Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (10): 15-28    DOI: 10.11868/j.issn.1001-4381.2021.000890
  陶瓷基复合材料专栏 本期目录 | 过刊浏览 | 高级检索 |
面向一体化热防护的陶瓷基复合材料轻量化结构研究进展与挑战
张路1, 袁芳2, 王文清1, 董星杰1, 何汝杰1,3,*()
1 北京理工大学 先进结构技术研究院, 北京 100081
2 航天材料及工艺研究所, 北京 100076
3 轻量化多功能复合材料与结构北京市重点实验室, 北京 100081
Progress and challenges in lightweight ceramic matrix composite structures towards integrated thermal protection structure
Lu ZHANG1, Fang YUAN2, Wenqing WANG1, Xingjie DONG1, Rujie HE1,3,*()
1 Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
2 Aerospace Research Institute of Materials & Processing Technology, Beijing 100076, China
3 Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing 100081, China
全文: PDF(14450 KB)   HTML ( 18 )  
输出: BibTeX | EndNote (RIS)      
摘要 

高超声速飞行器技术是航空航天领域发展的重要方向,对国防安全起着重要作用。高超声速飞行器能在极端环境中安全服役的关键在于飞行器的热防护材料与结构。一方面,热防护材料与结构必须能够经受恶劣的气动热环境;另一方面,热防护材料与结构还要在承载的同时尽可能降低质量以提高飞行器有效载荷。因此,需要研发兼具耐高温、轻量化、承载特性的热防护结构。本文首先综述了C/SiC陶瓷基复合材料轻量化点阵结构及其制造方法,对其在室温、高温环境下的力学行为与传热行为的研究现状进行了总结,并具体讨论了基于C/SiC陶瓷基复合材料轻量化点阵结构的耐高温、轻量化、承载、一体化热防护结构研究进展情况。最后,在新设计理论与方法、新制造技术、服役特性、多功能一体化设计与实现四个方面对面向一体化热防护的陶瓷基复合材料轻量化结构的研究挑战进行了展望。本文为高超声速飞行器新型热防护结构的发展提供一定借鉴与思考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张路
袁芳
王文清
董星杰
何汝杰
关键词 C/SiC陶瓷基复合材料轻量化点阵结构力学行为传热行为一体化热防护结构    
Abstract

Hypersonic flight technology is an important direction in the development of aerospace field and plays an important role in national defense security. The thermal protection materials and structures are the key to the safe service of hypersonic vehicles in extreme environments. On one hand, the thermal protection materials and structures must be able to withstand the harsh aerodynamic thermal environment, and on the other hand, they also must reduce its mass to increase the vehicle payload. Therefore, it is necessary to develop thermal protection structures that can combine high temperature resistance, light weight, and load-bearing characteristics at the same time. The manufacturing methods of lightweight C/SiC ceramic matrix composite structures were firstly introduced in this review, then the research on the room temperature and high temperature mechanical behavior, heat transfer mechanism and behavior of the lightweight C/SiC ceramic matrix composite structures were summarized. At last, integrated thermal protection structures with high temperature resistance and lightweight load-bearing were reviewed based on the lightweight C/SiC ceramic matrix composite structures. Finally, the future challenges of the lightweight ceramic matrix composite structures towards thermal protection application were also forecasted in four aspects: new design theory and method, new manufacturing technology, service characteristics and multi-functional integrated design and realization. This review provides some guidance for the research and development of novel thermal protection structures for the next generation hypersonic flight.

Key wordsC/SiC ceramic matrix composites    lightweight lattice structure    mechanical behavior    heat transfer behavior    integrated thermal protection structure
收稿日期: 2021-09-10      出版日期: 2022-10-24
中图分类号:  TB332  
基金资助:国家自然科学基金项目(51772028)
通讯作者: 何汝杰     E-mail: herujie@bit.edu.cn
作者简介: 何汝杰(1985—), 男, 副教授, 博士, 研究方向为结构功能一体化陶瓷材料, 联系地址: 北京市海淀区中关村南大街5号北京理工大学宇航楼302室(100081), E-mail: herujie@bit.edu.cn
引用本文:   
张路, 袁芳, 王文清, 董星杰, 何汝杰. 面向一体化热防护的陶瓷基复合材料轻量化结构研究进展与挑战[J]. 材料工程, 2022, 50(10): 15-28.
