016, 36 (4): 1091- 1101.
73 SCHWARZER E , GOTZ M , MARKOVA D , et al. Lithography-based ceramic manufacturing (LCM)-viscosity and cleaning as two quality influencing steps in the process chain of printing green parts[J]. Journal of the European Ceramic Society, 2017, 37 (16): 5329- 5338.
74 BARNES H A . Shear-thickening (dilatancy) in suspensions of nonaggregating solid particles dispersed in newtonian liquids[J]. Journal of Rheology, 1989, 33 (2): 329- 366.
[1] 牛方勇, 于学鑫, 赵紫渊, 赵大可, 黄云飞, 马广义, 吴东江. 熔体自生陶瓷激光直接能量沉积增材制造研究进展[J]. 材料工程, 2022, 50(7): 1-17.
[2] 刘岩松, 李文博, 刘永胜, 曾庆丰. 3D打印陶瓷铸型研究与应用进展[J]. 材料工程, 2022, 50(7): 18-29.
[3] 焦晨, 梁绘昕, 叶昀, 张寒旭, 何志静, 杨友文, 沈理达, 侯锋. 光固化生物陶瓷功能化研究进展[J]. 材料工程, 2022, 50(7): 30-39.
[4] 王权威, 王程冬, 鲁中良, 苗恺, 艾子超, 李涤尘. 面向单晶涡轮叶片的氧化硅基陶瓷型芯快速成形性能[J]. 材料工程, 2022, 50(7): 51-58.
[5] 刘庆帅, 刘秀波, 刘一帆, 张林, 孟元, 刘怀菲. 陶瓷基高温自润滑复合涂层的制备及摩擦学性能研究进展[J]. 材料工程, 2022, 50(6): 61-74.
[6] 雷磊, 伍雨驰, 程子晋, 刘莉, 郑靖. 牙科陶瓷材料的摩擦学性能研究进展[J]. 材料工程, 2022, 50(2): 1-11.
[7] 吴晓芳, 陈凯, 张德坤. 可降解水凝胶作为关节软骨修复材料的研究进展[J]. 材料工程, 2022, 50(2): 12-22.
[8] 万李, 王海蟒, 蔡谞, 胡刻铭, 岳文, 张洪玉. 骨软骨组织工程仿生梯度支架研究进展[J]. 材料工程, 2022, 50(2): 38-49.
[9] 姜卓钰, 束小文, 吕晓旭, 高晔, 周怡然, 董禹飞, 焦健. SiC晶须增强SiCf/SiC复合材料的力学性能[J]. 材料工程, 2021, 49(8): 89-96.
[10] 解齐颖, 张祎, 朱阳, 崔红西. 超高温陶瓷改性碳/碳复合材料[J]. 材料工程, 2021, 49(7): 46-55.
[11] 焦春荣, 焦健. 料浆对熔渗工艺制备碳纤维织物增强碳化硅复合材料的影响[J]. 材料工程, 2021, 49(7): 78-84.
[12] 吴笑非, 姚建省, 王丽丽, 董龙沛, 武振强, 沈滨, 杨小薇. Al2O3型壳与定向凝固合金IC10的界面反应[J]. 材料工程, 2021, 49(7): 141-147.
[13] 李天天, 夏龙, 黄小萧, 钟博, 王春雨, 张涛. 介电损耗型微波吸收材料的研究进展[J]. 材料工程, 2021, 49(6): 1-13.
[14] 刘宸希, 康红军, 吴金珠, 曹宁宁, 吴晓宏. 3D打印技术及其在医疗领域的应用[J]. 材料工程, 2021, 49(6): 66-76.
[15] 汤桂平, 严倩, 刘洁, 宋波, 文世峰, 史玉升. 3D打印琼脂糖和海藻酸钠复合水凝胶组织与性能研究[J]. 材料工程, 2021, 49(5): 66-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn