Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (7): 110-118    DOI: 10.11868/j.issn.1001-4381.2021.000855
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
MnO2纳米棒的吸波性能及其超构表面设计
宋永智, 毕松(), 侯根良, 李浩, 赵彦凯, 刘朝辉()
火箭军工程大学, 西安 710025
Absorbing property of MnO2 nanorods and its meta-surface design
Yongzhi SONG, Song BI(), Genliang HOU, Hao LI, Yankai ZHAO, Zhaohui LIU()
Rocket Force University of Engineering, Xi'an 710025, China
全文: PDF(9405 KB)   HTML ( 4 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用水热法和冷冻干燥技术制备MnO2纳米棒材料,并利用模压法制备不同填充浓度的MnO2/石蜡环状样品。通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)、矢量网络分析仪(VNA)对样品的物相、微观结构、电磁参数进行了表征与测试,利用CST软件模拟设计了样品材料的超构表面,并对其设计前后的电磁波反射率进行了模拟计算与研究。结果表明:制备的MnO2粉体呈棒状结构,棒体直径约50~100 nm,长度约5~10 μm,单根结构圆柱度高,整体的结构均一性和结晶度好;MnO2/石蜡样品的电磁衰减系数(α)随MnO2纳米棒填充浓度的提高而增大,主要得益于随浓度增加而逐渐提升的介电损耗正切值(tanδ);超构表面的设计极大地拓宽了MnO2/石蜡材料的微波吸收频域,2~18 GHz内最优频宽可达14.32 GHz,主要是超构表面引起的多谐振共存使得在规定频率范围内出现了多个吸收峰叠加而实现的。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋永智
毕松
侯根良
李浩
赵彦凯
刘朝辉
关键词 水热法二氧化锰纳米棒吸波机理超构表面    
Abstract

MnO2 nanorods were prepared by using the hydrothermal method and freeze-drying technology, and then molded into the MnO2/paraffin circular samples in different filling concentrations. The crystalline phase, microstructure and electromagnetic parameters of the samples were characterized and tested by X-ray diffractometer (XRD), scanning electron microscopy (SEM), and vector network analyzer (VNA). Sample meta-surface was designed and simulated by CST software and the pre and post simulation calculation and research of the meta-surface were carried out. The results show that prepared MnO2 powder has a rod structure with the diameter and length of the rod about 50-100 nm, 5-10 μm, respectively. The single cylindric structure is well-shaped, and the overall structure is homogeneous with crystallinity. Moreover, the tangent of dielectric loss(tanδ) increases with concentration, making a great contribution to the electromagnetic attenuation coefficient (α) of the sample of MnO2/paraffin, which increases with filling concentration of MnO2 nanorods. Microwave absorption frequency domain of MnO2/paraffin material is significantly broadened by the design of meta-surface, namely, the optimal bandwidth in 2-18 GHz can reach 14.32 GHz. The reason is the superposition of absorption peaks over a specified frequency range, which is caused by the coexistence of multiple resonances of the meta-surface.

Key wordshydrothermal method    MnO2 nanorod    absorbing mechanism    meta-surface
收稿日期: 2021-09-02      出版日期: 2022-07-18
中图分类号:  TB34  
通讯作者: 毕松,刘朝辉     E-mail: xiaozhu-youyou@163.com;lzh5011@163.com
作者简介: 刘朝辉(1982—),男,高级工程师,博士,主要研究纳米功能材料,联系地址:陕西省西安市灞桥区洪庆街道同心路2号304室(710025),E-mail: lzh5011@163.com
毕松(1981—),男,副教授,博士后,主要研究电磁隐身材料,联系地址:陕西省西安市灞桥区洪庆街道同心路2号304室(710025),E-mail: xiaozhu-youyou@163.com
引用本文:   
宋永智, 毕松, 侯根良, 李浩, 赵彦凯, 刘朝辉. MnO2纳米棒的吸波性能及其超构表面设计[J]. 材料工程, 2022, 50(7): 110-118.
Yongzhi SONG, Song BI, Genliang HOU, Hao LI, Yankai ZHAO, Zhaohui LIU. Absorbing property of MnO2 nanorods and its meta-surface design. Journal of Materials Engineering, 2022, 50(7): 110-118.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000855      或      http://jme.biam.ac.cn/CN/Y2022/V50/I7/110
Fig.1  MnO2纳米棒制备流程示意图
Fig.2  MnO2纳米棒的SEM图
(a)低倍率;(b)高倍率
Fig.3  MnO2纳米棒的XRD图
Fig.4  MnO2纳米棒的电磁参数曲线图
(a)介电常数实部;(b)介电常数虚部;(c)磁导率实部;(d)磁导率虚部
Fig.5  MnO2纳米棒的电磁衰减特性参数图
(a)波阻抗匹配系数;(b)介电损耗正切值;(c)衰减常数;(d)相位系数
Fig.6  MnO2纳米棒吸波体的反射率损耗曲线图
(a)1 mm;(b)2 mm;(c)3 mm;(d)4 mm;(e)5 mm;(f)6 mm
Fig.7  不同质量分数的MnO2纳米棒吸波体的反射率损耗等高线图(1)和d/λ等高线图(2)
(a)30%;(b)50%;(c)70%
Fig.8  超构表面微波响应模型
(a)结构示意图;(b)仿真设置图
Fig.9  MnO2纳米棒超构表面的反射损耗曲线(a)和场分布图(b)
Absorbing material Filling amount/% Thickness/mm Peak value/dB Bandwidth/GHz Reference
Samples presented 70 5 -31 14.32
α-MnO2 nanowire 20 3.6 -35 3.8 [21]
α-MnO2 nanourchin 50 3.75 -36 5.6 [22]
RGO/SiC/CNT 1.27 2.9 -20 4.4 [23]
HGS@PAC 10 5 -32.43 4.2 [24]
Fe3O4 nanobelt 16.7 2.32 -53.93 4.93 [25]
Table 1  本样品与近年来吸波材料性能对比
1 LV H , ZHANG H , JI G , et al. Interface strategy to achieve tunable high frequency attenuation[J]. ACS Applied Materials & Interfaces, 2016, 8 (10): 6529- 6538.
2 XU W , PAN Y F , WEI W , et al. Nanocomposites of oriented nickel chains with tunable magnetic properties for high-performance broadband microwave absorption[J]. ACS Applied Nano Materials, 2018, 1 (3): 1116- 1123.
doi: 10.1021/acsanm.7b00293
3 YU H L , WANG T S , WEN B , et al. Graphene/polyaniline nanorod arrays: synthesis and excellent electromagnetic absorption properties[J]. Journal of Materials Chemistry, 2012, 22 (40): 21679- 21685.
doi: 10.1039/c2jm34273a
4 GUAN H T , LIU S H , ZHAO Y B , et al. Electromagnetic characteristics of nanometer manganese dioxide composite materials[J]. Journal of Electronic Materials, 2006, 35 (5): 892- 896.
doi: 10.1007/BF02692544
5 GUAN H T , ZHAO Y B , LIU S H , et al. Application of manganese dioxide to electromagnetic wave absorber: effective permittivity and absorbing property[J]. The European Physical Journal-Applied Physics, 2006, 36 (3): 235- 239.
doi: 10.1051/epjap:2006125
6 DUAN Y P , YANG Y , HE M , et al. Absorbing properties of α-manganese dioxide/carbon black double-layer composites[J]. Journal of Physics D, 2008, 41 (12): 125403.
doi: 10.1088/0022-3727/41/12/125403
7 DONG S , ZHANG X H , LI X T , et al. SiC whiskers-reduced graphene oxide composites decorated with MnO nanoparticles for tunable microwave absorption[J]. Chemical Engineering Journal, 2020, 392, 123817.
doi: 10.1016/j.cej.2019.123817
8 BACH S , HENRY M , BAER N , et al. Sol-gel synthesis of manganese oxides[J]. Journal of Solid State Chemistry, 1968, 88 (2): 325- 333.