Lu ZHANG, Fang YUAN, Wenqing WANG, Xingjie DONG, Rujie HE. Progress and challenges in lightweight ceramic matrix composite structures towards integrated thermal protection structure. Journal of Materials Engineering, 2022, 50(10): 15-28.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000890      或      http://jme.biam.ac.cn/CN/Y2022/V50/I10/15
Fig.1  轻量化点阵结构示意图
Fig.2  传统热防护结构
(a)新型一体化热防护结构[25];(b)基于金属波纹结构的新型一体化热防护结构[26];(c)基于石英/酚醛复合材料波纹结构的新型一体化热防护结构[27]
Fig.3  陶瓷基复合材料轻量化结构制造流程
(a)C-C/SiC陶瓷基复合材料点阵结构制备中的预制体制造流程[28];(b)C/SiC陶瓷基复合材料四棱锥点阵结构制备流程[30];(c)C/SiC陶瓷基复合材料波纹板点阵结构制备流程[31]
Fig.4  C/SiC陶瓷基复合材料轻量化点阵结构制备流程[32]
(a)环氧树脂基复合材料轻量化点阵结构预制体; (b)浸渍; (c)裂解; (d)C/SiC陶瓷基复合材料轻量化点阵结构样件
Fig.5  C/SiC陶瓷基复合材料点阵结构力学性能
(a)C/SiC陶瓷基复合材料四棱锥点阵结构三点弯曲实验[42];(b)C-C/SiC陶瓷基复合材料波纹点阵结构四点弯曲[43];(c)C/SiC四棱锥点阵结构面内压缩实验[44];(d)C/SiC四棱锥点阵结构面外压缩实验[32]
Core angle Specific bendingstrength/(MPa·g-1·cm3) Specific in-planecompression strength/(MPa·g-1·cm3) Specific out-of-plane compression strength/(MPa·g-1·cm3)
30° 24.76 20.49 0.37
45° 21.97 29.24 0.67
60° 17.78 11.11 0.86
75° 11.29 17.91 1.18
Table 1  C/SiC陶瓷基复合材料四棱锥点阵结构比强度[32]
Fig.6  C/SiC四棱锥点阵结构性能雷达图[32]
Fig.7  C/SiC四棱锥点阵结构代表性单元与热传导模型[59-61]
Fig.8  C/SiC四棱锥点阵结构热传导模型[62]
Fig.9  C/SiC陶瓷基复合材料点阵结构传热性能
(a)C/SiC四棱锥点阵结构温度分布云图[63]; (b)样件实验测试温度与模拟温度[64]
Fig.10  多层ITPS示意图[68]
1 陈玉峰, 洪长青, 胡成龙, 等. 空天飞行器用热防护陶瓷材料[J]. 现代技术陶瓷, 2017, 38 (5): 311- 390.
doi: 10.16253/j.cnki.37-1226/tq.2017.07.001
1 CHEN Y F , HONG C Q , HU C L , et al. Ceramic-based thermal protection materials for aerospace vehicles[J]. Advanced Ceramics, 2017, 38 (5): 311- 390.
doi: 10.16253/j.cnki.37-1226/tq.2017.07.001
2 黄红岩, 苏力军, 雷朝帅, 等. 可重复使用热防护材料应用与研究进展[J]. 航空学报, 2020, 41 (12): 023716.
2 HUANG H Y , SU L J , LEI C S , et al. Reusable thermal protective materials: application and research progress[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41 (12): 023716.
3 李志强, 吴振强, 魏龙, 等. 热防护系统结构完整性试验评估技术研究进[J]. 强度与环境, 2020, 27 (5): 19- 27.
doi: 10.19447/j.cnki.11-1773/v.2020.05.004
3 LI Z Q , WU Z Q , WEI L , et al. Advances of structural integrity test evaluation techniques for thermal protection systems[J]. Structure & Environment Engineering, 2020, 27 (5): 19- 27.
doi: 10.19447/j.cnki.11-1773/v.2020.05.004
4 时圣波, 王韧之, 严立, 等. 运载火箭尾段防热/承载一体化热防护系统设计及性能分析[J]. 上海航天, 2020, 37 (4): 64- 73.
4 SHI S B , WANG R Z , YAN L , et al. Design and property analysis of integrated thermal protection system for tail cabin of launch vehicle[J]. Aerospace Shanghai, 2020, 37 (4): 64- 73.
5 冯志海, 师建军, 孔磊, 等. 航天飞行器热防护系统低密度烧蚀防热材料研究进展[J]. 材料工程, 2020, 48 (8): 18- 24.
5 FENG Z H , SHI J J , KONG L , et al. Research progress in low-density ablative materials for thermal protection system of aerospace flight vehicles[J]. Journal of Materials Engineering, 2020, 48 (8): 18- 24.
6 韩杰才, 洪长青, 张幸红, 等. 新型轻质热防护复合材料的研究进展[J]. 载人航天, 2015, 21 (4): 315- 321.
doi: 10.3969/j.issn.1674-5825.2015.04.001
6 HAN J C , HONG C Q , ZHANG X H , et al. Research progress of novel lightweight thermal protection composites[J]. Manned Spaceflight, 2015, 21 (4): 315- 321.
doi: 10.3969/j.issn.1674-5825.2015.04.001
7 薛华飞, 姚秀荣, 程海明, 等. 热防护用轻质烧蚀材料现状与发展[J]. 哈尔滨理工大学学报, 2017, 22 (1): 123- 128.
doi: 10.15938/j.jhust.2017.01.022
7 XUE H F , YAO X R , CHENG H M , et al. Current situation development of lightweight ablation materials for thermal protection[J]. Journal of Harbin University of Science and Technology, 2017, 22 (1): 123- 128.
doi: 10.15938/j.jhust.2017.01.022
8 时圣波, 唐硕, 梁军. 临近空间飞行器防隔热/承载一体化热结构设计及力/热行为[J]. 装备环境工程, 2020, 17 (1): 36- 42.
8 SHI S B , TANG S , LIANG J . Design and thermomechanical behavior of full-composite structurally integrated thermal protection structure for near space vehicles[J]. Equipment Environmental Engineering, 2020, 17 (1): 36- 42.
9 XIE G N , WANG Q , SUNDEN B , et al. Thermomechanical optimization of lightweight thermal protection system under aerodynamic heating[J]. Applied Thermal Engineering, 2013, 59 (1/2): 425- 434.
10 SUZUKI T , AOKI T , OGASAWARA T , et al. Nonablative lightweight thermal protection system for Mars Aerofly by sample collection mission[J]. Acta Astronautica, 2017, 136, 407- 420.
doi: 10.1016/j.actaastro.2017.04.001
11 SOMMERS A , WANG Q , HAN X , et al. Ceramics and ceramic matrix composites for heat exchangers in advanced thermal systems-a review[J]. Applied Thermal Engineering, 2010, 30 (11/12): 1277- 1291.
12 张玉娣, 周新贵, 张长瑞. Cf/SiC陶瓷基复合材料的发展与应用现状[J]. 材料工程, 2005, (4): 60- 63.
doi: 10.3969/j.issn.1001-4381.2005.04.015
12 ZHANG Y D , ZHOU X G , ZHANG C R . Development and application of Cf/SiC ceramic matrix composites[J]. Journal of Materials Engineering, 2005, (4): 60- 63.
doi: 10.3969/j.issn.1001-4381.2005.04.015
13 田凌寒, 张强, 李逢舟. 碳化硅陶瓷基复合材料在固冲发动机上的应用[J]. 弹箭与制导学报, 2020, 40 (5): 72- 75.
doi: 10.15892/j.cnki.djzdxb.2020.05.018
13 TIAN L H , ZHANG Q , LI F Z . Application of silicon carbide based composite in solid propellant ramjet[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2020, 40 (5): 72- 75.
doi: 10.15892/j.cnki.djzdxb.2020.05.018
14 DORSEY J T , POTEET C C , WURSTER K E . Metallic thermal protection system requirements, environments, and integrated concepts[J]. Journal of Spacecraft and Rockets, 2004, 41 (2): 162- 172.
doi: 10.2514/1.9173
15 SUN Y T , LV S Q , YANG X G , et al. Mechanical modeling of a stitched sandwich thermal protection structure with ceramic-fiber-reinforced SiO2 aerogel as core layer[J]. Journal of Sandwich Structures & Materials, 2022, 24 (2): 1028- 1048.
16 AL-JOTHERY H K M , ALBARODY T M B , YUSOFF P S M , et al. A review of ultra-high temperature materials for thermal protection system[J]. IOP Conference Series: Materials Science and Engineering, 2020, 863, 12003.
doi: 10.1088/1757-899X/863/1/012003
17 WEI K , HE R J , CHENG X M , et al. A lightweight, high compression strength ultra high temperature ceramic corrugated panel with potential for thermal protection system applications[J]. Materials & Design, 2015, 66, 552- 556.
18 PADTURE N P . Advanced structural ceramics in aerospace propulsion[J]. Nature Materials, 2016, 15, 804- 809.
doi: 10.1038/nmat4687
19 熊健, 杜昀桐, 杨雯, 等. 轻质复合材料夹芯结构设计及力学性能最新进展[J]. 宇航学报, 2020, 41 (6): 749- 760.
19 XIONG J , DU Y T , YANG W , et al. Research progress on design and Mechanical properties of lightweight composite sandwich structures[J]. Journal of Astronautics, 2020, 41 (6): 749- 760.
20 韦凯, 裴永茂. 轻质复合材料及结构热膨胀调控设计研究进展[J]. 科学通报, 2017, 62 (1): 47- 60.
20 WEI K , PEI Y M . Development of designing lightweight composites and structures for tailorable thermal expansion[J]. Chinese Science Bulletin, 2017, 62 (1): 47- 60.
21 FINNEGAN K , KOOISTRA G , WADLEY H N G , et al. The compressive response of carbon fiber composite pyramidal truss sandwich cores[J]. International Journal of Materials Research, 2007, 98, 1264- 1272.
doi: 10.3139/146.101594
22 GEORGE T , DESHPANDE V S , WADLEY H N G . Mechanical response of carbon fiber composite sandwich panels with pyramidal truss cores[J]. Composites: Part A, 2013, 47, 31- 40.
doi: 10.1016/j.compositesa.2012.11.011
23 GOGU C , BAPANAPALLI S K , HAFTKA R T , et al. Comparison of materials for an integrated thermal protection system for spacecraft reentry[J]. Journal of Spacecraft and Rockets, 2009, 46 (3): 501- 513.
doi: 10.2514/1.35669
24 GOGU C , HAFTKA R T , BAPANAPALLI S K , et al. Dimensionality reduction approach for response surface approximations: application to thermal design[J]. AIAA Journal, 2009, 47 (7): 1700- 1708.
doi: 10.2514/1.41414
25 VILLANUEVA D, HAFTKA R T, SANKAR B V. Including future tests in the design of an integrated thermal protection system[C]//51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Orlando, USA, 2010.
26 VILLANUEVA D , HAFTKA R T , SANKAR B V . Including the effect of a future test and redesign in reliability calculations[J]. AIAA Journal, 2011, 49 (12): 2760- 2769.
doi: 10.2514/1.J051150
27 SHI S B , WANG Y F , YAN L , et al. Coupled ablation and thermal behavior of an all-composite structurally integrated thermal protection system: fabrication and modeling[J]. Composite Structures, 2020, 251, 112623.
doi: 10.1016/j.compstruct.2020.112623
28 SHI Y , DILEEP P K , HEIDENREICH B , et al. Determination and modeling of bending properties for continuous fiber reinforced C/C-SiC sandwich structure with grid core[J]. Composite Structures, 2018, 204, 198- 206.
doi: 10.1016/j.compstruct.2018.07.086
29 HEIDENREICH B , KOCH D , KRAFT H . C/C-SiC sandwich structures manufactured via liquid silicon infiltration[J]. Journal of Materials Research, 2017, 32 (17): 3383- 3393.
doi: 10.1557/jmr.2017.208
30 SONG Z Z , CHENG S , ZENG T , et al. Compressive behavior of C/SiC composite sandwich structure with stitched lattice core[J]. Composites: Part B, 2015, 69, 243- 248.
doi: 10.1016/j.compositesb.2014.10.012
31 CHEN T F , CHENG S , JIN L Z , et al. Fabrication process and mechanical properties of C/SiC corrugated core sandwich panel[J]. Ceramics International, 2021, 47, 3634- 3642.
doi: 10.1016/j.ceramint.2020.09.212
32 ZHANG L , YIN D Z , HE R J , et al. Lightweight C/SiC ceramic matrix composite structures with high loading capacity[J]. Advanced Engineering Materials, 2019, 21, 1801246.
doi: 10.1002/adem.201801246
33 LI Y , ZHANG L , HE R J , et al. Integrated thermal protection system based on C/SiC composite corrugated core sandwich plane structure[J]. Aerospace Science and Technology, 2019, 91, 607- 616.
doi: 10.1016/j.ast.2019.05.048
34 BALLA V K , KATE K H , SATYAVOLU J , et al. Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects[J]. Composites: Part B, 2019, 174, 106956.
doi: 10.1016/j.compositesb.2019.106956
35 KABIR S M F , MATHUR K , SEYAM A F M . A critical review on 3D printed continuous fiber-reinforced composites: history, mechanism, materials and properties[J]. Composite Structures, 2020, 232, 111476.
doi: 10.1016/j.compstruct.2019.111476
36 HAO W F , LIU Y , WANG T , et al. Failure analysis of 3D printed glass fiber/PA12 composite lattice structures using DIC[J]. Composite Structures, 2019, 225, 111192.
doi: 10.1016/j.compstruct.2019.111192
37 O'CONNOR H J , DOWLING D P . Low-pressure additive manufacturing of continuous fiber-reinforced polymer composites[J]. Polymer Composites, 2019, 40 (11): 4329- 4339.
doi: 10.1002/pc.25294
38 QIAO J , LI Y R , LI L Q . Ultrasound-assisted 3D printing of continuous fiber-reinforced thermoplastic(FRTP) composites[J]. Additive Manufacturing, 2019, 30, 100926.
39 HOU Z H , TIAN X Y , ZHENG Z Q , et al. A constitutive model for 3D printed continuous fiber reinforced composite structures with variable fiber content[J]. Composites: Part B, 2020, 189, 107893.
40 SINGH S , RAMAKRISHNA S , SINGH R . Material issues in additive manufacturing: a review[J]. Journal of Manufacturing Processes, 2017, 25, 185- 200.
41 LU Z L , CAO J W , SONG Z Q , et al. Research progress of ceramic matrix composite parts based on additive manufacturing technology[J]. Virtual and Physical Prototyping, 2019, 14 (4): 333- 348.
42 ZHANG L , CHEN Y F , HE R J , et al. Bending behavior of lightweight C/SiC pyramidal lattice core sandwich panels[J]. International Journal of Mechanical Sciences, 2020, 171, 105409.
43 SHI Y , HEIDENREICH B , DILEEP P K , et al. Characterization and simulation of bending properties of continuous fiber reinforced C/C-SiC sandwich structures[J]. Key Engineering Materials, 2017, 742, 215- 222.
44 CHEN Y F , ZHANG L , ZHAO Y N , et al. Mechanical behaviors of C/SiC pyramidal lattice core sandwich panel under in-plane compression[J]. Composite Structures, 2019, 214, 103- 113.
45 CODRINGTON J , NGUYEN P , HO S Y , et al. Induction heating apparatus for high temperature testing of thermo-mechanical properties[J]. Applied Thermal Engineering, 2009, 29 (14/15): 2783- 2789.
46 MA Q M , GUO R X , ZHAO Z M , et al. Mechanical properties of concrete at high temperature-a review[J]. Construction and Building Materials, 2015, 93, 371- 383.
47 CHENG T B , WANG X R , ZHANG R B , et al. Tensile properties of two-dimensional carbon fiber reinforced silicon carbide composites at temperatures up to 2300℃[J]. Journal of the European Ceramic Society, 2020, 40 (3): 630- 635.
48 CHENG X M , QU Z L , HE R J , et al. An ultra-high temperature testing instrument under oxidation environment up to 1800℃[J]. Review of Scientific Instruments, 2016, 87, 045108.
49 白世鸿, 乔生儒, 舒武炳, 等. 先进结构陶瓷高温力学性能测试与表征[J]. 材料工程, 2000, (10): 45- 48.
49 BAI S H , QIAO S R , SHU W B , et al. Testing and characterization of mechanical properties for advanced ceramics at high temperatures[J]. Journal of Materials Engineering, 2000, (10): 45- 48.
50 包亦望, 聂光临, 万德田. 相对法及特殊条件下陶瓷材料力学性能评价[J]. 硅酸盐学报, 2017, 45 (8): 1054- 1065.
50 BAO Y W , NIE G L , WAN D T . Relative method and evaluating the mechanical properties of ceramic materials under special conditions[J]. Journal of the Chinese Ceramic Society, 2017, 45 (8): 1054- 1065.
51 YANG F , CHENG S , ZENG T , et al. Mechanical and oxidation properties of C/SiC corrugated lattice core composite sandwich panels[J]. Composite Structures, 2016, 158, 137- 143.
52 CHENG L F , XU Y D , ZHANG L T , et al. Oxidation behavior of three dimensional C/SiC composites in air and combustion gas environments[J]. Carbon, 2000, 38 (15): 2103- 2108.
53 CHENG L F , XU Y D , ZHANG L T , et al. Effect of glass sealing on the oxidation behavior of three dimensional C/SiC composites in air[J]. Carbon, 2001, 39 (8): 1127- 1133.
54 CHENG L F , XU Y D , ZHANG L T , et al. Oxidation behavior from room temperature to 1500℃ of 3D-C/SiC composites with different coatings[J]. Journal of the American Ceramic Society, 2022, 85 (4): 989- 991.
55 XIANG Y , LI W , WANG S , et al. Oxidation behavior of oxidation protective coatings for PIP-C/SiC composites at 1500℃[J]. Ceramics International, 2012, 38 (1): 9- 13.
56 WEI K , PENG Y , WANG K Y , et al. High temperature mechanical properties of lightweight C/SiC composite pyramidal lattice core sandwich panel[J]. Composite Structures, 2017, 178, 467- 475.
57 DARYABEIGI K . Heat transfer in adhesively bonded honeycomb core panels[J]. Journal of Thermophysics and Heat Transfer, 2002, 16, 217- 221.
58 SWANN R T, PITTMAN C M. Analysis of effective thermal conductivities of honeycomb-core and corrugated-core sandwich panel[R]. Hwston, USA, National Aeronautics and Space Administration, 1961.
59 CHENG X M , WEI K , HE R J , et al. The equivalent thermal conductivity of lattice core sandwich structure: a predictive model[J]. Applied Thermal Engineering, 2016, 93, 236- 243.
60 ZHAO D L , QIAN X , GU X K , et al. Measurement techniques for thermal conductivity and interfacial thermal conductance of bulk and thin film materials[J]. Journal of Electronic Packaging, 2016, 138 (4): 40802.
61 WANG X W , HU H P , XU X F . Photo-acoustic measurement of thermal conductivity of thin films and bulk materials[J]. Journal of Heat Transfer, 2001, 123 (1): 138- 144.
62 WEI K , WANG X W , YANG X J , et al. Heat transfer mechanism and characteristics of lightweight high temperature ceramic cellular sandwich[J]. Applied Thermal Engineering, 2019, 154, 562- 572.
63 WEI K , HE R J , CHENG X M , et al. Fabrication and heat transfer characteristics of C/SiC pyramidal core lattice sandwich panel[J]. Applied Thermal Engineering, 2015, 81, 10- 17.
64 CHEN Y F , ZHANG L , HE C W , et al. Thermal insulation performance and heat transfer mechanism of C/SiC corrugated lattice core sandwich panel[J]. Aerospace Science and Technology, 2021, 111, 106539.
65 CHEN Y F , TAO Y , XU B S , et al. Assessment of thermal-mechanical performance with structural efficiency concept on design of lattice-core thermal protection system[J]. Applied Thermal Engineering, 2018, 143, 200- 208.
66 WANG X W , WEI K , TAO Y , et al. Thermal protection system integrating graded insulation materials and multilayer ceramic matrix composite cellular sandwich panels[J]. Composite Structures, 2019, 209, 523- 534.
67 XU N X , XU Y J , ZHANG W H , et al. Design and analysis of multi-layer integrated thermal protection system based on ceramic matrix composite and titanium alloy lattice sandwich[J]. IOP Conference Series: Materials Science and Engineering, 2019, 531, 012059.
68 XU Y J , XU N X , ZHANG W H , et al. A multi-layer integrated thermal protection system with C/SiC composite and Ti alloy lattice sandwich[J]. Composite Structures, 2019, 230, 111507.
69 朱健峰, 戴宁, 刘乐乐. 功能性点阵结构设计优化技术研究[J]. 机械设计与制造工程, 2020, 49 (7): 1- 6.
69 ZHU J F , DAI N , LIU L L . Research on the design and optimization technology of functional lattice structure[J]. Machine Design and Manufacturing Engineering, 2020, 49 (7): 1- 6.
[1] 田文扬, 刘奋, 韦春华, 夏卫生, 杨云珍. DP980高强钢动态拉伸力学行为[J]. 材料工程, 2017, 45(3): 47-53.
[2] 王玉昌, 兰鹏, 李杨, 张家泉. 合金元素对Fe-Mn-C系TWIP钢力学行为的影响[J]. 材料工程, 2015, 43(9): 30-38.
[3] 高禹, 王钊, 陆春, 包建文, 宋恩鹏, 董尚利. 高性能树脂基复合材料典型空天环境下动态力学行为研究现状[J]. 材料工程, 2015, 43(3): 106-112.
[4] 蔡登安, 周光明, 王新峰, 钱元, 刘伟先. 双向玻纤织物复合材料双轴拉伸载荷下的力学行为[J]. 材料工程, 2014, 0(5): 73-77.
[5] 郭洪宝, 王波, 矫桂琼, 刘永胜. 2D-Cf/SiC复合材料缺口试件拉伸力学行为研究[J]. 材料工程, 2013, 0(5): 83-88.
[6] 郭峰, 李杰, 李志, 王俊丽, 古立新, 王瑞. 单轴拉伸下AerMet100钢中稀土夹杂物开裂过程的原位观察[J]. 材料工程, 2008, 0(12): 24-29.
[7] 卢雅琳, 黄维超, 江海涛, 李淼泉. 工艺参数对半固态Al-4Cu-Mg合金力学行为的影响[J]. 材料工程, 2005, 0(5): 11-14.
[8] 范宣华, 蔡力勋, 胡绍全, 李聪. Zr-4合金常规力学行为研究与低周疲劳断口分析[J]. 材料工程, 2005, 0(1): 37-40.
[9] 袁超, 郭建亭, 冀光. 一种低成本镍基铸造高温合金的高温力学行为[J]. 材料工程, 2004, 0(5): 12-15,39.
[10] 张玉娣, 张长瑞, 李俊生. C/SiC陶瓷基复合材料表面Si/SiC涂层制备[J]. 材料工程, 2004, 0(10): 29-31,35.
[11] 周元鑫, 夏源明. 应变率对Cf/Al金属基复合材料力学性能的影响[J]. 材料工程, 2000, 0(9): 3-6.
[12] 常凤莲, 王世栋, 王毓锐, 赵连城. Cu-Zn-Al-Mn-Ni-Ti合金的显微组织及力学行为 [J]. 材料工程, 1994, 0(4): 9-16.
[13] 吴学仁, 颜鸣皋. 力学行为研究在新材料发展中的作用——评第六届国际材料的力学行为会议[J]. 材料工程, 1992, 0(1): 2-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn