Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (8): 70-81    DOI: 10.11868/j.issn.1001-4381.2021.000852
  综述 本期目录 | 过刊浏览 | 高级检索 |
PEEK复合材料用碳纤维上浆剂研究进展
邢宇, 张代军(), 王成博, 倪洪江, 李军, 陈祥宝
中国航发北京航空材料研究院 先进复合材料重点实验室,北京 100095
Research progress in carbon fiber sizing agents for PEEK composites
Yu XING, Daijun ZHANG(), Chengbo WANG, Hongjiang NI, Jun LI, Xiangbao CHEN
National Key Laboratory of Advanced Composites, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(1106 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

热塑性聚醚醚酮(PEEK)复合材料具有优异的断裂韧性、抗冲击性能、耐疲劳性能,广泛应用于航空航天领域。上浆剂作为碳纤维的核心配套产品,对复合材料界面有重要影响。受分解温度限制,传统热固性碳纤维上浆剂难以满足PEEK复合材料使用,制约高性能PEEK复合材料的研制和应用,因此研制匹配PEEK复合材料的碳纤维上浆剂具有重要意义。本文分析了PEEK复合材料界面特性及上浆剂作用机理;重点介绍了改性PEEK、聚酰亚胺前驱体、聚醚酰亚胺等类型上浆剂的研究进展和成果,并对不同体系上浆剂进行分析总结;最后对PEEK复合材料用碳纤维上浆剂的研制提出建议,对上浆剂绿色环保多功能化趋势进行了展望。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邢宇
张代军
王成博
倪洪江
李军
陈祥宝
关键词 上浆剂PEEK复合材料界面碳纤维    
Abstract

Thermoplastic polyether ether ketone (PEEK) composites are widely used in aerospace field due to their excellent fracture toughness, impact resistance and material versatility. Sizing agent as the core auxiliary product of carbon fiber has an important impact on the interface of composites. Limited by the decomposition temperature, the traditional thermosetting sizing agents are difficult to meet the use of PEEK composites, which restricts the development and application of high-performance PEEK composites. Therefore, it is of great significance to develop a matching carbon fiber sizing agent for PEEK composites. In this paper, the interfacial properties of composites and the action mechanism of sizing agent were analyzed and introduced; the research progress and results of modified PEEK, polyimide precursor and polyetherimide sizing agents were focused, and different systems of sizing agents were analyzed and summarized.Finally, the relevant suggestions on carbon fiber sizing agents for PEEK composites were put forward while the environmental and multi-function developments for sizing agents were prospected.

Key wordssizing agent    PEEK    composites    interface    carbon fiber
收稿日期: 2021-09-05      出版日期: 2022-08-16
中图分类号:  TB332  
通讯作者: 张代军     E-mail: 15810534483@139.com
作者简介: 张代军(1985—),男,研究员,博士,研究方向为树脂基复合材料,联系地址:北京81信箱3分箱(100095),E-mail:15810534483@139.com
引用本文:   
邢宇, 张代军, 王成博, 倪洪江, 李军, 陈祥宝. PEEK复合材料用碳纤维上浆剂研究进展[J]. 材料工程, 2022, 50(8): 70-81.
Yu XING, Daijun ZHANG, Chengbo WANG, Hongjiang NI, Jun LI, Xiangbao CHEN. Research progress in carbon fiber sizing agents for PEEK composites. Journal of Materials Engineering, 2022, 50(8): 70-81.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000852      或      http://jme.biam.ac.cn/CN/Y2022/V50/I8/70
Interfacial property of composites Requirement of sizing agent Optimization method
High processing temperature High temperature resistance Select the sizing agent with rigid molecular structure
Weak interface interaction Increase secondary bonding and mechanical interlocking According to the similarity compatibility principle, optimizing molecular structure design and using nanomaterials reasonable
Crystallinity Maintain the crystallinity of the resin matrix Form chemical bond with carbon fiber and keep similar molecular structure with resin matrix
Table 1  PEEK复合材料界面特性及上浆剂优化方案
Fig.1  sPEEK作用机理示意图[34]
Fig.2  氨基化改性PEEK上浆剂界面作用机理[36]
PEEK modification Molecular structure formula Solvent used Interface performance Ref
sPEEK Deionized water ILSS: 73.8 MPa [33]
DMSO ILSS: 78.6 MPa [34]
DMF ILSS: 33.4% improved [35]
PEEK-NH2 Deionized water ILSS: 88.7 MPa [36]
PEEK-1, 3- dioxolane DMF IFSS: 83.13 MPa [37]
Ph-An-biPEEK THF ILSS: 97.43 MPa IFSS: 103.12 MPa [38]
Table 2  改性PEEK分子结构式
Fig.3  聚酰亚胺上浆碳纤维铺展后形貌[45]
Fig.4  SA-PI上浆剂界面作用机理[46]
Fig.5  修饰后碳纤维表面形貌[48]
Fig.6  PEI-MWCNT混合上浆剂作用机理[58]
Fig.7  PAIK上浆处理示意图[69]
1 陈祥宝, 张宝艳, 邢丽英. 先进树脂基复合材料技术发展及应用现状[J]. 中国材料进展, 2009, 28 (6): 2- 12.
1 CHEN X B , ZHANG B Y , XING L Y . Application and development of advanced polymer matrix composites[J]. Materials China, 2009, 28 (6): 2- 12.
2 YAO S S , JIN F L , RHEE K Y , et al. Recent advances in carbon-fiber-reinforced thermoplastic composites: a review[J]. Composites: Part B, 2018, 142, 241- 250.
doi: 10.1016/j.compositesb.2017.12.007
3 VIEILLE B , ALBOUY W , CHEVALIER L , et al. About the influence of stamping on thermoplastic-based composites for aeronautical applications[J]. Composites: Part B, 2013, 45 (1): 821- 834.
doi: 10.1016/j.compositesb.2012.07.047
4 LU C , XU N , ZHENG T , et al. The optimization of process parameters and characterization of high-performance CF/PEEK composites prepared by flexible CF/PEEK plain weave fabrics[J]. Polymers, 2019, 11 (1): 11010053.
5 DAI G, ZHAN L, GUAN C, et al. Optimization of molding process parameters for CF/PEEK composites based on Taguchi method[J]. Composites and Advanced Materials, 2021, 30: 26349833211001882.
6 THIRUCHITRAMBALAM M , KUMAR D B , SHANMUGAM D , et al. A review on PEEK composites-manufacturing methods, properties and applications[J]. Materials Today: Proceedings, 2020, 33, 1085- 1092.
doi: 10.1016/j.matpr.2020.07.124
7 杨砚超. 基于结晶性聚醚醚酮的碳纤维上浆剂的研究及复合材料界面构筑[D]. 长春: 吉林大学, 2020.
7 YANG Y C. The research of carbon fiber sizing agent based on crystalline polyetheretherketone and composite interface construction[D]. Changchun: Jilin University, 2020.
8 周鹏, 周中波. 复合材料用高性能纤维及热塑性树脂发展现状[J]. 合成纤维, 2015, 44 (8): 21- 26.
8 ZHOU P , ZHOU Z B . Development status in high performance fiber and thermoplastic resin for composites[J]. Synthetic Fiber in China, 2015, 44 (8): 21- 26.
9 王兴刚, 于洋, 李树茂, 等. 先进热塑性树脂基复合材料在航天航空上的应用[J]. 纤维复合材料, 2011, 28 (2): 44- 47.
doi: 10.3969/j.issn.1003-6423.2011.02.011
9 WANG X G , YU Y , LI S M , et al. The research on fiber reinforced thermoplastic composite[J]. Fiber Composites, 2011, 28 (2): 44- 47.
doi: 10.3969/j.issn.1003-6423.2011.02.011
10 COMER A J , RAY D , OBANDE W O , et al. Mechanical characterisation of carbon fibre-PEEK manufactured by laser-assisted automated-tape-placement and autoclave[J]. Composites: Part A, 2015, 69, 10- 20.
doi: 10.1016/j.compositesa.2014.10.003
11 JONES F R . A review of interphase formation and design in fibre-reinforced composites[J]. Journal of Adhesion Science and Technology, 2010, 24 (1): 171- 202.
doi: 10.1163/016942409X12579497420609
12 CHEN C , ZHANG C , ZHAO Z , et al. Effect of fiber reinforcement and fabrication process on the dynamic compressive behavior of PEEK composites[J]. International Journal of Mechanical Sciences, 2019, 155, 170- 177.
doi: 10.1016/j.ijmecsci.2019.02.034
13 ROBERT M , ROY R , BENMOKRANE B . Environmental effects on glass fiber reinforced polypropylene thermoplastic composite laminate for structural applications[J]. Polymer Composites, 2010, 31 (4): 604- 611.
14 SONG W , GU A , LIANG G , et al. Effect of the surface roughness on interfacial properties of carbon fibers reinforced epoxy resin composites[J]. Applied Surface Science, 2011, 257 (9): 4069- 4074.
doi: 10.1016/j.apsusc.2010.11.177
15 LIU F , SHI Z , DONG Y . Improved wettability and interfacial adhesion in carbon fibre/epoxy composites via an aqueous epoxy sizing agent[J]. Composites: Part A, 2018, 112, 337- 345.
doi: 10.1016/j.compositesa.2018.06.026
16 DONG Y , ZHU Y , ZHAO Y , et al. Enhance interfacial properties of glass fiber/epoxy composites with environment-friendly water-based hybrid sizing agent[J]. Composites: Part A, 2017, 102, 357- 367.
doi: 10.1016/j.compositesa.2017.08.016
17 THOMASON J L , ADZIMA L J . Sizing up the interphase: an insider's guide to the science of sizing[J]. Composites: Part A, 2001, 32 (3/4): 313- 321.
18 YUAN X , ZHU B , CAI X , et al. Improved interfacial adhesion in carbon fiber/epoxy composites through a waterborne epoxy resin sizing agent[J]. Journal of Applied Polymer Science, 2017, 134 (17): 44757.
19 AOKI R , YAMAGUCHI A , HASHIMOTO T , et al. Preparation of carbon fibers coated with epoxy sizing agents containing degradable acetal linkages and synthesis of carbon fiber-reinforced plastics (CFRPs) for chemical recycling[J]. Polymer Journal, 2019, 51 (9): 909- 920.
doi: 10.1038/s41428-019-0202-7
20 LI N , CHEN J , LIU H , et al. Effect of preheat treatment on carbon fiber surface properties and fiber/PEEK interfacial behavior[J]. Polymer Composites, 2019, 40 (Suppl 2): 1407- 1415.
21 CHEN J , WANG K , DONG A , et al. A comprehensive study on controlling the porosity of CCF300/PEEK composites by optimizing the impregnation parameters[J]. Polymer Composites, 2018, 39 (10): 3765- 3779.
doi: 10.1002/pc.24407
22 滕凌虹, 曹伟伟, 朱波, 等. 纤维增强热塑性树脂预浸料的制备工艺及研究进展[J]. 材料工程, 2021, 49 (2): 42- 53.
22 TENG L H , CAO W W , ZHU B , et al. Research progress in the preparation of fiber reinforced thermoplastic resin prepreg[J]. Journal of Materials Engineering, 2021, 49 (2): 42- 53.
23 SOUZA F V , ALLEN D H , KIM Y R . Multiscale model for predicting damage evolution in composites due to impact loading[J]. Composites Science and Technology, 2008, 68 (13): 2624- 2634.
doi: 10.1016/j.compscitech.2008.04.043
24 SUN Q , MENG Z , ZHOU G , et al. Multi-scale computational analysis of unidirectional carbon fiber reinforced polymer composites under various loading conditions[J]. Composite Structures, 2018, 196, 30- 43.
doi: 10.1016/j.compstruct.2018.05.025
25 BAO L R , YEE A F . Moisture diffusion and hygrothermal aging in bismaleimide matrix carbon fiber composites: part Ⅱ—woven and hybrid composites[J]. Composites Science and Technology, 2002, 62 (16): 2111- 2119.
doi: 10.1016/S0266-3538(02)00162-8
26 LIU W B , ZHANG S , HAO L F , et al. Properties of carbon fiber sized with poly (phthalazinone ether ketone) resin[J]. Journal of Applied Polymer Science, 2013, 128 (6): 3702- 3709.
doi: 10.1002/app.38605
27 QIAN X , WANG X , OUYANG Q , et al. Surface structural evolvement in electrochemical oxidation and sizing and its effect on carbon fiber/epoxy composites properties[J]. Journal of Reinforced Plastics and Composites, 2012, 31 (15): 999- 1008.
doi: 10.1177/0731684412449895
28 XI X , CHEN Y , WANG J , et al. A multiscale hydrothermal carbon layer modified carbon fiber for composite fabrication[J]. RSC Advances, 2018, 8 (41): 23339- 23347.
doi: 10.1039/C8RA04064H
29 YANG M , KOUTSOS V , ZAISER M . Interactions between polymers and carbon nanotubes: a molecular dynamics study[J]. The Journal of Physical Chemistry B, 2005, 109 (20): 10009- 10014.
doi: 10.1021/jp0442403
30 GUREVITCH I , SREBNIK S . Conformational behavior of polymers adsorbed on nanotubes[J]. The Journal of Chemical Physics, 2008, 128 (14): 144901.
doi: 10.1063/1.2894842
31 MILIK M , ORSZAGH A . Monte Carlo model of a polymer chain attached to an interface in poor solvent conditions[J]. Polymer, 1989, 30 (4): 681- 685.
doi: 10.1016/0032-3861(89)90155-9
32 HAO T , MING Y , ZHANG S , et al. The influences of grafting density and polymer-nanoparticle interaction on crystallisation of polymer composites[J]. Molecular Simulation, 2020, 46 (9): 678- 688.
doi: 10.1080/08927022.2019.1587760
33 SU Y , LIU P , JING D , et al. Improved interfacial adhesion in carbon fiber/poly (ether ether ketone) composites with the sulfonated poly (ether ether ketone) sizing treatment[J]. Journal of Applied Polymer Science, 2021, 138 (45): 51326.
doi: 10.1002/app.51326
34 GAO X , HUANG Z , ZHOU H , et al. Higher mechanical performances of CF/PEEK composite laminates via reducing interlayer porosity based on the affinity of functional s-PEEK[J]. Polymer Composites, 2019, 40 (9): 3749- 3757.
doi: 10.1002/pc.25236
35 HASSAN E , ELAGIB T , MEMON H , et al. Surface modification of carbon fibers by grafting peek-NH2 for improving interfacial adhesion with polyetheretherketone[J]. Materials, 2019, 12 (5): 778.
doi: 10.3390/ma12050778
36 YAN T , YAN F , LI S , et al. Interfacial enhancement of CF/PEEK composites by modifying water-based PEEK-NH2 sizing agent[J]. Composites: Part B, 2020, 199, 108258.
doi: 10.1016/j.compositesb.2020.108258
37 YANG Y , WANG T , WANG S , et al. Strong interface construction of carbon fiber-reinforced PEEK composites: an efficient method for modifying carbon fiber with crystalline PEEK[J]. Macromolecular Rapid Communications, 2020, 41 (24): 2000001.
doi: 10.1002/marc.202000001
38 WANG S , YANG Y , MU Y , et al. Synergy of electrochemical grafting and crosslinkable crystalline sizing agent to enhance the interfacial strength of carbon fiber/PEEK composites[J]. Composites Science and Technology, 2021, 203, 108562.
doi: 10.1016/j.compscitech.2020.108562
39 杨禹, 吕春祥, 王心葵, 等. 纳米SiO2改性炭纤维乳液上浆剂的性能评价[J]. 复合材料学报, 2007, 24 (2): 38- 43.
doi: 10.3321/j.issn:1000-3851.2007.02.008
39 YANG Y , LU C X , WANG X K , et al. Evaluation of emulsion type sizing modified by nano-SiO2 for carbon fiber[J]. Acta Materiae Compositae Sinica, 2007, 24 (2): 38- 43.
doi: 10.3321/j.issn:1000-3851.2007.02.008
40 ZHANG X , FAN X , YAN C , et al. Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide[J]. ACS Applied Materials & Interfaces, 2012, 4 (3): 1543- 1552.
41 LYU H , JIANG N , LI Y , et al. Enhancing CF/PEEK interfacial adhesion by modified PEEK grafted with carbon nanotubes[J]. Composites Science and Technology, 2021, 210, 108831.
doi: 10.1016/j.compscitech.2021.108831
42 YUAN H , ZHANG S , LU C , et al. Improved interfacial adhesion in carbon fiber/polyether sulfone composites through an organic solvent-free polyamic acid sizing[J]. Applied Surface Science, 2013, 279, 279- 284.
doi: 10.1016/j.apsusc.2013.04.085
43 WANG T , JIAO Y , MI Z , et al. PEEK composites with polyimide sizing SCF as reinforcement: preparation, characterization, and mechanical properties[J]. High Performance Polymers, 2020, 32 (4): 383- 393.
doi: 10.1177/0954008319867383
44 WANG T , JIAO Y , MI Z , et al. Improving the interfacial adhesion of carbon fiber/polyether ether ketone composites by polyimide coating[J]. ChemistrySelect, 2020, 5 (19): 5507- 5514.
doi: 10.1002/slct.202001232
45 JUNG H , BAE K J , JIN J , et al. The effect of aqueous polyimide sizing agent on PEEK based carbon fiber composites using experimental techniques and molecular dynamics simulations[J]. Functional Composites and Structures, 2020, 2 (2): 025001.
doi: 10.1088/2631-6331/ab8884
46 YUAN C , LI D , YUAN X , et al. Preparation of semi-aliphatic polyimide for organic-solvent-free sizing agent in CF/PEEK composites[J]. Composites Science and Technology, 2021, 201, 108490.
doi: 10.1016/j.compscitech.2020.108490
47 LI X , ZHAO Y , WANG K . Interfacial crystallization behavior of poly (ether-ether-ketone) on polyimide-modified CCF300 carbon fibers[J]. Polymer Composites, 2020, 41 (6): 2433- 2445.
doi: 10.1002/pc.25547
48 HASSAN E A M , GE D , ZHU S , et al. Enhancing CF/PEEK composites by CF decoration with polyimide and loosely-packed CNT arrays[J]. Composites: Part A, 2019, 127, 105613.
doi: 10.1016/j.compositesa.2019.105613
49 郝瑞婷, 张学军, 田艳红. 耐热型热塑性上浆剂研究进展[J]. 化工进展, 2018, 37 (增刊1): 117- 124.
49 HAO R T , ZHANG X J , TIAN Y H . Research progress of heat-resistant thermoplastic sizing agents[J]. Chemical Industry and Engineering Progress, 2018, 37 (Suppl 1): 117- 124.
50 周典瑞, 高亮, 霍红宇, 等. 热塑性树脂基复合材料用碳纤维上浆剂研究进展[J]. 复合材料学报, 2020, 37 (8): 1785- 1795.
50 ZHOU D R , GAO L , HUO H Y , et al. Research progress of carbon fiber sizing agents for thermoplastic composites[J]. Acta Materiae Compositae Sinica, 2020, 37 (8): 1785- 1795.
51 TEIJIN. Data sheet TPUD PEEK HTS45[EB/OL]. (2020-05-01)[2021-08-23]. https://www.teijincarbon.com/products/tenaxr-composites/tenaxr-thermoplastics.
52 WANG T , ZHANG K , WANG S , et al. Interfacial adhesion of carbon fiber to special engineering plastics: effect of the functional groups in the matrix[J]. High Performance Polymers, 2021, 33 (4): 462- 468.
doi: 10.1177/0954008320966042
53 GIRAUD I , FRANCESCHI-MESSANT S , PEREZ E , et al. Preparation of aqueous dispersion of thermoplastic sizing agent for carbon fiber by emulsion/solvent evaporation[J]. Applied Surface Science, 2013, 266, 94- 99.
doi: 10.1016/j.apsusc.2012.11.098
54 LIU H , ZHAO Y , LI N , et al. Effect of polyetherimide sizing on surface properties of carbon fiber and interfacial strength of carbon fiber/polyetheretherketone composites[J]. Polymer Composites, 2021, 42 (2): 931- 943.
doi: 10.1002/pc.25876
55 叶海骏, 常丽, 刘瑞超, 等. 高性能碳纤维上浆剂应用进展[J]. 轻纺工业与技术, 2012, 41 (3): 62- 65.
doi: 10.3969/j.issn.2095-0101.2012.03.022
55 YE H J , CHANG L , LIU R C , et al. Application progress of high-performance carbon fiber sizing agent[J]. Light and Textile Industry and Technology, 2012, 41 (3): 62- 65.
doi: 10.3969/j.issn.2095-0101.2012.03.022
56 李佳乐, 李楠, 胡方圆, 等. 乳化剂对耐高温热塑性水分散乳液上浆剂性能的影响[J]. 复合材料科学与工程, 2021, (4): 61- 65.
56 LI J L , LI N , HU F Y , et al. Effect of emulsifier on properties of thermoplastic water dispersible emulsion sizing agent[J]. Composites Science and Engineering, 2021, (4): 61- 65.
57 ZHU P , SHI J , BAO L . Effect of polyetherimide nanoparticle coating on the interfacial shear strength between carbon fiber and thermoplastic resins[J]. Applied Surface Science, 2020, 509, 145395.
doi: 10.1016/j.apsusc.2020.145395
58 HASSAN E A M , YANG L , ELAGIB T H H , et al. Synergistic effect of hydrogen bonding and π-π stacking in interface of CF/PEEK composites[J]. Composites: Part B, 2019, 171, 70- 77.
doi: 10.1016/j.compositesb.2019.04.015
59 LIU H , ZHAO Y , CHEN F , et al. Effects of polyetherimide sizing involving carbon nanotubes on interfacial performance of carbon fiber/polyetheretherketone composites[J]. Polymers for Advanced Technologies, 2021, 32 (9): 3689- 3700.
doi: 10.1002/pat.5389
60 CHEN J , WANG K , ZHAO Y . Enhanced interfacial interactions of carbon fiber reinforced PEEK composites by regulating PEI and graphene oxide complex sizing at the interface[J]. Composites Science and Technology, 2018, 154, 175- 186.
doi: 10.1016/j.compscitech.2017.11.005
61 ZHU J , LIM J , LEE C H , et al. Multifunctional polyimide/graphene oxide composites via in situ polymerization[J]. Journal of Applied Polymer Science, 2014, 131 (9): 40177.
62 时双强, 和玉光, 陈宇滨, 等. 石墨烯改性树脂基复合材料力学性能研究进展[J]. 化学研究, 2021, 32 (1): 1- 16.
doi: 10.3969/j.issn.1004-1656.2021.01.001
62 SHI S Q , HE Y G , CHEN Y B , et al. Research progresses on mechanical properties of graphene-modified resin composites[J]. Chemical Research, 2021, 32 (1): 1- 16.
doi: 10.3969/j.issn.1004-1656.2021.01.001
63 LIU H , ZHAO Y , LI N , et al. Enhanced interfacial strength of carbon fiber/PEEK composites using a facile approach via PEI&ZIF-67 synergistic modification[J]. Journal of Materials Research and Technology, 2019, 8 (6): 6289- 6300.
doi: 10.1016/j.jmrt.2019.10.022
64 HASSAN E A M , GE D , YANG L , et al. Highly boosting the interlaminar shear strength of CF/PEEK composites via introduction of PEKK onto activated CF[J]. Composites: Part A, 2018, 112, 155- 160.
doi: 10.1016/j.compositesa.2018.05.029
65 GIRAUD I , FRANCESCHI S , PEREZ E , et al. Influence of new thermoplastic sizing agents on the mechanical behavior of poly (ether ketone ketone)/carbon fiber composites[J]. Journal of Applied Polymer Science, 2015, 132 (38): 42550.
66 REN T , ZHU G , REN X , et al. Improving interfacial interactions of CF/PEEK composites with sulfonated polyether sulfone[J]. Fibers and Polymers, 2021, 22 (1): 231- 239.
doi: 10.1007/s12221-021-0004-3
67 REN T , ZHU G , HOU X . The improved interface performance between carbon fiber and poly (ether-ether-ketone) by sulfonated polyether sulfone (s-PSF) sizing agent with different sulfonation degree[J]. Journal of Applied Polymer Science, 2021, 138 (19): 50363.
doi: 10.1002/app.50363
68 REN T , ZHU G , HOU X , et al. Improvement of interfacial interactions in CF/PEEK composites by an s-PSF/graphene oxide compound sizing agent[J]. Journal of Applied Polymer Science, 2021, 138 (45): 51327.
doi: 10.1002/app.51327
69 WANG X , HUANG Z , LAI M , et al. Highly enhancing the interfacial strength of CF/PEEK composites by introducing PAIK onto diazonium functionalized carbon fibers[J]. Applied Surface Science, 2020, 510, 145400.
doi: 10.1016/j.apsusc.2020.145400
70 YUAN X , JIANG J , WEI H , et al. PAI/MXene sizing-based dual functional coating for carbon fiber/PEEK composite[J]. Composites Science and Technology, 2021, 201, 108496.
doi: 10.1016/j.compscitech.2020.108496
[1] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[2] 倪洪江, 邢宇, 戴霄翔, 李军, 张代军, 陈祥宝. 航空发动机用聚酰亚胺树脂基复合材料固化工艺及热稳定性能[J]. 材料工程, 2022, 50(7): 102-109.
[3] 吕双祺, 黄佳, 孙燕涛, 付尧明, 杨晓光, 石多奇. 莫来石纤维增强SiO2气凝胶复合材料压缩回弹性能实验与建模研究[J]. 材料工程, 2022, 50(7): 119-127.
[4] 杨智勇, 臧家俊, 方丹琳, 李翔, 李志强, 李卫京. 城轨列车制动盘SiCp/A356复合材料热疲劳裂纹扩展机理[J]. 材料工程, 2022, 50(7): 165-175.
[5] 彭斌意, 刘洋, 郑晓董, 李治国, 李国平, 胡建波, 王永刚. 激光选区熔化颗粒增强钛基复合材料的抗压性能[J]. 材料工程, 2022, 50(6): 36-48.
[6] 李军, 刘燕峰, 倪洪江, 张代军, 陈祥宝. 航空发动机用树脂基复合材料应用进展与发展趋势[J]. 材料工程, 2022, 50(6): 49-60.
[7] 杨跃森, 董红刚, 吴宝生, 李鹏, 杨江, 马月婷. Zr-Cu-Ni非晶钎料真空钎焊TiAl合金/316L不锈钢接头的界面组织与剪切性能[J]. 材料工程, 2022, 50(5): 52-61.
[8] 黄俊俏, 沈之川, 钟嘉炜, 谢文浩, 施志聪. 聚合物固态电解质-锂负极界面的研究进展[J]. 材料工程, 2022, 50(5): 62-77.
[9] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[10] 于永涛, 刘元军. 原位聚合法制备铁氧体/聚苯胺吸波复合材料的研究进展[J]. 材料工程, 2022, 50(5): 90-99.
[11] 程子敬, 王凯峰, 张连洪. 基于微观尺度X射线断层扫描技术的短切碳纤维SMC复合材料失效分析[J]. 材料工程, 2022, 50(5): 130-138.
[12] 唐帅, 刘佳敏, 李林鲜, 温希平, 彭庆, 刘振宇, 王国栋. 钒微合金钢中α-Fe/V4C3界面结构与稳定性的第一性原理计算[J]. 材料工程, 2022, 50(5): 172-177.
[13] 杜宗波, 时双强, 陈宇滨, 褚海荣, 杨程. 介电型石墨烯吸波复合材料研究进展[J]. 材料工程, 2022, 50(4): 74-84.
[14] 任美娟, 王淼, 吴芳辉, 贾虎, 叶明富, 文国强. 氮掺杂多孔碳负载铜钴纳米复合材料的制备及其电催化性能[J]. 材料工程, 2022, 50(4): 104-111.
[15] 惠阳, 刘贵民, 兰海, 杜建华. 连续制动条件下泡沫陶瓷/金属双连续相复合材料的摩擦磨损性能[J]. 材料工程, 2022, 50(4): 112-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn