Progress and challenges in lightweight ceramic matrix composite structures towards integrated thermal protection structure
Lu ZHANG1, Fang YUAN2, Wenqing WANG1, Xingjie DONG1, Rujie HE1,3,*()
1 Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China 2 Aerospace Research Institute of Materials & Processing Technology, Beijing 100076, China 3 Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing 100081, China
Hypersonic flight technology is an important direction in the development of aerospace field and plays an important role in national defense security. The thermal protection materials and structures are the key to the safe service of hypersonic vehicles in extreme environments. On one hand, the thermal protection materials and structures must be able to withstand the harsh aerodynamic thermal environment, and on the other hand, they also must reduce its mass to increase the vehicle payload. Therefore, it is necessary to develop thermal protection structures that can combine high temperature resistance, light weight, and load-bearing characteristics at the same time. The manufacturing methods of lightweight C/SiC ceramic matrix composite structures were firstly introduced in this review, then the research on the room temperature and high temperature mechanical behavior, heat transfer mechanism and behavior of the lightweight C/SiC ceramic matrix composite structures were summarized. At last, integrated thermal protection structures with high temperature resistance and lightweight load-bearing were reviewed based on the lightweight C/SiC ceramic matrix composite structures. Finally, the future challenges of the lightweight ceramic matrix composite structures towards thermal protection application were also forecasted in four aspects: new design theory and method, new manufacturing technology, service characteristics and multi-functional integrated design and realization. This review provides some guidance for the research and development of novel thermal protection structures for the next generation hypersonic flight.
CHEN Y F , HONG C Q , HU C L , et al. Ceramic-based thermal protection materials for aerospace vehicles[J]. Advanced Ceramics, 2017, 38 (5): 311- 390.
doi: 10.16253/j.cnki.37-1226/tq.2017.07.001
HUANG H Y , SU L J , LEI C S , et al. Reusable thermal protective materials: application and research progress[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41 (12): 023716.
LI Z Q , WU Z Q , WEI L , et al. Advances of structural integrity test evaluation techniques for thermal protection systems[J]. Structure & Environment Engineering, 2020, 27 (5): 19- 27.
doi: 10.19447/j.cnki.11-1773/v.2020.05.004
SHI S B , WANG R Z , YAN L , et al. Design and property analysis of integrated thermal protection system for tail cabin of launch vehicle[J]. Aerospace Shanghai, 2020, 37 (4): 64- 73.
FENG Z H , SHI J J , KONG L , et al. Research progress in low-density ablative materials for thermal protection system of aerospace flight vehicles[J]. Journal of Materials Engineering, 2020, 48 (8): 18- 24.
HAN J C , HONG C Q , ZHANG X H , et al. Research progress of novel lightweight thermal protection composites[J]. Manned Spaceflight, 2015, 21 (4): 315- 321.
doi: 10.3969/j.issn.1674-5825.2015.04.001
XUE H F , YAO X R , CHENG H M , et al. Current situation development of lightweight ablation materials for thermal protection[J]. Journal of Harbin University of Science and Technology, 2017, 22 (1): 123- 128.
doi: 10.15938/j.jhust.2017.01.022
SHI S B , TANG S , LIANG J . Design and thermomechanical behavior of full-composite structurally integrated thermal protection structure for near space vehicles[J]. Equipment Environmental Engineering, 2020, 17 (1): 36- 42.
9
XIE G N , WANG Q , SUNDEN B , et al. Thermomechanical optimization of lightweight thermal protection system under aerodynamic heating[J]. Applied Thermal Engineering, 2013, 59 (1/2): 425- 434.
10
SUZUKI T , AOKI T , OGASAWARA T , et al. Nonablative lightweight thermal protection system for Mars Aerofly by sample collection mission[J]. Acta Astronautica, 2017, 136, 407- 420.
doi: 10.1016/j.actaastro.2017.04.001
11
SOMMERS A , WANG Q , HAN X , et al. Ceramics and ceramic matrix composites for heat exchangers in advanced thermal systems-a review[J]. Applied Thermal Engineering, 2010, 30 (11/12): 1277- 1291.
ZHANG Y D , ZHOU X G , ZHANG C R . Development and application of Cf/SiC ceramic matrix composites[J]. Journal of Materials Engineering, 2005, (4): 60- 63.
doi: 10.3969/j.issn.1001-4381.2005.04.015
TIAN L H , ZHANG Q , LI F Z . Application of silicon carbide based composite in solid propellant ramjet[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2020, 40 (5): 72- 75.
doi: 10.15892/j.cnki.djzdxb.2020.05.018
14
DORSEY J T , POTEET C C , WURSTER K E . Metallic thermal protection system requirements, environments, and integrated concepts[J]. Journal of Spacecraft and Rockets, 2004, 41 (2): 162- 172.
doi: 10.2514/1.9173
15
SUN Y T , LV S Q , YANG X G , et al. Mechanical modeling of a stitched sandwich thermal protection structure with ceramic-fiber-reinforced SiO2 aerogel as core layer[J]. Journal of Sandwich Structures & Materials, 2022, 24 (2): 1028- 1048.
16
AL-JOTHERY H K M , ALBARODY T M B , YUSOFF P S M , et al. A review of ultra-high temperature materials for thermal protection system[J]. IOP Conference Series: Materials Science and Engineering, 2020, 863, 12003.
doi: 10.1088/1757-899X/863/1/012003
17
WEI K , HE R J , CHENG X M , et al. A lightweight, high compression strength ultra high temperature ceramic corrugated panel with potential for thermal protection system applications[J]. Materials & Design, 2015, 66, 552- 556.
18
PADTURE N P . Advanced structural ceramics in aerospace propulsion[J]. Nature Materials, 2016, 15, 804- 809.
doi: 10.1038/nmat4687
XIONG J , DU Y T , YANG W , et al. Research progress on design and Mechanical properties of lightweight composite sandwich structures[J]. Journal of Astronautics, 2020, 41 (6): 749- 760.
WEI K , PEI Y M . Development of designing lightweight composites and structures for tailorable thermal expansion[J]. Chinese Science Bulletin, 2017, 62 (1): 47- 60.
21
FINNEGAN K , KOOISTRA G , WADLEY H N G , et al. The compressive response of carbon fiber composite pyramidal truss sandwich cores[J]. International Journal of Materials Research, 2007, 98, 1264- 1272.
doi: 10.3139/146.101594
22
GEORGE T , DESHPANDE V S , WADLEY H N G . Mechanical response of carbon fiber composite sandwich panels with pyramidal truss cores[J]. Composites: Part A, 2013, 47, 31- 40.
doi: 10.1016/j.compositesa.2012.11.011
23
GOGU C , BAPANAPALLI S K , HAFTKA R T , et al. Comparison of materials for an integrated thermal protection system for spacecraft reentry[J]. Journal of Spacecraft and Rockets, 2009, 46 (3): 501- 513.
doi: 10.2514/1.35669
24
GOGU C , HAFTKA R T , BAPANAPALLI S K , et al. Dimensionality reduction approach for response surface approximations: application to thermal design[J]. AIAA Journal, 2009, 47 (7): 1700- 1708.
doi: 10.2514/1.41414
25
VILLANUEVA D, HAFTKA R T, SANKAR B V. Including future tests in the design of an integrated thermal protection system[C]//51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Orlando, USA, 2010.
26
VILLANUEVA D , HAFTKA R T , SANKAR B V . Including the effect of a future test and redesign in reliability calculations[J]. AIAA Journal, 2011, 49 (12): 2760- 2769.
doi: 10.2514/1.J051150
27
SHI S B , WANG Y F , YAN L , et al. Coupled ablation and thermal behavior of an all-composite structurally integrated thermal protection system: fabrication and modeling[J]. Composite Structures, 2020, 251, 112623.
doi: 10.1016/j.compstruct.2020.112623
28
SHI Y , DILEEP P K , HEIDENREICH B , et al. Determination and modeling of bending properties for continuous fiber reinforced C/C-SiC sandwich structure with grid core[J]. Composite Structures, 2018, 204, 198- 206.
doi: 10.1016/j.compstruct.2018.07.086
29
HEIDENREICH B , KOCH D , KRAFT H . C/C-SiC sandwich structures manufactured via liquid silicon infiltration[J]. Journal of Materials Research, 2017, 32 (17): 3383- 3393.
doi: 10.1557/jmr.2017.208
30
SONG Z Z , CHENG S , ZENG T , et al. Compressive behavior of C/SiC composite sandwich structure with stitched lattice core[J]. Composites: Part B, 2015, 69, 243- 248.
doi: 10.1016/j.compositesb.2014.10.012
31
CHEN T F , CHENG S , JIN L Z , et al. Fabrication process and mechanical properties of C/SiC corrugated core sandwich panel[J]. Ceramics International, 2021, 47, 3634- 3642.
doi: 10.1016/j.ceramint.2020.09.212
32
ZHANG L , YIN D Z , HE R J , et al. Lightweight C/SiC ceramic matrix composite structures with high loading capacity[J]. Advanced Engineering Materials, 2019, 21, 1801246.
doi: 10.1002/adem.201801246
33
LI Y , ZHANG L , HE R J , et al. Integrated thermal protection system based on C/SiC composite corrugated core sandwich plane structure[J]. Aerospace Science and Technology, 2019, 91, 607- 616.
doi: 10.1016/j.ast.2019.05.048
34
BALLA V K , KATE K H , SATYAVOLU J , et al. Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects[J]. Composites: Part B, 2019, 174, 106956.
doi: 10.1016/j.compositesb.2019.106956
35
KABIR S M F , MATHUR K , SEYAM A F M . A critical review on 3D printed continuous fiber-reinforced composites: history, mechanism, materials and properties[J]. Composite Structures, 2020, 232, 111476.
doi: 10.1016/j.compstruct.2019.111476
36
HAO W F , LIU Y , WANG T , et al. Failure analysis of 3D printed glass fiber/PA12 composite lattice structures using DIC[J]. Composite Structures, 2019, 225, 111192.
doi: 10.1016/j.compstruct.2019.111192
37
O'CONNOR H J , DOWLING D P . Low-pressure additive manufacturing of continuous fiber-reinforced polymer composites[J]. Polymer Composites, 2019, 40 (11): 4329- 4339.
doi: 10.1002/pc.25294
38
QIAO J , LI Y R , LI L Q . Ultrasound-assisted 3D printing of continuous fiber-reinforced thermoplastic(FRTP) composites[J]. Additive Manufacturing, 2019, 30, 100926.
39
HOU Z H , TIAN X Y , ZHENG Z Q , et al. A constitutive model for 3D printed continuous fiber reinforced composite structures with variable fiber content[J]. Composites: Part B, 2020, 189, 107893.
40
SINGH S , RAMAKRISHNA S , SINGH R . Material issues in additive manufacturing: a review[J]. Journal of Manufacturing Processes, 2017, 25, 185- 200.
41
LU Z L , CAO J W , SONG Z Q , et al. Research progress of ceramic matrix composite parts based on additive manufacturing technology[J]. Virtual and Physical Prototyping, 2019, 14 (4): 333- 348.
42
ZHANG L , CHEN Y F , HE R J , et al. Bending behavior of lightweight C/SiC pyramidal lattice core sandwich panels[J]. International Journal of Mechanical Sciences, 2020, 171, 105409.
43
SHI Y , HEIDENREICH B , DILEEP P K , et al. Characterization and simulation of bending properties of continuous fiber reinforced C/C-SiC sandwich structures[J]. Key Engineering Materials, 2017, 742, 215- 222.
44
CHEN Y F , ZHANG L , ZHAO Y N , et al. Mechanical behaviors of C/SiC pyramidal lattice core sandwich panel under in-plane compression[J]. Composite Structures, 2019, 214, 103- 113.
45
CODRINGTON J , NGUYEN P , HO S Y , et al. Induction heating apparatus for high temperature testing of thermo-mechanical properties[J]. Applied Thermal Engineering, 2009, 29 (14/15): 2783- 2789.
46
MA Q M , GUO R X , ZHAO Z M , et al. Mechanical properties of concrete at high temperature-a review[J]. Construction and Building Materials, 2015, 93, 371- 383.
47
CHENG T B , WANG X R , ZHANG R B , et al. Tensile properties of two-dimensional carbon fiber reinforced silicon carbide composites at temperatures up to 2300℃[J]. Journal of the European Ceramic Society, 2020, 40 (3): 630- 635.
48
CHENG X M , QU Z L , HE R J , et al. An ultra-high temperature testing instrument under oxidation environment up to 1800℃[J]. Review of Scientific Instruments, 2016, 87, 045108.
BAI S H , QIAO S R , SHU W B , et al. Testing and characterization of mechanical properties for advanced ceramics at high temperatures[J]. Journal of Materials Engineering, 2000, (10): 45- 48.
BAO Y W , NIE G L , WAN D T . Relative method and evaluating the mechanical properties of ceramic materials under special conditions[J]. Journal of the Chinese Ceramic Society, 2017, 45 (8): 1054- 1065.
51
YANG F , CHENG S , ZENG T , et al. Mechanical and oxidation properties of C/SiC corrugated lattice core composite sandwich panels[J]. Composite Structures, 2016, 158, 137- 143.
52
CHENG L F , XU Y D , ZHANG L T , et al. Oxidation behavior of three dimensional C/SiC composites in air and combustion gas environments[J]. Carbon, 2000, 38 (15): 2103- 2108.
53
CHENG L F , XU Y D , ZHANG L T , et al. Effect of glass sealing on the oxidation behavior of three dimensional C/SiC composites in air[J]. Carbon, 2001, 39 (8): 1127- 1133.
54
CHENG L F , XU Y D , ZHANG L T , et al. Oxidation behavior from room temperature to 1500℃ of 3D-C/SiC composites with different coatings[J]. Journal of the American Ceramic Society, 2022, 85 (4): 989- 991.
55
XIANG Y , LI W , WANG S , et al. Oxidation behavior of oxidation protective coatings for PIP-C/SiC composites at 1500℃[J]. Ceramics International, 2012, 38 (1): 9- 13.
56
WEI K , PENG Y , WANG K Y , et al. High temperature mechanical properties of lightweight C/SiC composite pyramidal lattice core sandwich panel[J]. Composite Structures, 2017, 178, 467- 475.
57
DARYABEIGI K . Heat transfer in adhesively bonded honeycomb core panels[J]. Journal of Thermophysics and Heat Transfer, 2002, 16, 217- 221.
58
SWANN R T, PITTMAN C M. Analysis of effective thermal conductivities of honeycomb-core and corrugated-core sandwich panel[R]. Hwston, USA, National Aeronautics and Space Administration, 1961.
59
CHENG X M , WEI K , HE R J , et al. The equivalent thermal conductivity of lattice core sandwich structure: a predictive model[J]. Applied Thermal Engineering, 2016, 93, 236- 243.
60
ZHAO D L , QIAN X , GU X K , et al. Measurement techniques for thermal conductivity and interfacial thermal conductance of bulk and thin film materials[J]. Journal of Electronic Packaging, 2016, 138 (4): 40802.
61
WANG X W , HU H P , XU X F . Photo-acoustic measurement of thermal conductivity of thin films and bulk materials[J]. Journal of Heat Transfer, 2001, 123 (1): 138- 144.
62
WEI K , WANG X W , YANG X J , et al. Heat transfer mechanism and characteristics of lightweight high temperature ceramic cellular sandwich[J]. Applied Thermal Engineering, 2019, 154, 562- 572.
63
WEI K , HE R J , CHENG X M , et al. Fabrication and heat transfer characteristics of C/SiC pyramidal core lattice sandwich panel[J]. Applied Thermal Engineering, 2015, 81, 10- 17.
64
CHEN Y F , ZHANG L , HE C W , et al. Thermal insulation performance and heat transfer mechanism of C/SiC corrugated lattice core sandwich panel[J]. Aerospace Science and Technology, 2021, 111, 106539.
65
CHEN Y F , TAO Y , XU B S , et al. Assessment of thermal-mechanical performance with structural efficiency concept on design of lattice-core thermal protection system[J]. Applied Thermal Engineering, 2018, 143, 200- 208.
66
WANG X W , WEI K , TAO Y , et al. Thermal protection system integrating graded insulation materials and multilayer ceramic matrix composite cellular sandwich panels[J]. Composite Structures, 2019, 209, 523- 534.
67
XU N X , XU Y J , ZHANG W H , et al. Design and analysis of multi-layer integrated thermal protection system based on ceramic matrix composite and titanium alloy lattice sandwich[J]. IOP Conference Series: Materials Science and Engineering, 2019, 531, 012059.
68
XU Y J , XU N X , ZHANG W H , et al. A multi-layer integrated thermal protection system with C/SiC composite and Ti alloy lattice sandwich[J]. Composite Structures, 2019, 230, 111507.
ZHU J F , DAI N , LIU L L . Research on the design and optimization technology of functional lattice structure[J]. Machine Design and Manufacturing Engineering, 2020, 49 (7): 1- 6.