Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (7): 1-17    DOI: 10.11868/j.issn.1001-4381.2021.000838
  陶瓷增材制造专栏 本期目录 | 过刊浏览 | 高级检索 |
熔体自生陶瓷激光直接能量沉积增材制造研究进展
牛方勇, 于学鑫, 赵紫渊, 赵大可, 黄云飞, 马广义, 吴东江()
大连理工大学 机械工程学院, 辽宁 大连 116024
Research progress in additive manufacturing of melt growth ceramics by laser directed energy deposition
Fangyong NIU, Xuexin YU, Ziyuan ZHAO, Dake ZHAO, Yunfei HUANG, Guangyi MA, Dongjiang WU()
School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
全文: PDF(23656 KB)   HTML ( 18 )  
输出: BibTeX | EndNote (RIS)      
摘要 

熔体自生陶瓷是一种原料经熔化凝固获得组织组成的新型陶瓷材料,原子共用的洁净高强度结合界面使其具有接近熔点的优异高温力学性能及组织稳定性,在未来高推重比航空发动机及重型燃气轮机热端部件领域展现了巨大的应用潜力。激光直接能量沉积技术能够有效克服熔体自生陶瓷传统制备方法在周期、能耗及结构复杂度等方面的局限,为直接增材制造熔体自生陶瓷构件提供了新的解决方案,成为国内外研究热点。本文在介绍激光直接能量沉积技术工艺原理的基础上,总结了国内外利用该技术制备的不同熔体自生陶瓷的微观组织特征及其主要力学性能,并综合论述了目前针对微观组织及开裂行为调控所开展的主要研究。基于现有研究进展,对该领域的发展趋势和需要进一步解决的关键科学问题进行了探讨,指出抑制开裂与改善组织性能是目前面临的首要问题,材料和新工艺的发展是突破现有瓶颈、推动熔体自生陶瓷激光直接能量沉积技术发展和应用的关键。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
牛方勇
于学鑫
赵紫渊
赵大可
黄云飞
马广义
吴东江
关键词 陶瓷增材制造激光直接能量沉积熔体自生    
Abstract

Melt growth ceramics (MGC) is a new type of ceramic material with microstructure obtained by melting and solidification of raw materials. The clean and high-strength bonding interface shared by atoms makes it have excellent high-temperature mechanical properties and microstructure stability close to the melting point. It shows great application potential in the field of high thrust weight ratio aero-engine and heavy gas turbine hot end components in the future. Laser directed energy deposition (LDED) technology can effectively overcome the limitations of traditional preparation methods of MGC in terms of cycle, energy consumption and structural complexity. It provides a new solution for direct additive manufacturing of MGC components, and has become a research hotspot at home and abroad. Based on the introduction of the process principle of LDED technology, the microstructure characteristics and properties of different MGCs prepared by this technology at home and abroad were summarized in this paper, and the main research on the control of microstructure and cracking behaviour was comprehensively discussed. Based on the existing research progress, the development trend and key scientific problems to be further solved in this field were discussed. It was pointed out that inhibiting cracking and improving microstructure and properties are the primary problems faced at present. The development of materials and new processes is the key to breaking through the existing bottleneck and promote the development and application of MGC-LDED.

Key wordsceramics    additive manufacturing    laser    directed energy deposition    melt growth
收稿日期: 2021-08-31      出版日期: 2022-07-18
中图分类号:  TH145.1  
基金资助:国家自然科学基金项目(51805070);国家自然科学基金项目(51790172);中央高校基本科研业务项目(DUT19RC(3)060);辽宁省自然科学基金(2019-ZD-0010);辽宁省自然科学基金(2020-BS-057);深圳市技术攻关重点项目(JSGG20210420091802007)
通讯作者: 吴东江     E-mail: djwudut@dlut.edu.cn
作者简介: 吴东江(1964—), 男, 教授, 博士, 主要从事陶瓷/金属激光增材制造、激光精密加工方面的研究, 联系地址: 辽宁省大连市甘井子区凌工路2号大连理工大学机械工程学院(116024), E-mail: djwudut@dlut.edu.cn
引用本文:   
牛方勇, 于学鑫, 赵紫渊, 赵大可, 黄云飞, 马广义, 吴东江. 熔体自生陶瓷激光直接能量沉积增材制造研究进展[J]. 材料工程, 2022, 50(7): 1-17.
Fangyong NIU, Xuexin YU, Ziyuan ZHAO, Dake ZHAO, Yunfei HUANG, Guangyi MA, Dongjiang WU. Research progress in additive manufacturing of melt growth ceramics by laser directed energy deposition. Journal of Materials Engineering, 2022, 50(7): 1-17.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000838      或      http://jme.biam.ac.cn/CN/Y2022/V50/I7/1
Fig.1  LDED工艺原理
Material Microstructure characteristics Microhardness Fracture toughness/(MPa·m1/2) Flexural strength/MPa Relative density/%
Al2O3 [35] Directionally grown α-Al2O3 coarse 15.5-17 GPa 2.1 94
Al2O3 [36] columnar grains and intergranular 85
Al2O3 [37] two-dimensional structure 1700-2300HV0.2 2.7
Al2O3[34] 18.91 GPa 3.55 210 99.5
ZrO2[29] t-ZrO2 interlayer banded structure and t-ZrO2 embedded in c-ZrO2 matrix in convex mirror shape 19.8 GPa 98.7
Al2O3-ZrO2[38] Primary phase Al2O3 or ZrO2 and 19 GPa 3.7
Al2O3-ZrO2 [32] intergranular eutectic matrix 21.4 GPa 4.61
Al2O3-ZrO2 [39] 1680-1880HV 3.8 208
Al2O3-ZrO2 [40] 1972HV 5.91 237 98
Al2O3-TiO2 [41] Primary α-Al2O3 phase and continuously distributed Al6Ti2O13 matrix 1670HV 3.97 200
Al2O3-ZrO2 eutectics [42] Banded structure and eutectic colony 16.7 GPa 4.5
Al2O3-YAG eutectics [30] composed of fine eutectic structure 100
Al2O3-YAG eutectics [43] 17.35 GPa 3.14
Al2O3/ZrO2/YAG eutectics[44] (18.9±0.95) GPa 3.84±0.44 98
Al2O3/GdAlO3/ZrO2 eutectics[45]
Spinel[46] MgAl2O4 phase and intergranular Ca and Si rich phase 1400HV 2.5
Piezoelectric ceramics[47] Fine and uniform structure composed of perovskite phase and pyrochlore phase (358±28)HV 90
Calcium phosphate bioceramics[28] α-tricalcium phosphate (α-TCP) matrix and nucleated tetracalcium phosphate (TTCP) grains
Table 1  LDED制备的不同MGC材料的组织及性能
Fig.2  Al2O3陶瓷样件及典型组织特征
(a)成形样件[34-37];(b)柱状晶组织[35];(c)柱状晶表面二维组织[34]
Fig.3  Al2O3-ZrO2复合陶瓷
(a)典型样件[38-39];(b)亚共晶组织[48];(c)共晶组织[42]
Fig.4  Al2O3/GdAlO3/ZrO2三元共晶陶瓷[45]
(a)典型样件;(b)带状组织宏观形貌;(c)带状组织微观特征;(d)共晶团组织特征;(e)晶团内不规则共晶组织
Fig.5  铝镁尖晶石陶瓷
(a)典型样件[27];(b)微观组织[27];(c)透光特性[55]
Fig.6  磷酸钙陶瓷[28]
(a)典型样件;(b)微观组织;(c)生物特性
Method Material Effect
Increase heat input [32] Al2O3-ZrO2 Columnar dendrites become shorter, banded structure thickness increased
Increase scanning speed[31, 45] Al2O3/GdAlO3/ZrO2 eutectics Banded structure thickness decreased, eutectic spacing decreased
Increase laser power[27] Spinel Porosity decreased enhanced, grain coarsened, light transmittance enhanced
Substrate water cooling[43] Al2O3-YAG Eutectic spacing decreased, hardness increased, fracture toughness increased
Ultrasound assisted [26] Al2O3-ZrO2 Grain refinement, hardness improved, wear resistance improved
Ultrasound assisted [60] Al2O3-ZrO2 eutectics Eutectic spacing decreased, fracture toughness increased
Ultrasound assisted [61] Al2O3-YAG Grain refinement, hardness improved, wear resistance improved
C fiber doping[62] Al2O3-ZrO2 eutectics Eutectic spacing decreased, fracture toughness increased
SiCp doping[63] Al2O3-ZrO2 Porosity decreased, eutectic size decreased
Heat treatment[35] Al2O3 Density increased, microhardness increased, fracture toughness increased
Heat treatment[29] YSZ From dark brown to dark yellow
Heat treatment[31] Al2O3/GdAlO3/ZrO2 eutectics Eutectic structure coarsened, banded structure disappeared, microstructure uniformity improved
Table 2  MGC-LDED组织及性能调控方法
Fig.7  外场辅助LDED
(a)超声辅助成形Al2O3-ZrO2共晶陶瓷[60];(b)水冷辅助成形Al2O3-YAG共晶陶瓷[43]
Control method Material Control effect
Increase laser power [26] Al2O3-ZrO2 The crack length and opening width are reduced
Change scanning direction [64] Al2O3 When the scanning angle is 45° and 67°, the sample has no obvious cracks
Increase laser power[29] YSZ The number of cracks decreased first and then increased
Increase scanning speed and Z-increment[67] Al2O3 Higher scanning speed and larger interlayer lift are easier to obtain crack free samples
Substrate heating[42] Al2O3-ZrO2 20 mm×8 mm×8 mm crack free samples
Substrate heating[30-31] Al2O3-YAG Al2O3-YAG samples without cracks were prepared
Substrate heating[49] Al2O3-ZrO2 The grain is refined and the cracks are obviously reduced
ZrO2doping[68] Al2O3-ZrO2 The eutectic ratio has the best crack suppression effect
SiCP doping[63] Al2O3-ZrO2 Cracks decreased significantly
ZrO2doping [39] Al2O3-ZrO2 When the ZrO2 content is 10%, the crack is suppressed
Ultrasound assisted [26] Al2O3-ZrO2 Conducive to crack suppression, crack-free 7 mm×7 mm×10 layers sample was fabricated
Table 3  MGC开裂抑制方法
Fig.8  材料复合化裂纹抑制效果[63, 67, 69]
(a)SiCP掺杂;(b)ZrO2掺杂;(c)TiO2掺杂
1 傅恒志. 航空航天材料定向凝固[M]. 北京: 科学出版社, 2015: 5- 15.
1 FU H Z . Directional solidification processing of aero-high temperature materials[M]. Beijing: Science Press, 2015: 5- 15.
2 刘大响. 一代新材料, 一代新型发动机: 航空发动机的发展趋势及其对材料的需求[J]. 材料工程, 2017, 45 (10): 1- 5.
doi: 10.11868/j.issn.1001-4381.2017.100001
2 LIU D X . One generation of new material, one generation of new type engine: development trend of aero-engine and its requirements for materials[J]. Journal of Materials Engineering, 2017, 45 (10): 1- 5.
doi: 10.11868/j.issn.1001-4381.2017.100001
3 PADURE N P . Advanced structural ceramics in aerospace propulsion[J]. Nature Materials, 2016, 15 (8): 804- 809.
doi: 10.1038/nmat4687
4 POLLOCK T M . Alloy design for aircraft engines[J]. Nature Materials, 2016, 15 (8): 809- 815.
doi: 10.1038/nmat4709
5 张健, 楼琅洪, 李辉. 重型燃气轮机定向结晶叶片的材料与制造工艺[J]. 中国材料进展, 2013, 32 (1): 12- 23.
5 ZHANG J , LOU L H , LI H . Materials and processing technology of directionally solidified blade in heavy duty industrial gas turbines[J]. Materials China, 2013, 32 (1): 12- 23.
6 苏海军, 王恩缘, 任群, 等. 超高温氧化物共晶复合陶瓷研究进展[J]. 中国材料进展, 2018, 37 (6): 437- 447.
6 SU H J , WANG E Y , REN Q , et al. Research progress in ultra-high temperature oxide eutectic composite ceramics[J]. Materials China, 2018, 37 (6): 437- 447.
7 NAKAGAWA N , OHTSUBO H , MITANI A , et al. High temperature strength and thermal stability for melt growth composite[J]. Journal of the European Ceramic Society, 2005, 25 (8): 1251- 1257.
doi: 10.1016/j.jeurceramsoc.2005.01.030
8 WAKU Y , NAKAGAWA N , WAKAMOTO T , et al. A ductile ceramic eutectic composite with high strength at 1873 K[J]. Nature, 1997, 389 (6646): 49- 52.
doi: 10.1038/37937
9 WAKU Y . A new ceramic eutectic composite with high strength at 1873 K[J]. Advanced Materials, 1998, 10 (8): 615- 617.
doi: 10.1002/(SICI)1521-4095(199805)10:8<615::AID-ADMA615>3.0.CO;2-T
10 SAYIR A , FARMER S C . The effect of the microstructure on mechanical properties of directionally solidified Al2O3/ZrO2 (Y2O3) eutectic[J]. Acta Materialia, 2000, 48 (18/19): 4691- 4697.
11 PARLIER M , VALLE R , PERRIERE L , et al. Potential of directionally solidified eutectic ceramics for high temperature applications[J]. AerospaceLab, 2011, (3): 1- 13.
12 FUJIMOTO S, OKITA Y. Experimental and numerical research on application of MGC material for high temperature turbine nozzles[C]// Power for Land, Sea, and Air. American Society of Mechanical Engineers. Reno, Nevada, USA: ASME Turbo Expo, 2005, 46997: 323-331.
13 LLORCA J , ORERA V M . Directionally solidified eutectic ceramic oxides[J]. Progress in Materials Science, 2006, 51 (6): 711- 809.
14 GU D , SHI X , POPRAWE R , et al. Material-structure-performance integrated laser-metal additive manufacturing[J]. Science, 2021, 372 (6545): 1- 15.
15 NGO T D , KASHANI A , IMBALZANO G , et al. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges[J]. Composites: Part B, 2018, 143, 172- 196.
16 PFEIFFER S , FLORIO K , PUCCIO D , et al. Direct laser additive manufacturing of high performance oxide ceramics: a state-of-the-art review[J]. Journal of the European Ceramic Society, 2021, 41 (13): 6087- 6114.
17 CHEN Z W , LI Z Y , LI J J , et al. 3D printing of ceramics: a review[J]. Journal of the European Ceramic Society, 2019, 39 (4): 661- 687.
18 WU J M , LI M , LIU S S , et al. Selective laser sintering of porous Al2O3-based ceramics using both Al2O3 and SiO2 poly-hollow microspheres as raw materials[J]. Ceramics International, 2021, 47 (11): 15313- 15318.
19 陈鹏, 朱小刚, 吴甲民, 等. 基于SLS/CIP工艺SiC陶瓷的制备及其性能[J]. 材料工程, 2019, 47 (3): 87- 93.
19 CHEN P , ZHU X G , WU J M , et al. Preparation and properties of SiC ceramics via SLS/CIP process[J]. Journal of Materials Engineering, 2019, 47 (3): 87- 93.
20 ZHANG K , HE R , DING G , et al. Effects of fine grains and sintering additives on stereolithography additive manufactured Al2O3 ceramic[J]. Ceramics International, 2021, 47 (2): 2303- 2310.
21 HE R , ZHOU N , ZHANG K , et al. Progress and challenges towards additive manufacturing of SiC ceramic[J]. Journal of Advanced Ceramics, 2021, 10 (4): 637- 674.
22 RASAKI S A , XIONG D , XIONG S , et al. Photopolymerization-based additive manufacturing of ceramics: a systematic review[J]. Journal of Advanced Ceramics, 2021, 10 (3): 442- 471.
23 SHAHZAD A , LAZOGLU I . Direct ink writing (DIW) of structural and functional ceramics: recent achievements and future challenges[J]. Composites: Part B, 2021, 225, 109249.
24 ZHU Z , GONG Z , QU P , et al. Additive manufacturing of thin electrolyte layers via inkjet printing of highly-stable ceramic inks[J]. Journal of Advanced Ceramics, 2021, 10 (2): 279- 290.
25 CONZELMANN N A , GORJAN L , SARRAF F , et al. Manufacturing complex Al2O3 ceramic structures using consumer-grade fused deposition modelling printers[J]. Rapid Prototyping Journal, 2020, 26 (6): 1035- 1048.
26 HU Y B , NING F D , CONG W L , et al. Ultrasonic vibration-assisted laser engineering net shaping of ZrO2-Al2O3 bulk parts: effects on crack suppression, microstructure, and mechanical properties[J]. Ceramics International, 2018, 44 (3): 2752- 2760.
27 PAPPAS J M , THAKUR A R , KINZEL E C , et al. Direct 3D printing of transparent magnesium aluminate spinel ceramics[J]. Journal of Laser Applications, 2021, 33 (1): 012018.
28 COMESANA R , LUSQUINOS F , DEL J D , et al. Calcium phosphate grafts produced by rapid prototyping based on laser cladding[J]. Journal of the European Ceramic Society, 2011, 31 (1/2): 29- 41.
29 FAN Z Q , ZHAO Y T , LU M Y , et al. Yttria stabilized zirconia (YSZ) thin wall structures fabricated using laser engineered net shaping (LENS)[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105 (11): 4491- 4498.
30 SU H J , ZHANG J , LIU L , et al. Rapid growth and formation mechanism of ultrafine structural oxide eutectic ceramics by laser direct forming[J]. Applied Physics Letters, 2011, 99 (22): 221913.
31 LIU H F , SU H J , SHEN Z L , et al. Preparation of large-size Al2O3/GdAlO3/ZrO2 ternary eutectic ceramic rod by laser directed energy deposition and its microstructure homogenization mechanism[J]. Journal of Materials Science & Technology, 2021, 85, 218- 223.
32 LI F Z , ZHANG X W , SUI C Y , et al. Microstructure and mechanical properties of Al2O3-ZrO2 ceramic deposited by laser direct material deposition[J]. Ceramics International, 2018, 44 (15): 18960- 18968.
33 NIU F Y , YAN S , MA G Y , et al. Directed energy deposition for ceramic additive manufacturing[J]. ASM Handbook, 2019, 24, 132- 151.
34 NIU F Y , WU D J , LU F , et al. Microstructure and macro properties of Al2O3 ceramics prepared by laser engineered net shaping[J]. Ceramics International, 2018, 44 (12): 14303- 14310.
35 BALLA V K , BOSE S , BANDYOPADHYAY A . Processing of bulk alumina ceramics using laser engineered net shaping[J]. International Journal of Applied Ceramic Technology, 2008, 5 (3): 234- 242.
36 李邦帅. 氧化铝陶瓷薄壁件激光单道成形的形貌和性能研究[D]. 长沙: 湖南大学, 2016.
36 LI B S. Study on morphology and strength of alumina thin-wall parts in single-track by direct material deposition[D]. Changsha: Hunan University, 2016.
37 LI Y Z , HU Y B , CONG W L , et al. Additive manufacturing of alumina using laser engineered net shaping: effects of deposition variables[J]. Ceramics International, 2017, 43 (10): 7768- 7775.
38 HU Y B , WANG H , CONG W L , et al. Directed energy deposition of zirconia-toughened alumina ceramic: novel microstructure formation and mechanical performance[J]. Journal of Manufacturing Science and Engineering, 2020, 142 (2): 021005.
39 PAPPAS J M , THAKUR A R , DONG X . Effects of zirconia doping on additively manufactured alumina ceramics by laser direct deposition[J]. Materials & Design, 2020, 192, 108711.
40 WU D J , SAN J D , NIU F Y , et al. Directed laser deposition of Al2O3-ZrO2 melt-grown composite ceramics with multiple composition ratios[J]. Journal of Materials Science, 2020, 55 (16): 6794- 6809.
41 WU D J , HUANG Y F , NIU F Y , et al. Effects of TiO2doping on microstructure and properties of directed laser deposition alumina/aluminum titanate composites[J]. Virtual and Physical Prototyping, 2019, 14 (4): 371- 381.
42 LIU Z , SONG K , GAO B , et al. Microstructure and mechanical properties of Al2O3/ZrO2directionally solidified eutectic ceramic prepared by laser 3D printing[J]. Journal of Materials Science & Technology, 2016, 32 (4): 320- 325.
43 WU D J , LIU H C , LU F , et al. Al2O3-YAG eutectic ceramic prepared by laser additive manufacturing with water-cooled substrate[J]. Ceramics International, 2019, 45 (3): 4119- 4122.
44 FAN Z Q , ZHAO Y T , TAN Q Y , et al. Nanostructured Al2O3-YAG-ZrO2 ternary eutectic components prepared by laser engineered net shaping[J]. Acta Materialia, 2019, 170, 24- 37.
45 LIU H F , SU H J , SHEN Z L , et al. One-step additive manufacturing and microstructure evolution of melt-grown Al2O3/GdAlO3/ZrO2 eutectic ceramics by laser directed energy deposition[J]. Journal of the European Ceramic Society, 2021, 41 (6): 3547- 3558.
46 PAPPAS J M , KINZEL E C , DONG X Y . Laser direct deposited transparent magnesium aluminate spinel ceramics[J]. Manufacturing Letters, 2020, 24, 92- 95.
47 BERNAR S A , BALLA V K , BOSE S , et al. Direct laser processing of bulk lead zirconate titanate ceramics[J]. Materials Science and Engineering: B, 2010, 172 (1): 85- 88.
48 HU Y B, WANG H, LI Y C, et al. Surface grinding of ZTA parts fabricated by laser engineered net shaping process: effects of ZrO2 content and ultrasonic vibration[C]//Proceeding of the ASME 2018 13th International Manufacturing Science and Engineering Conference. College Station, TX, USA: MSEC 2018, 51388: V004T03A062.
49 THAKUR A R , PAPPAS J M , DONG X Y . Fabrication and characterization of high-purity alumina ceramics doped with zirconia via laser direct deposition[J]. JOM, 2020, 72 (3): 1299- 1306.
50 LI F Z , ZHANG Y . Microstructural characterization of Al2O3-ZrO2 ceramic by laser direct material deposition[J]. Journal of Laser Applications, 2019, 31 (2): 022509.
51 FAN Z , ZHAO Y , TAN Q , et al. New insights into the growth mechanism of 3D-printed Al2O3-Y3Al5O12 binary eutectic composites[J]. Scripta Materialia, 2020, 178, 274- 280.
52 WANG S F , ZHANG J , LUO D W , et al. Transparent ceramics: processing, materials and applications[J]. Progress in Solid State Chemistry, 2013, 41 (1/2): 20- 54.
53 GANESH I . A review on magnesium aluminate (MgAl2O4) spinel: synthesis, processing and applications[J]. International Materials Reviews, 2013, 58 (2): 63- 112.
54 GANESH I , SRINIVAS B , JOHNSON R , et al. Effect of fuel type on morphology and reactivity of combustion synthesised MgAl2O4 powders[J]. British Ceramic Transactions, 2002, 101 (6): 247- 254.
55 PAPPAS J M , DONG X . Direct 3D Printing of silica doped transparent magnesium aluminate spinel ceramics[J]. Materials, 2020, 13 (21): 4810.
56 PAPPAS J M , DONG X . Porosity characterization of additively manufactured transparent MgAl2O4 spinel by laser direct deposition[J]. Ceramics International, 2020, 46 (5): 6745- 6755.
57 张艳丽. 生物陶瓷材料及其发展动态[J]. 中国陶瓷, 2007, 43 (3): 14- 17.
57 ZHANG Y L . Bioceramic materials and their development dynamics[J]. China Ceramics, 2007, 43 (3): 14- 17.
58 YOUNGER E M , CHAPMAN M W . Morbidity at bone graft donor sites[J]. Journal of Orthopaedic Trauma, 1989, 3 (3): 192- 195.
59 SCHWARTZ C E , MARTHA J F , KOWALSKI P , et al. Prospective evaluation of chronic pain associated with posterior autologous iliac crest bone graft harvest and its effect on postoperative outcome[J]. Health and Quality of Life Outcomes, 2009, 7 (1): 1- 8.
60 YAN S , WU D J , NIU F Y , et al. Al2O3-ZrO2 eutectic ceramic via ultrasonic-assisted laser engineered net shaping[J]. Ceramics International, 2017, 43 (17): 15905- 15910.
61 刘翰超. 外场辅助对成形Al2O3-YAG共晶陶瓷微观组织及力学性能的影响[D]. 大连: 大连理工大学, 2018.
61 LIU H C. Effect of outfield assistant on the microstructure and mechanical properties of net shaping Al2O3-YAG eutectic ceramics[D]. Dalian: Dalian University of Technology, 2018.
62 YAN S , WU D J , HUANG Y F , et al. C fiber toughening Al2O3-ZrO2 eutectic via ultrasonic-assisted directed laser deposition[J]. Materials Letters, 2019, 235, 228- 231.
63 WU D J , LU F , ZHAO D K , et al. Effect of doping SiC particles on cracks and pores of Al2O3-ZrO2 eutectic ceramics fabricated by directed laser deposition[J]. Journal of Materials Science, 2019, 54 (13): 9321- 9330.
64 MISHRA G K , PAUL C P , RAI A K , et al. Experimental investigation on laser directed energy deposition based additive manufacturing of Al2O3 bulk structures[J]. Ceramics International, 2021, 47 (4): 5708- 5720.
65 WU D J , ZHAO D K , NIU F Y , et al. In situ synthesis of melt-grown mullite ceramics using directed laser deposition[J]. Journal of Materials Science, 2020, 55 (27): 12761- 12775.
66 WU D J , ZHAO D K , HUANG Y F , et al. Shaping quality, microstructure, and mechanical properties of melt-grown mullite ceramics by directed laser deposition[J]. Journal of Alloys and Compounds, 2021, 871, 159609.
67 牛方勇. 激光熔化沉积成形Al2O3陶瓷开裂机理及抑制方法[D]. 大连: 大连理工大学, 2017.
67 NIU F Y. Cracking mechanism and suppressing methods for laser melting deposition of Al2O3 ceramic[D]. Dalian: Dalian University of Technology, 2017.
68 WU D J , SAN J D , NIU F Y , et al. Effect and mechanism of ZrO2 doping on the cracking behavior of melt-grown Al2O3 ceramics prepared by directed laser deposition[J]. International Journal of Applied Ceramic Technology, 2020, 17 (1): 227- 238.
69 NIU F Y , WU D J , HUANG Y F , et al. Direct additive manufacturing of large-sized crack-free alumina/aluminum titanate composite ceramics by directed laser deposition[J]. Rapid Prototyping Journal, 2019, 25 (8): 1370- 1378.
[1] 刘岩松, 李文博, 刘永胜, 曾庆丰. 3D打印陶瓷铸型研究与应用进展[J]. 材料工程, 2022, 50(7): 18-29.
[2] 焦晨, 梁绘昕, 叶昀, 张寒旭, 何志静, 杨友文, 沈理达, 侯锋. 光固化生物陶瓷功能化研究进展[J]. 材料工程, 2022, 50(7): 30-39.
[3] 李文利, 周宏志, 刘卫卫, 于海宁, 王晶, 巩磊, 邢占文. 光固化3D打印陶瓷浆料及流变性研究进展[J]. 材料工程, 2022, 50(7): 40-50.
[4] 王权威, 王程冬, 鲁中良, 苗恺, 艾子超, 李涤尘. 面向单晶涡轮叶片的氧化硅基陶瓷型芯快速成形性能[J]. 材料工程, 2022, 50(7): 51-58.
[5] 朱勇强, 杨永强, 王迪, 陈峰, 邓澄, 陈晓君. 纯铜/铜合金高反射材料粉末床激光熔融技术进展[J]. 材料工程, 2022, 50(6): 1-11.
[6] 耿鹏, 陈道兵, 周燕, 文世峰, 闫春泽, 史玉升. 增材制造智能材料研究现状及展望[J]. 材料工程, 2022, 50(6): 12-26.
[7] 邓操, 李瑞迪, 袁铁锤, 牛朋达. Al含量对选区激光熔化AlxCoCrFeNi (x=0.3, 0.5, 0.7, 1.0)的显微组织及纳米压痕的影响[J]. 材料工程, 2022, 50(6): 27-35.
[8] 彭斌意, 刘洋, 郑晓董, 李治国, 李国平, 胡建波, 王永刚. 激光选区熔化颗粒增强钛基复合材料的抗压性能[J]. 材料工程, 2022, 50(6): 36-48.
[9] 刘庆帅, 刘秀波, 刘一帆, 张林, 孟元, 刘怀菲. 陶瓷基高温自润滑复合涂层的制备及摩擦学性能研究进展[J]. 材料工程, 2022, 50(6): 61-74.
[10] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[11] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[12] 梁恩泉, 代宇, 白静, 周亚雄, 彭东剑, 王清正, 康楠, 林鑫. 退火态激光选区熔化成形AlSi10Mg合金组织与力学性能[J]. 材料工程, 2022, 50(5): 156-165.
[13] 戎易, 李海涛, 熊震宇, 程东海, 陈益平, 胡德安, 王德, 刘钊泽, 李文杰. 镁合金/钢异种材料激光熔钎焊接头组织及成形调控[J]. 材料工程, 2022, 50(5): 166-171.
[14] 韩启飞, 符瑞, 胡锦龙, 郭跃岭, 韩亚峰, 王俊升, 纪涛, 卢继平, 刘长猛. 电弧熔丝增材制造铝合金研究进展[J]. 材料工程, 2022, 50(4): 62-73.
[15] 安强, 祁文军, 左小刚. TA15钛合金表面原位合成TiC增强钛基激光熔覆层的组织与耐磨性[J]. 材料工程, 2022, 50(4): 139-146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn