1 School of Mechanical and Electric Engineering, Soochow University, Suzhou 215131, Jiangsu, China 2 College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
Ceramic 3D printing based on stereolithography has attracted wide attention because it can fabricate complex ceramic components with high dimensional accuracy, good surface finish, uniform microstructure, and excellent mechanical properties. It is one of the important technical means to achieve high-performance parts by additive manufacturing. The core of the technology is to prepare ceramic slurries with high solid loading and good printability, and its composition has a vital influence on the curing effect and printing process. In this review, two main additive manufacturing methods, stereolithography (SL) and digital light processing (DLP), commonly used in ceramic 3D printing were introduced, and advantages and disadvantages of the two methods were compared. Based on the research work in the field of ceramic slurries in recent years, the effects of monomer/oligomer and diluent, dispersant, physical properties of ceramic particles and solid loading on viscosity, shear thinning/thickening behavior, viscoelasticity, yield stress were discussed. Finally, the main development trends and challenges of ceramic slurries via stereolithography were put forward in, and a general guiding principle for the construction of ceramic slurries with high solid loading was provided.
LIU Y , CHEN Z W . Research progress in photopolymerization-based 3D printing technology of ceramics[J]. Journal of Materials Engineering, 2020, 48 (9): 1- 12.
3
RASAKI S A , XIONG D Y , XIONG S F , et al. Photopolymerization-based additive manufacturing of ceramics: a systematic review[J]. Journal of Advanced Ceramics, 2021, 10 (3): 442- 471.
doi: 10.1007/s40145-021-0468-z
4
ZAKERI S , VIPPOLA M , LEVANEN E . A comprehensive review of the photopolymerization of ceramic resins used in stereolithography[J]. Additive Manufacturing, 2020, 35, 101177.
doi: 10.1016/j.addma.2020.101177
5
LI M S , LIU W W , NIE J B , et al. Influence of yttria-stabilized zirconia content on rheological behavior and mechanical properties of zirconia-toughened alumina fabricated by paste-based stereolithography[J]. Journal of Materials Science, 2021, 56 (4): 2887- 2899.
doi: 10.1007/s10853-020-05494-6
6
NIE J B , LI M S , LIU W W , et al. The role of plasticizer in optimizing the rheological behavior of ceramic pastes intended for stereolithography-based additive manufacturing[J]. Journal of the European Ceramic Society, 2021, 41 (1): 646- 654.
doi: 10.1016/j.jeurceramsoc.2020.08.013
7
ZHANG K Q , HE R J , DING G J , et al. Digital light processing of 3Y-TZP strengthened ZrO2 ceramics[J]. Materials Science and Engineering: A, 2020, 774, 138768.
doi: 10.1016/j.msea.2019.138768
8
GRIFFITH M L , HALLORAN J W . Freeform fabrication of ceramics via stereolithography[J]. Journal of the American Ceramic Society, 1996, 79 (10): 2601- 2608.
9
SANTOLIQUIDO O , COLOMBO P , ORTONA A . Additive manufacturing of ceramic components by digital light processing: a comparison between the "bottom-up" and the "top-down" approaches[J]. Journal of the European Ceramic Society, 2019, 39 (6): 2140- 2148.
doi: 10.1016/j.jeurceramsoc.2019.01.044
10
ZHANG K Q , HE R J , XIE C , et al. Photosensitive ZrO2 suspensions for stereolithography[J]. Ceramics International, 2019, 45 (9): 12189- 12195.
doi: 10.1016/j.ceramint.2019.03.123
11
LIAN Q , YANG F , XIN H , et al. Oxygen-controlled bottom-up mask-projection stereolithography for ceramic 3D printing[J]. Ceramics International, 2017, 43 (17): 14956- 14961.
doi: 10.1016/j.ceramint.2017.08.014
12
XING H Y , ZOU B , LAI Q G , et al. Preparation and characterization of UV curable Al2O3 suspensions applying for stereolithography 3D printing ceramic microcomponent[J]. Powder Technology, 2018, 338, 153- 161.