9 LIANG W F , YANG R B , CHIO S T . Microwave complex permittivity and absorption of MnO2 nanorods and nanoparticles[J]. Ferroelectrics, 2012, 434 (1): 100- 106.
doi: 10.1080/00150193.2012.732768
10 NIU Y , LI X P . Flexible polymer composites with enhanced wave absorption properties based on beta-manganese dioxide nanorods and PVDF[J]. Inorganic Chemistry Communications, 2015, 55, 25- 29.
doi: 10.1016/j.inoche.2014.10.010
11 HE G , DUAN Y , PANG H , et al. Rational design of mesoporous MnO2 microwave absorber with tunable microwave frequency response[J]. Applied Surface Science, 2019, 490, 372- 382.
doi: 10.1016/j.apsusc.2019.06.037
12 DING Y , ZHANG Z , LUO B , et al. Investigation on the broadband electromagnetic wave absorption properties and mechanism of Co3O4-nanosheets/reduced-graphene-oxide composite[J]. Nano Research, 2017, 10, 980- 990.
doi: 10.1007/s12274-016-1357-6
13 李天天, 夏龙, 黄小萧, 等. 介电损耗型微波吸收材料的研究进展[J]. 材料工程, 2021, 49 (6): 1- 13.
doi: 10.3969/j.issn.1673-1433.2021.06.001
13 LI T T , XIA L , HUANG X X , et al. Progress in dielectric loss microwave absorbing materials[J]. Journal of Materials Engineering, 2021, 49 (6): 1- 13.
doi: 10.3969/j.issn.1673-1433.2021.06.001
14 PANG H , DUAN Y , HUANG L , et al. Research advances in composition, structure and mechanisms of microwave absorbing materials[J]. Composites Part B, 2021, 224, 109173.
doi: 10.1016/j.compositesb.2021.109173
15 ZHAO P , LIU C , SRINIVASAKANNAN C , et al. Basic research on the microwave absorbing properties and microwave roasting mechanism of stibnite concentrate[J]. Powder Technology, 2021, 379, 630- 640.
doi: 10.1016/j.powtec.2020.10.060
16 张雪霏, 周金堂, 姚正军, 等. CIP/GF/CF/EP吸波复合材料的制备及力学性能[J]. 材料工程, 2019, 47 (10): 141- 147.
doi: 10.11868/j.issn.1001-4381.2018.000622
16 ZHANG X F , ZHOU J T , YAO Z J , et al. Preparation and mechanical property of CIP/GF/CF/EP absorbing composites[J]. Journal of Materials Engineering, 2019, 47 (10): 141- 147.
doi: 10.11868/j.issn.1001-4381.2018.000622
17 LU Y , YOU W , CAI C , et al. Insights into the micro magnetic loss mechanism of microwave absorption by off-axis electron holography[J]. Journal of Magnetism and Magnetic Materials, 2019, 475, 24- 29.
doi: 10.1016/j.jmmm.2018.11.045
18 LI H , GUO Y . High microwave absorption characteristic nanomaterial preparation and mechanism analysis[J]. Journal of Alloys and Compounds, 2018, 765, 936- 942.
doi: 10.1016/j.jallcom.2018.06.268
19 ZHANG K L , ZHANG J Y , HOU Z L , et al. Multifunctional broadband microwave absorption of flexible graphene composites[J]. Carbon, 2019, 141, 608- 617.
doi: 10.1016/j.carbon.2018.10.024
20 ZHANG K L , HOU Z L , BI S , et al. Modeling for multi-resonant behavior of broadband metamaterial absorber with geometrical substrate[J]. Chinese Physics B, 2017, 26 (12): 581- 586.
21 WANG X , NI S , ZHOU G , et al. Facile synthesis of ultra-long α-MnO2 nanowires and their microwave absorption properties[J]. Materials Letters, 2010, 64 (13): 1496- 1498.
doi: 10.1016/j.matlet.2010.04.002
22 ZHOU M , ZHANG X , WANG L , et al. Enhanced microwave absorption performance of hollow α-MnO2 nanourchins[J]. Journal of Nanoscience and Nanotechnology, 2013, 13 (2): 904- 908.
doi: 10.1166/jnn.2013.5958
23 HOU Z , XUE J , WEI H , et al. Tailorable microwave absorption properties of RGO/SiC/CNT nanocomposites with 3D hierarchical structure[J]. Ceramics International, 2020, 46 (11): 18160- 18167.
doi: 10.1016/j.ceramint.2020.04.137
24 XU H , YIN X , ZHU M , et al. Constructing hollow graphene nano-spheres confined in porous amorphous carbon particles for achieving full X band microwave absorption[J]. Carbon, 2019, 142, 346- 353.
doi: 10.1016/j.carbon.2018.10.056
25 PAN J , ZHANG R , LING J , et al. Controllable preparation and microwave absorption properties of shape anisotropic Fe3O4 nanobelts[J]. Journal of Materiomics, 2021, 7 (5): 957- 966.
doi: 10.1016/j.jmat.2021.03.009
[1] 施琦, 丁龙, 龙红明, 王毅璠, 春铁军. 纳米形貌对Ce-V催化剂降解氯苯活性影响[J]. 材料工程, 2021, 49(8): 162-168.
[2] 谌建平, 张旭, 林东宝, 潘海波, 沈水发. 纳米花/棒SnO2的水热法制备及其气敏性[J]. 材料工程, 2021, 49(6): 164-169.
[3] 张传香, 陈亚玲, 巩云, 刘慧颖, 戴玉明, 丛园. 二硫化钼/石墨烯复合材料的一步水热合成及电催化性能[J]. 材料工程, 2020, 48(5): 56-61.
[4] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[5] 焦华, 赵康, 石蕊, 马利宁, 卞铁荣, 汤玉斐. 羟基磷灰石纳米棒的水热制备及其晶体生长机理研究[J]. 材料工程, 2020, 48(1): 136-143.
[6] 李嘉俊, 刘磊, 卢玉晓, 孙之剑, 马蕾. 纳米Li2MnSiO4正极材料的高压水热法制备及其电化学特性[J]. 材料工程, 2019, 47(9): 108-115.
[7] 刘琳, 李莹, 鄂涛, 杨姝宜, 姜志刚, 许丽岩, 张天琪. 球状纳米二氧化钛/石墨烯复合材料的合成及导电性能[J]. 材料工程, 2019, 47(8): 97-102.
[8] 高海涛, 王建江, 李泽. 基于超材料设计的钡铁氧体吸波涂层研究[J]. 材料工程, 2019, 47(1): 70-76.
[9] 张相辉. La掺杂改性Bi2WO6纳米材料的制备及其光催化性能[J]. 材料工程, 2018, 46(11): 57-62.
[10] 武美荣, 魏智强, 武晓娟, 杨华, 姜金龙. Zn1-xMnxS稀磁半导体的合成与光学性能[J]. 材料工程, 2017, 45(7): 54-59.
[11] 齐美丽, 肖桂勇, 吕宇鹏. 氨基酸对水热合成羟基磷灰石纤维形貌的影响[J]. 材料工程, 2017, 45(5): 46-51.
[12] 邓城, 漆小鹏, 李倩, 尹从岭, 杨辉. 沉淀法与水热法合成载银羟基磷灰石及其抗菌性能[J]. 材料工程, 2017, 45(4): 113-120.
[13] 刘唱白, 刘丽, 刘星熠. Al2O3掺杂ZnO微米花对丙酮超高灵敏度和优异选择性[J]. 材料工程, 2017, 45(2): 12-16.
[14] 刘阳龙, 郑玉婴, 曹宁宁, 王翔. 水热法合成铁掺杂的硫化镉及光催化性能[J]. 材料工程, 2017, 45(10): 12-17.
[15] 王丹军, 申会东, 郭莉, 张洁, 付峰. 三维介孔Bi2WO6光催化剂的制备及无机离子对其光催化活性的影响[J]. 材料工程, 2016, 44(2): 8-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn