Thermoplastic polyether ether ketone (PEEK) composites are widely used in aerospace field due to their excellent fracture toughness, impact resistance and material versatility. Sizing agent as the core auxiliary product of carbon fiber has an important impact on the interface of composites. Limited by the decomposition temperature, the traditional thermosetting sizing agents are difficult to meet the use of PEEK composites, which restricts the development and application of high-performance PEEK composites. Therefore, it is of great significance to develop a matching carbon fiber sizing agent for PEEK composites. In this paper, the interfacial properties of composites and the action mechanism of sizing agent were analyzed and introduced; the research progress and results of modified PEEK, polyimide precursor and polyetherimide sizing agents were focused, and different systems of sizing agents were analyzed and summarized.Finally, the relevant suggestions on carbon fiber sizing agents for PEEK composites were put forward while the environmental and multi-function developments for sizing agents were prospected.
CHEN X B , ZHANG B Y , XING L Y . Application and development of advanced polymer matrix composites[J]. Materials China, 2009, 28 (6): 2- 12.
2
YAO S S , JIN F L , RHEE K Y , et al. Recent advances in carbon-fiber-reinforced thermoplastic composites: a review[J]. Composites: Part B, 2018, 142, 241- 250.
doi: 10.1016/j.compositesb.2017.12.007
3
VIEILLE B , ALBOUY W , CHEVALIER L , et al. About the influence of stamping on thermoplastic-based composites for aeronautical applications[J]. Composites: Part B, 2013, 45 (1): 821- 834.
doi: 10.1016/j.compositesb.2012.07.047
4
LU C , XU N , ZHENG T , et al. The optimization of process parameters and characterization of high-performance CF/PEEK composites prepared by flexible CF/PEEK plain weave fabrics[J]. Polymers, 2019, 11 (1): 11010053.
5
DAI G, ZHAN L, GUAN C, et al. Optimization of molding process parameters for CF/PEEK composites based on Taguchi method[J]. Composites and Advanced Materials, 2021, 30: 26349833211001882.
6
THIRUCHITRAMBALAM M , KUMAR D B , SHANMUGAM D , et al. A review on PEEK composites-manufacturing methods, properties and applications[J]. Materials Today: Proceedings, 2020, 33, 1085- 1092.
doi: 10.1016/j.matpr.2020.07.124
YANG Y C. The research of carbon fiber sizing agent based on crystalline polyetheretherketone and composite interface construction[D]. Changchun: Jilin University, 2020.
ZHOU P , ZHOU Z B . Development status in high performance fiber and thermoplastic resin for composites[J]. Synthetic Fiber in China, 2015, 44 (8): 21- 26.
WANG X G , YU Y , LI S M , et al. The research on fiber reinforced thermoplastic composite[J]. Fiber Composites, 2011, 28 (2): 44- 47.
doi: 10.3969/j.issn.1003-6423.2011.02.011
10
COMER A J , RAY D , OBANDE W O , et al. Mechanical characterisation of carbon fibre-PEEK manufactured by laser-assisted automated-tape-placement and autoclave[J]. Composites: Part A, 2015, 69, 10- 20.
doi: 10.1016/j.compositesa.2014.10.003
11
JONES F R . A review of interphase formation and design in fibre-reinforced composites[J]. Journal of Adhesion Science and Technology, 2010, 24 (1): 171- 202.
doi: 10.1163/016942409X12579497420609
12
CHEN C , ZHANG C , ZHAO Z , et al. Effect of fiber reinforcement and fabrication process on the dynamic compressive behavior of PEEK composites[J]. International Journal of Mechanical Sciences, 2019, 155, 170- 177.
doi: 10.1016/j.ijmecsci.2019.02.034
13
ROBERT M , ROY R , BENMOKRANE B . Environmental effects on glass fiber reinforced polypropylene thermoplastic composite laminate for structural applications[J]. Polymer Composites, 2010, 31 (4): 604- 611.
14
SONG W , GU A , LIANG G , et al. Effect of the surface roughness on interfacial properties of carbon fibers reinforced epoxy resin composites[J]. Applied Surface Science, 2011, 257 (9): 4069- 4074.
doi: 10.1016/j.apsusc.2010.11.177
15
LIU F , SHI Z , DONG Y . Improved wettability and interfacial adhesion in carbon fibre/epoxy composites via an aqueous epoxy sizing agent[J]. Composites: Part A, 2018, 112, 337- 345.
doi: 10.1016/j.compositesa.2018.06.026
16
DONG Y , ZHU Y , ZHAO Y , et al. Enhance interfacial properties of glass fiber/epoxy composites with environment-friendly water-based hybrid sizing agent[J]. Composites: Part A, 2017, 102, 357- 367.
doi: 10.1016/j.compositesa.2017.08.016
17
THOMASON J L , ADZIMA L J . Sizing up the interphase: an insider's guide to the science of sizing[J]. Composites: Part A, 2001, 32 (3/4): 313- 321.
18
YUAN X , ZHU B , CAI X , et al. Improved interfacial adhesion in carbon fiber/epoxy composites through a waterborne epoxy resin sizing agent[J]. Journal of Applied Polymer Science, 2017, 134 (17): 44757.
19
AOKI R , YAMAGUCHI A , HASHIMOTO T , et al. Preparation of carbon fibers coated with epoxy sizing agents containing degradable acetal linkages and synthesis of carbon fiber-reinforced plastics (CFRPs) for chemical recycling[J]. Polymer Journal, 2019, 51 (9): 909- 920.
doi: 10.1038/s41428-019-0202-7
20
LI N , CHEN J , LIU H , et al. Effect of preheat treatment on carbon fiber surface properties and fiber/PEEK interfacial behavior[J]. Polymer Composites, 2019, 40 (Suppl 2): 1407- 1415.
21
CHEN J , WANG K , DONG A , et al. A comprehensive study on controlling the porosity of CCF300/PEEK composites by optimizing the impregnation parameters[J]. Polymer Composites, 2018, 39 (10): 3765- 3779.
doi: 10.1002/pc.24407
TENG L H , CAO W W , ZHU B , et al. Research progress in the preparation of fiber reinforced thermoplastic resin prepreg[J]. Journal of Materials Engineering, 2021, 49 (2): 42- 53.
23
SOUZA F V , ALLEN D H , KIM Y R . Multiscale model for predicting damage evolution in composites due to impact loading[J]. Composites Science and Technology, 2008, 68 (13): 2624- 2634.
doi: 10.1016/j.compscitech.2008.04.043
24
SUN Q , MENG Z , ZHOU G , et al. Multi-scale computational analysis of unidirectional carbon fiber reinforced polymer composites under various loading conditions[J]. Composite Structures, 2018, 196, 30- 43.
doi: 10.1016/j.compstruct.2018.05.025
25
BAO L R , YEE A F . Moisture diffusion and hygrothermal aging in bismaleimide matrix carbon fiber composites: part Ⅱ—woven and hybrid composites[J]. Composites Science and Technology, 2002, 62 (16): 2111- 2119.
doi: 10.1016/S0266-3538(02)00162-8
26
LIU W B , ZHANG S , HAO L F , et al. Properties of carbon fiber sized with poly (phthalazinone ether ketone) resin[J]. Journal of Applied Polymer Science, 2013, 128 (6): 3702- 3709.
doi: 10.1002/app.38605
27
QIAN X , WANG X , OUYANG Q , et al. Surface structural evolvement in electrochemical oxidation and sizing and its effect on carbon fiber/epoxy composites properties[J]. Journal of Reinforced Plastics and Composites, 2012, 31 (15): 999- 1008.
doi: 10.1177/0731684412449895
28
XI X , CHEN Y , WANG J , et al. A multiscale hydrothermal carbon layer modified carbon fiber for composite fabrication[J]. RSC Advances, 2018, 8 (41): 23339- 23347.
doi: 10.1039/C8RA04064H
29
YANG M , KOUTSOS V , ZAISER M . Interactions between polymers and carbon nanotubes: a molecular dynamics study[J]. The Journal of Physical Chemistry B, 2005, 109 (20): 10009- 10014.
doi: 10.1021/jp0442403
30
GUREVITCH I , SREBNIK S . Conformational behavior of polymers adsorbed on nanotubes[J]. The Journal of Chemical Physics, 2008, 128 (14): 144901.
doi: 10.1063/1.2894842
31
MILIK M , ORSZAGH A . Monte Carlo model of a polymer chain attached to an interface in poor solvent conditions[J]. Polymer, 1989, 30 (4): 681- 685.
doi: 10.1016/0032-3861(89)90155-9
32
HAO T , MING Y , ZHANG S , et al. The influences of grafting density and polymer-nanoparticle interaction on crystallisation of polymer composites[J]. Molecular Simulation, 2020, 46 (9): 678- 688.
doi: 10.1080/08927022.2019.1587760
33
SU Y , LIU P , JING D , et al. Improved interfacial adhesion in carbon fiber/poly (ether ether ketone) composites with the sulfonated poly (ether ether ketone) sizing treatment[J]. Journal of Applied Polymer Science, 2021, 138 (45): 51326.
doi: 10.1002/app.51326
34
GAO X , HUANG Z , ZHOU H , et al. Higher mechanical performances of CF/PEEK composite laminates via reducing interlayer porosity based on the affinity of functional s-PEEK[J]. Polymer Composites, 2019, 40 (9): 3749- 3757.
doi: 10.1002/pc.25236
35
HASSAN E , ELAGIB T , MEMON H , et al. Surface modification of carbon fibers by grafting peek-NH2 for improving interfacial adhesion with polyetheretherketone[J]. Materials, 2019, 12 (5): 778.
doi: 10.3390/ma12050778
36
YAN T , YAN F , LI S , et al. Interfacial enhancement of CF/PEEK composites by modifying water-based PEEK-NH2 sizing agent[J]. Composites: Part B, 2020, 199, 108258.
doi: 10.1016/j.compositesb.2020.108258
37
YANG Y , WANG T , WANG S , et al. Strong interface construction of carbon fiber-reinforced PEEK composites: an efficient method for modifying carbon fiber with crystalline PEEK[J]. Macromolecular Rapid Communications, 2020, 41 (24): 2000001.
doi: 10.1002/marc.202000001
38
WANG S , YANG Y , MU Y , et al. Synergy of electrochemical grafting and crosslinkable crystalline sizing agent to enhance the interfacial strength of carbon fiber/PEEK composites[J]. Composites Science and Technology, 2021, 203, 108562.
doi: 10.1016/j.compscitech.2020.108562
YANG Y , LU C X , WANG X K , et al. Evaluation of emulsion type sizing modified by nano-SiO2 for carbon fiber[J]. Acta Materiae Compositae Sinica, 2007, 24 (2): 38- 43.
doi: 10.3321/j.issn:1000-3851.2007.02.008
40
ZHANG X , FAN X , YAN C , et al. Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide[J]. ACS Applied Materials & Interfaces, 2012, 4 (3): 1543- 1552.
41
LYU H , JIANG N , LI Y , et al. Enhancing CF/PEEK interfacial adhesion by modified PEEK grafted with carbon nanotubes[J]. Composites Science and Technology, 2021, 210, 108831.
doi: 10.1016/j.compscitech.2021.108831
42
YUAN H , ZHANG S , LU C , et al. Improved interfacial adhesion in carbon fiber/polyether sulfone composites through an organic solvent-free polyamic acid sizing[J]. Applied Surface Science, 2013, 279, 279- 284.
doi: 10.1016/j.apsusc.2013.04.085
43
WANG T , JIAO Y , MI Z , et al. PEEK composites with polyimide sizing SCF as reinforcement: preparation, characterization, and mechanical properties[J]. High Performance Polymers, 2020, 32 (4): 383- 393.
doi: 10.1177/0954008319867383
44
WANG T , JIAO Y , MI Z , et al. Improving the interfacial adhesion of carbon fiber/polyether ether ketone composites by polyimide coating[J]. ChemistrySelect, 2020, 5 (19): 5507- 5514.
doi: 10.1002/slct.202001232
45
JUNG H , BAE K J , JIN J , et al. The effect of aqueous polyimide sizing agent on PEEK based carbon fiber composites using experimental techniques and molecular dynamics simulations[J]. Functional Composites and Structures, 2020, 2 (2): 025001.
doi: 10.1088/2631-6331/ab8884
46
YUAN C , LI D , YUAN X , et al. Preparation of semi-aliphatic polyimide for organic-solvent-free sizing agent in CF/PEEK composites[J]. Composites Science and Technology, 2021, 201, 108490.
doi: 10.1016/j.compscitech.2020.108490
47
LI X , ZHAO Y , WANG K . Interfacial crystallization behavior of poly (ether-ether-ketone) on polyimide-modified CCF300 carbon fibers[J]. Polymer Composites, 2020, 41 (6): 2433- 2445.
doi: 10.1002/pc.25547
48
HASSAN E A M , GE D , ZHU S , et al. Enhancing CF/PEEK composites by CF decoration with polyimide and loosely-packed CNT arrays[J]. Composites: Part A, 2019, 127, 105613.
doi: 10.1016/j.compositesa.2019.105613
HAO R T , ZHANG X J , TIAN Y H . Research progress of heat-resistant thermoplastic sizing agents[J]. Chemical Industry and Engineering Progress, 2018, 37 (Suppl 1): 117- 124.
ZHOU D R , GAO L , HUO H Y , et al. Research progress of carbon fiber sizing agents for thermoplastic composites[J]. Acta Materiae Compositae Sinica, 2020, 37 (8): 1785- 1795.
51
TEIJIN. Data sheet TPUD PEEK HTS45[EB/OL]. (2020-05-01)[2021-08-23]. https://www.teijincarbon.com/products/tenaxr-composites/tenaxr-thermoplastics.
52
WANG T , ZHANG K , WANG S , et al. Interfacial adhesion of carbon fiber to special engineering plastics: effect of the functional groups in the matrix[J]. High Performance Polymers, 2021, 33 (4): 462- 468.
doi: 10.1177/0954008320966042
53
GIRAUD I , FRANCESCHI-MESSANT S , PEREZ E , et al. Preparation of aqueous dispersion of thermoplastic sizing agent for carbon fiber by emulsion/solvent evaporation[J]. Applied Surface Science, 2013, 266, 94- 99.
doi: 10.1016/j.apsusc.2012.11.098
54
LIU H , ZHAO Y , LI N , et al. Effect of polyetherimide sizing on surface properties of carbon fiber and interfacial strength of carbon fiber/polyetheretherketone composites[J]. Polymer Composites, 2021, 42 (2): 931- 943.
doi: 10.1002/pc.25876
YE H J , CHANG L , LIU R C , et al. Application progress of high-performance carbon fiber sizing agent[J]. Light and Textile Industry and Technology, 2012, 41 (3): 62- 65.
doi: 10.3969/j.issn.2095-0101.2012.03.022
LI J L , LI N , HU F Y , et al. Effect of emulsifier on properties of thermoplastic water dispersible emulsion sizing agent[J]. Composites Science and Engineering, 2021, (4): 61- 65.
57
ZHU P , SHI J , BAO L . Effect of polyetherimide nanoparticle coating on the interfacial shear strength between carbon fiber and thermoplastic resins[J]. Applied Surface Science, 2020, 509, 145395.
doi: 10.1016/j.apsusc.2020.145395
58
HASSAN E A M , YANG L , ELAGIB T H H , et al. Synergistic effect of hydrogen bonding and π-π stacking in interface of CF/PEEK composites[J]. Composites: Part B, 2019, 171, 70- 77.
doi: 10.1016/j.compositesb.2019.04.015
59
LIU H , ZHAO Y , CHEN F , et al. Effects of polyetherimide sizing involving carbon nanotubes on interfacial performance of carbon fiber/polyetheretherketone composites[J]. Polymers for Advanced Technologies, 2021, 32 (9): 3689- 3700.
doi: 10.1002/pat.5389
60
CHEN J , WANG K , ZHAO Y . Enhanced interfacial interactions of carbon fiber reinforced PEEK composites by regulating PEI and graphene oxide complex sizing at the interface[J]. Composites Science and Technology, 2018, 154, 175- 186.
doi: 10.1016/j.compscitech.2017.11.005
61
ZHU J , LIM J , LEE C H , et al. Multifunctional polyimide/graphene oxide composites via in situ polymerization[J]. Journal of Applied Polymer Science, 2014, 131 (9): 40177.
SHI S Q , HE Y G , CHEN Y B , et al. Research progresses on mechanical properties of graphene-modified resin composites[J]. Chemical Research, 2021, 32 (1): 1- 16.
doi: 10.3969/j.issn.1004-1656.2021.01.001
63
LIU H , ZHAO Y , LI N , et al. Enhanced interfacial strength of carbon fiber/PEEK composites using a facile approach via PEI&ZIF-67 synergistic modification[J]. Journal of Materials Research and Technology, 2019, 8 (6): 6289- 6300.
doi: 10.1016/j.jmrt.2019.10.022
64
HASSAN E A M , GE D , YANG L , et al. Highly boosting the interlaminar shear strength of CF/PEEK composites via introduction of PEKK onto activated CF[J]. Composites: Part A, 2018, 112, 155- 160.
doi: 10.1016/j.compositesa.2018.05.029
65
GIRAUD I , FRANCESCHI S , PEREZ E , et al. Influence of new thermoplastic sizing agents on the mechanical behavior of poly (ether ketone ketone)/carbon fiber composites[J]. Journal of Applied Polymer Science, 2015, 132 (38): 42550.
66
REN T , ZHU G , REN X , et al. Improving interfacial interactions of CF/PEEK composites with sulfonated polyether sulfone[J]. Fibers and Polymers, 2021, 22 (1): 231- 239.
doi: 10.1007/s12221-021-0004-3
67
REN T , ZHU G , HOU X . The improved interface performance between carbon fiber and poly (ether-ether-ketone) by sulfonated polyether sulfone (s-PSF) sizing agent with different sulfonation degree[J]. Journal of Applied Polymer Science, 2021, 138 (19): 50363.
doi: 10.1002/app.50363
68
REN T , ZHU G , HOU X , et al. Improvement of interfacial interactions in CF/PEEK composites by an s-PSF/graphene oxide compound sizing agent[J]. Journal of Applied Polymer Science, 2021, 138 (45): 51327.
doi: 10.1002/app.51327
69
WANG X , HUANG Z , LAI M , et al. Highly enhancing the interfacial strength of CF/PEEK composites by introducing PAIK onto diazonium functionalized carbon fibers[J]. Applied Surface Science, 2020, 510, 145400.
doi: 10.1016/j.apsusc.2020.145400
70
YUAN X , JIANG J , WEI H , et al. PAI/MXene sizing-based dual functional coating for carbon fiber/PEEK composite[J]. Composites Science and Technology, 2021, 201, 108496.
doi: 10.1016/j.compscitech.2020.108496