doi: 10.1016/j.powtec.2018.07.023
13
BORLAF M , SZUBRA N , SERRA-CAPDEVILA A , et al. Fabrication of ZrO2 and ATZ materials via UV-LCM-DLP additive manufacturing technology[J]. Journal of the European Ceramic Society, 2020, 40 (4): 1574- 1581.
doi: 10.1016/j.jeurceramsoc.2019.11.037
14
BORLAF M , SERRA-CAPDEVILA A , COLOMINAS C , et al. Development of UV-curable ZrO2 slurries for additive manufacturing (LCM-DLP) technology[J]. Journal of the European Ceramic Society, 2019, 39 (13): 3797- 3803.
doi: 10.1016/j.jeurceramsoc.2019.05.023
15
CHEN F , ZHU H , WU J M , et al. Preparation and biological evaluation of ZrO2 all-ceramic teeth by DLP technology[J]. Ceramics International, 2020, 46 (8): 11268- 11274.
doi: 10.1016/j.ceramint.2020.01.152
WU J M , YANG Y Q , WANG C , et al. Photopolymerization technologies for ceramics and their applications[J]. Journal of Mechanical Engineering, 2020, 56 (19): 221- 238.
17
KOTZ F , ARNOLD K , BAUER W , et al. Three-dimensional printing of transparent fused silica glass[J]. Nature, 2017, 544 (7650): 337- 339.
doi: 10.1038/nature22061
18
XING Z W , LIU W W , CHEN Y , et al. Effect of plasticizer on the fabrication and properties of alumina ceramic by stereolithography-based additive manufacturing[J]. Ceramics International, 2018, 44 (16): 19939- 19944.
doi: 10.1016/j.ceramint.2018.07.259
19
GENTRY S P , HALLORAN J W . Absorption effects in photopolymerized ceramic suspensions[J]. Journal of the European Ceramic Society, 2013, 33 (10): 1989- 1994.
doi: 10.1016/j.jeurceramsoc.2013.03.004
20
LAKHDAR Y , TUCK C , BINNER J , et al. Additive manufacturing of advanced ceramic materials[J]. Progress in Materials Science, 2021, 116 (2-3): 100736.
21
CHARTIER T , DUPAS C , LASGORCEIX M , et al. Additive manufacturing to produce complex 3D ceramic parts[J]. Journal of Ceramic Science and Technology, 2015, 6 (2): 95- 104.
22
HALLORAN J W . Ceramic stereolithography: additive manufacturing for ceramics by photopolymerization[J]. Annual Review of Materials Research, 2016, 46 (46): 19- 40.
YANG F , LIAN Q , WU X Q , et al. Ceramics fabrication using rapid prototyping of mask projection stereolithography[J]. Journal of Mechanical Engineering, 2017, 53 (7): 138- 144.
24
YAO Y X , QIN W , XING B H , et al. High performance hydroxyapatite ceramics and a triply periodic minimum surface structure fabricated by digital light processing 3D printing[J]. Journal of Advanced Ceramics, 2021, 10 (1): 39- 48.
doi: 10.1007/s40145-020-0415-4
25
HUANG R J , JIANG Q G , WU H D , et al. Fabrication of complex shaped ceramic parts with surface-oxidized Si3N4 powder via digital light processing based stereolithography method[J]. Ceramics International, 2019, 45 (4): 5158- 5162.
doi: 10.1016/j.ceramint.2018.11.116
26
LI W L , LIU W W , QI F , et al. Determination of micro-mechanical properties of additive manufactured alumina ceramics by nanoindentation and scratching[J]. Ceramics International, 2019, 45 (8): 10612- 10618.
doi: 10.1016/j.ceramint.2019.02.128
27
LI W L , NIE J B , LI M S , et al. Additive manufactured 3Y-TZP ceramics: study of micromechanical behavior by nanoindentation and microscratch method[J]. International Journal of Applied Ceramic Technology, 2020, 17 (3): 854- 863.
doi: 10.1111/ijac.13459
28
LI W L , LIU W W , LI M S , et al. Nanoscale plasticity behavior of additive-manufactured zirconia-toughened alumina ceramics during nanoindentation[J]. Materials, 2020, 13 (4): 1006.
doi: 10.3390/ma13041006
29
LIU W W , LI M S , NIE J B , et al. Synergy of solid loading and printability of ceramic paste for optimized properties of alumina via stereolithography-based 3D printing[J]. Journal of Materials Research and Technology, 2020, 9 (5): 11476- 11483.
doi: 10.1016/j.jmrt.2020.08.038
LIANG D , HE R J , FANG D N . Development of additive manufacturing of ceramics[J]. Advanced Ceramics, 2017, 38 (4): 231- 247.
31
WEI Y H , ZHAO D Y , CAO Q L , et al. Stereolithography-based additive manufacturing of high-performance osteoinductive calcium phosphate ceramics by a digital light-processing system[J]. ACS Biomaterials Science & Engineering, 2020, 6 (3): 1787- 1797.
32
WANG W , SUN J X , GUO B B , et al. Fabrication of piezoelectric nano-ceramics via stereolithography of low viscous and non-aqueous suspensions[J]. Journal of the European Ceramic Society, 2020, 40 (3): 682- 688.
doi: 10.1016/j.jeurceramsoc.2019.10.033
33
LIU X Y , ZOU B , XING H Y , et al. The preparation of ZrO2-Al2O3 composite ceramic by SLA-3D printing and sintering processing[J]. Ceramics International, 2020, 46 (1): 937- 944.
doi: 10.1016/j.ceramint.2019.09.054
34
ZHANG S , SHA N , ZHAO Z . Surface modification of α-Al2O3 with dicarboxylic acids for the preparation of UV-curable ceramic suspensions[J]. Journal of the European Ceramic Society, 2017, 37 (4): 1607- 1616.
doi: 10.1016/j.jeurceramsoc.2016.12.013
35
SONG S Y , PARK M S , LEE D , et al. Optimization and characterization of high-viscosity ZrO2 ceramic nanocomposite resins for supportless stereolithography[J]. Materials & Design, 2019, 180, 107960.
36
CHEN Z W , LI J J , LIU C B , et al. Preparation of high solid loading and low viscosity ceramic slurries for photopolymerization-based 3D printing[J]. Ceramics International, 2019, 45 (9): 11549- 11557.
doi: 10.1016/j.ceramint.2019.03.024
37
JOHANSSON E , LIDSTROM O , JOHANSSON J , et al. Influence of resin composition on the defect formation in alumina manufactured by stereolithography[J]. Materials, 2017, 10 (2): 138.
doi: 10.3390/ma10020138
38
CAMERON T , ALEXANDER L Y , JOHN F F . Springer handbook of experimental fluid mechanics[M]. Berlin, Heidelberg: Springer, 2007.
39
LI H , LIU Y S , LI W B , et al. The effect of sintering on the properties of calcium oxide promoted alumina-based ceramic cores via 3D printing[J]. Materials Chemistry and Physics, 2021, 263, 124443.
doi: 10.1016/j.matchemphys.2021.124443
40
LI H , LIU Y S , LIU Y S , et al. Influence of debinding holding time on mechanical properties of 3D-printed alumina ceramic cores[J]. Ceramics International, 2021, 47 (4): 4884- 4894.
doi: 10.1016/j.ceramint.2020.10.061
41
LI H , LIU Y S , LIU Y S , et al. Evolution of the microstructure and mechanical properties of stereolithography formed alumina cores sintered in vacuum[J]. Journal of the European Ceramic Society, 2020, 40 (14): 4825- 4836.
doi: 10.1016/j.jeurceramsoc.2019.11.047
42
WOZNIAK M , DE HAZAN Y , GRAULE T , et al. Rheology of UV curable colloidal silica dispersions for rapid prototyping applications[J]. Journal of the European Ceramic Society, 2011, 31 (13): 2221- 2229.
doi: 10.1016/j.jeurceramsoc.2011.05.004
43
ADAKE C V , BHARGAVA P , GANDHI P . Effect of surfactant on dispersion of alumina in photopolymerizable monomers and their UV curing behavior for microstereolithography[J]. Ceramics International, 2015, 41 (4): 5301- 5308.
doi: 10.1016/j.ceramint.2014.12.066
44
SUN J X , BINNER J , BAI J M . Effect of surface treatment on the dispersion of nano zirconia particles in non-aqueous suspensions for stereolithography[J]. Journal of the European Ceramic Society, 2019, 39 (4): 1660- 1667.
doi: 10.1016/j.jeurceramsoc.2018.10.024
45
JANG K J , KANG J H , FISHER J G . Effect of the volume fraction of zirconia suspensions on the microstructure and physical properties of products produced by additive manufacturing[J]. Dental Materials, 2019, 35 (5): e97- e106.
doi: 10.1016/j.dental.2019.02.001
46
TOMECKOVA V , HALLORAN JW . Flow behavior of polymerizable ceramic suspensions as function of ceramic volume fraction and temperature[J]. Journal of the European Ceramic Society, 2011, 31 (14): 2535- 2542.
doi: 10.1016/j.jeurceramsoc.2011.01.019
47
SOKOLOV P S , KOMISSARENKO D A , DOSOVITSKⅡ G A , et al. Rheological properties of zirconium oxide suspensions in acrylate monomers for use in 3D printing[J]. Glass and Ceramics, 2018, 75 (1): 55- 59.
48
ZHENG T Q , WANG W , SIN J X , et al. Development and evaluation of Al2O3-ZrO2 composite processed by digital light 3D printing[J]. Ceramics International, 2020, 46 (7): 8682- 8688.
doi: 10.1016/j.ceramint.2019.12.102
49
SCHMIDT J , ELSAYED H , BERNARDO E , et al. Digital light processing of wollastonite-diopside glass-ceramic complex structures[J]. Journal of the European Ceramic Society, 2018, 38 (13): 4580- 4584.
doi: 10.1016/j.jeurceramsoc.2018.06.004
50
CHEN Z W , LIU C B , LI J J , et al. Mechanical properties and microstructures of 3D printed bulk cordierite parts[J]. Ceramics International, 2019, 45 (15): 19257- 19267.
doi: 10.1016/j.ceramint.2019.06.174
51
WANG Y Y , WANG Z Y , LIU S H , et al. Additive manufacturing of silica ceramics from aqueous acrylamide based suspension[J]. Ceramics International, 2019, 45 (17): 21328- 21332.
doi: 10.1016/j.ceramint.2019.07.118
52
WU H D , LIU W , HE R X , et al. Fabrication of dense zirconia-toughened alumina ceramics through a stereolithography-based additive manufacturing[J]. Ceramics International, 2017, 43 (1): 968- 972.
doi: 10.1016/j.ceramint.2016.10.027
53
LEE Y H , LEE J B , MAENG W Y , et al. Photocurable ceramic slurry using solid camphor as novel diluent for conventional digital light processing (DLP) process[J]. Journal of the European Ceramic Society, 2019, 39 (14): 4358- 4365.
doi: 10.1016/j.jeurceramsoc.2019.05.069
54
LI K H , ZHAO Z . The effect of the surfactants on the formulation of UV-curable SLA alumina suspension[J]. Ceramics International, 2017, 43 (6): 4761- 4767.
doi: 10.1016/j.ceramint.2016.11.143
55
ZHANG J J , WEI L Y , MENG X X , et al. Digital light processing-stereolithography three-dimensional printing of yttria-stabilized zirconia[J]. Ceramics International, 2020, 46 (7): 8745- 8753.
doi: 10.1016/j.ceramint.2019.12.113
56
KOMISSARENKO D A , SOKOLOV P S , EVSTIGNEEVA A D , et al. Rheological and curing behavior of acrylate-based suspensions for the DLP 3D printing of complex zirconia parts[J]. Materials, 2018, 11 (12): 2350.
doi: 10.3390/ma11122350
57
LI X B , ZHONG H , ZHANG J X , et al. Dispersion and properties of zirconia suspensions for stereolithography[J]. International Journal of Applied Ceramic Technology, 2020, 17 (1): 239- 247.
58
CHEN Z , SUN X H , SHANG Y P , et al. Dense ceramics with complex shape fabricated by 3D printing: a review[J]. Journal of Advanced Ceramics, 2021, 10 (2): 195- 218.
59
LI X B , ZHONG H , ZHANG J X , et al. Fabrication of zirconia all-ceramic crown via DLP-based stereolithography[J]. International Journal of Applied Ceramic Technology, 2020, 17 (3): 844- 853.
60
LI X B , ZHONG H , ZHANG J X , et al. Powder characteristics on the rheological performance of resin-based zirconia suspension for stereolithography[J]. Journal of Inorganic Materials, 2019, 35 (2): 231- 235.
NIE G L , LI Y H , SHENG P F , et al. Effect of surface modification on performance of Al2O3 ceramics prepared by a stereolithography-based 3D printing[J]. China Building Materials Science & Technology, 2021, 30 (3): 79- 83.
62
SCHWENTENWEIN M , HOMA J . Additive manufacturing of dense alumina ceramics[J]. International Journal of Applied Ceramic Technology, 2015, 12 (1): 1- 7.
63
HINCZEWSKI C , CORBEL S , CHARTIER T . Ceramic suspensions suitable for stereolithography[J]. Journal of the European Ceramic Society, 1998, 18 (6): 583- 590.
64
LEWIS J A . Colloidal processing of ceramics[J]. Journal of the American Ceramic Society, 2000, 83 (10): 2341- 2359.
65
DUFAUD O , MARCHAL P , CORBEL S . Rheological properties of PZT suspensions for stereolithography[J]. Journal of the European Ceramic Society, 2002, 22 (13): 2081- 2092.
66
M'BARKI A , BOCQUET L , STEVENSON A . Linking rheology and printability for dense and strong ceramics by direct ink writing[J]. Scientific Reports, 2017, 7, 6017.
67
ZENG Y , YAN Y Z , YAN H F , et al. 3D printing of hydroxyapatite scaffolds with good mechanical and biocompatible properties by digital light processing[J]. Journal of Materials Science, 2018, 53 (9): 6291- 6301.
68
ALAZZAWI M K , ROHN C L , BEYOGLU B , et al. Rheological assessment of cohesive energy density of highly concentrated stereolithography suspensions[J]. Ceramics International, 2020, 46 (6): 8473- 8477.
69
HE L , SONG X . Supportability of a high-yield-stress slurry in a new stereolithography-based ceramic fabrication process[J]. JOM, 2018, 70 (3): 407- 412.
70
HERSCHEL W H , BULKLEY R . Konsistenzmessungen von gummi-benzollösungen[J]. Kolloid-Zeitschrift, 1926, 39 (4): 291- 300.
71
WU X Q , LIAN Q , LI D C , et al. Influence of boundary masks on dimensions and surface roughness using segmented exposure in ceramic 3D printing[J]. Ceramics International, 2019, 45 (3): 3687- 3697.
72
LASGORCEIX M , CHAMPION E , CHARTIER T . Shaping by microstereolithography and sintering of macro-micro-porous silicon substituted hydroxyapatite[J]. Journal of the European Ceramic Society, 2016, 36 (4): 1091- 1101.
73
SCHWARZER E , GOTZ M , MARKOVA D , et al. Lithography-based ceramic manufacturing (LCM)-viscosity and cleaning as two quality influencing steps in the process chain of printing green parts[J]. Journal of the European Ceramic Society, 2017, 37 (16): 5329- 5338.
74
BARNES H A . Shear-thickening (dilatancy) in suspensions of nonaggregating solid particles dispersed in newtonian liquids[J]. Journal of Rheology, 1989, 33 (2): 329- 366.