Structure analysis and typical applications of manganese oxides in energy and environment
Siyu XU1, De LI1, Jialu LI1, Feng SHEN1,*(), Peng ZHENG2,*()
1 Agro-Environmental Protection Institute(Ministry of Agriculture and Rural Affairs), Tianjin 300191, China 2 College of Horticulture, South China Agricultural University, Guangzhou 510642, China
As one of the most common transition metal oxides, manganese oxides have many advantages and show great potential in many fields. Its catalytic activity, adsorption capacity, stability, and other properties of manganese oxides can be adjusted by changing its crystal, morphology, pore structure and oxygen vacancies. To improve the MnOX activity performance, various preparation methods have been developed to adjust its crystal structure and morphology structure. In this work, the relationship between the structure of different crystalline manganese dioxides (α, β, γ, δ, λ) and their catalytic activity/adsorption performance activity was studied. The preparation methods on the morphologies structure (nanorods, nanosheets, nanoflowers, nanospheres) of MnOX materials were comprehensively summarized. Then, the typical application performance of manganese oxides materials in the energy file (catalytic conversion of biomass, electrochemistry) and environment (decomposition of gas pollutants, adsorption of heavy metals, degradation of organic pollutants) were summarized. Finally, the problems such as complicated action mechanism and poor stability of MnOX were analyzed.MnOX still has great application potential in the fields of environment and energy in the future.
SONG Z G , LIAN F , YU Z H , et al. Synthesis and characterization of a novel MnOX-loaded biochar and its adsorption properties for Cu2+ in aqueous solution[J]. Chemical Engineering Journal, 2014, 242, 36- 42.
doi: 10.1016/j.cej.2013.12.061
XU N C , SHI D D . Preparation of manganese dioxide nanomaterials with different crystalline and their adsorption properties to methylene blue[J]. Inorganic Chemicals Industry, 2021, 53 (3): 44- 47.
3
CHENG F Y , ZHANG T R , ZHANG Y , et al. Enhancing electrocatalytic oxygen reduction on MnO2 with vacancies[J]. Angewandte Chemie-International Edition, 2013, 52 (9): 2474- 2477.
doi: 10.1002/anie.201208582
4
YANG Y , ZHANG S Z , WANG S W , et al. Ball milling synthesized MnOX as highly active catalyst for gaseous POPs removal: significance of mechanochemically induced oxygen vacancies[J]. Environmental Science & Technology, 2015, 49 (7): 4473- 4480.
5
ZHU G X , ZHU J G , JIANG W J , et al. Surface oxygen vacancy induced α-MnO2 nanofiber for highly efficient ozone elimination[J]. Applied Catalysis B: Environmental, 2017, 209, 729- 737.
doi: 10.1016/j.apcatb.2017.02.068
6
符志伟. 锰、钴氧化物的制备及其催化燃烧性能研究[D]. 广州: 广东工业大学, 2015.
6
FU Z W. Preparation of manganese, cobalt oxide catalysts and their application in catalytic combustion[D]. Guangzhou: Guangdong University of Technology, 2015.
7
ZHANG L , XIE X Y , WANG H B , et al. Boosting electrocatalytic N2 reduction by MnO2 with oxygen vacancies[J]. Chemical Communications, 2019, 55 (32): 4627- 4630.
doi: 10.1039/C9CC00936A
8
LIU J C , CHEN W P , HU X B , et al. Effects of MnO2 crystal structure on the sorption and oxidative reactivity toward thallium(Ⅰ)[J]. Chemical Engineering Journal, 2020, 416, 127919.
9
ZHANG B , CHEN D , LIU H B , et al. Selective catalytic reduction of NO with NH3 over high purity palygorskite-supported MnO2 with different crystal structures[J]. Aerosol and Air Quality Research, 2020, 20 (5): 1155- 1165.
doi: 10.4209/aaqr.2020.03.0099
10
HAYASHI E , YAMAGUCHI Y , KAMATA K , et al. Effect of MnO2 crystal structure on aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid[J]. Journal of the American Chemical Society, 2019, 141 (2): 890- 900.
doi: 10.1021/jacs.8b09917
TANG H L , REN Y . Preparation, microstructure and electrochemical performance of nano-sized MnO2[J]. Materials for Mechanical Engineering, 2018, 42 (7): 28- 31.
12
RONG S P , ZHANG P Y , LIU F , et al. Engineering crystal facet of α-MnO2 nanowire for highly efficient catalytic oxidation of carcinogenic airborne formaldehyde[J]. ACS Catalysis, 2018, 8 (4): 3435- 3446.
doi: 10.1021/acscatal.8b00456
13
JI F , MEN Y , WANG J G , et al. Promoting diesel soot combustion efficiency by tailoring the shapes and crystal facets of nanoscale Mn3O4[J]. Applied Catalysis B: Environmental, 2019, 242, 227- 237.
doi: 10.1016/j.apcatb.2018.09.092
XIA A , HAN Y P , ZENG X X , et al. Preparation and electrochemical performance of α-MnO2/SnO2 composites electrode[J]. Journal of Shaanxi University of Science & Technology, 2021, 39 (4): 103- 109.
doi: 10.3969/j.issn.1000-5811.2021.04.016
15
HASHEM A M , ABDEL-GHANY A E , EL-TAWIL R , et al. Urchin-like α-MnO2 formed by nanoneedles for high-performance lithium batteries[J]. Ionics, 2016, 22 (12): 2263- 2271.
doi: 10.1007/s11581-016-1771-5
16
BALAKUMAR V , RYU J W , KIM H , et al. Ultrasonic synthesis of α-MnO2 nanorods: an efficient catalytic conversion of refractory pollutant, methylene blue[J]. Ultrasonics Sonochemistry, 2020, 62, 104870.
doi: 10.1016/j.ultsonch.2019.104870
17
LI W X , CUI X Y , ZENG R , et al. Performance modulation of α-MnO2 nanowires by crystal facet engineering[J]. Scientific Reports, 2015, 5, 8987.
doi: 10.1038/srep08987
18
LUO J M , MENG X Y , CRITTENDEN J , et al. Arsenic adsorption on α-MnO2 nanofibers and the significance of (100) facet as compared with (110)[J]. Chemical Engineering Journal, 2018, 331, 492- 500.
doi: 10.1016/j.cej.2017.08.123
19
ROSENBERG S , HINTENNACH A . In situ formation of α-MnO2 nanowires as catalyst for sodium-air batteries[J]. Journal of Power Sources, 2015, 274, 1043- 1048.
doi: 10.1016/j.jpowsour.2014.10.187
WANG J F , YANG H P , WANG J , et al. Preparation and catalytic property of β-MnO2 ball-flower self-assembled by nanorods[J]. New Chemical Materials, 2017, 45 (3): 160- 162.
21
DUAN Y P , PANG H F , ZHANG Y H , et al. Morphology-controlled synthesis and microwave absorption properties of β-MnO2 microncube with rectangular pyramid[J]. Materials Characterization, 2016, 112, 206- 212.
doi: 10.1016/j.matchar.2015.12.024
22
SELIM M S , HAO Z F , JIANG Y , et al. Controlled-synthesis of β-MnO2 nanorods through a γ-manganite precursor route[J]. Materials Chemistry and Physics, 2019, 235, 121733.
doi: 10.1016/j.matchemphys.2019.121733
23
SU D W , AHN H J , WANG G X . β-MnO2 nanorods with exposed tunnel structures as high-performance cathode materials for sodium-ion batteries[J]. NPG Asia Materials, 2013, 5, 70.
doi: 10.1038/am.2013.56
24
CHEN C , XU K , JI X , et al. Promoted electrochemical performance of β-MnO2 through surface engineering[J]. ACS Applied Materials & Interfaces, 2017, 9 (17): 15176- 15181.
DENG H M , WANG Y L , WU H H , et al. Characteristics of Tl(Ⅰ) adsorption on γ-MnO2[J]. Research of Environmental Sciences, 2015, 28 (1): 103- 109.
26
DINH V P , LE N C , NGUYEN N T , et al. Determination of cobalt in seawater using neutron activation analysis after preconcentration by adsorption onto γ-MnO2 nanomaterial[J]. Journal of Chemistry, 2018, 2018, 9126491.
27
ZHAO Z W , GENG C , YANG C , et al. A novel flake-ball-like magnetic Fe3O4/γ-MnO2 meso-porous nano-composite: adsorption of fluorinion and effect of water chemistry[J]. Chemosphere, 2018, 209, 173- 181.
doi: 10.1016/j.chemosphere.2018.06.104
28
ZHAO J Z , TAO Z L , LIANG J , et al. Facile synthesis of nanoporous γ-MnO2 structures and their application in rechargeable Li-ion batteries[J]. Crystal Growth & Design, 2008, 8 (8): 2799- 2805.
29
FU X B , FENG J Y , WANG H , et al. Room temperature synthesis of a novel γ-MnO2 hollow structure for aerobic oxidation of benzyl alcohol[J]. Nanotechnology, 2009, 20 (37): 375601.
doi: 10.1088/0957-4484/20/37/375601
30
ZENG X H , CHENG G , LIU Q , et al. Novel ordered mesoporous γ-MnO2 catalyst for high-performance catalytic oxidation of toluene and o-xylene[J]. Industrial & Engineering Chemistry Research, 2019, 58 (31): 13926- 13934.
31
CHEN L , ZHANG J P , LI Y X , et al. Taming NO oxidation efficiency by γ-MnO2 morphology regulation[J]. Catalysis Science & Technology, 2020, 10 (17): 5996- 6005.
32
CHOU S , CHENG F , CHEN J . Electrodeposition synthesis and electrochemical properties of nanostructured γ-MnO2 films[J]. Journal of Power Sources, 2006, 162 (1): 727- 734.
doi: 10.1016/j.jpowsour.2006.06.033
33
ALFARUQI M H , MATHEW V , GIM J , et al. Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system[J]. Chemistry of Materials, 2015, 27 (10): 3609- 3620.
doi: 10.1021/cm504717p
34
XIE A , TAO F , JIANG C , et al. A coralliform-structured γ-MnO2/polyaniline nanocomposite for high-performance supercapacitors[J]. Journal of Electroanalytical Chemistry, 2017, 789, 29- 37.
doi: 10.1016/j.jelechem.2017.02.032
SUN M T , HUANG B C , MA J W , et al. Morphological effects of manganese dioxide on catalytic reactions for low-temperature NH3-SCR[J]. Acta Physico-Chimica Sinica, 2016, 32 (6): 1501- 1510.
DONG X , ZHAO P , YU L , et al. Effects of low molecular weight organic acids on As(Ⅲ) adsorption by δ-MnO2[J]. Sichuan Environment, 2021, 40 (3): 19- 23.
37
BEGUM H , AHMED M S , JEON S . A novel δ-MnO2 with carbon nanotubes nanocomposite as an enzyme-free sensor for hydrogen peroxide electrosensing[J]. RSC Advances, 2016, 6 (56): 50572- 50580.
doi: 10.1039/C6RA08738H
38
XIA A , YU W R , YI J , et al. Synthesis of porous δ-MnO2 nanosheets and their supercapacitor performance[J]. Journal of Electroanalytical Chemistry, 2019, 839, 25- 31.
doi: 10.1016/j.jelechem.2019.02.059
39
QIN M G , ZHAO H L , YANG W J , et al. A facile one-pot synthesis of three-dimensional microflower birnessite (δ-MnO2) and its efficient oxidative degradation of rhodamine B[J]. RSC Advances, 2016, 6 (28): 23905- 23912.
doi: 10.1039/C5RA24848E
LIAO R Y . Preparation method and application of δ-nanometer manganese dioxide[J]. Sichuan Chemical Industry, 2018, 21 (1): 21- 23.
doi: 10.3969/j.issn.1672-4887.2018.01.006
41
JIA Z , WANG J , WANG Y , et al. Interfacial synthesis of δ-MnO2 nano-sheets with a large surface area and their application in electrochemical capacitors[J]. Journal of Materials Science & Technology, 2016, 32 (2): 147- 152.
42
SUZUKI K , KATO T , FUCHIDA S , et al. Removal mechanisms of cadmium by δ-MnO2 in adsorption and coprecipitation processes at pH 6[J]. Chemical Geology, 2020, 550, 119744.
doi: 10.1016/j.chemgeo.2020.119744
43
YANG W J , ZHU Y F , YOU F , et al. Insights into the surface-defect dependence of molecular oxygen activation over birnessite-type MnO2[J]. Applied Catalysis B: Environmental, 2018, 233, 184- 193.
doi: 10.1016/j.apcatb.2018.03.107
44
ROBINSON D M , GO Y B , GREENBLATT M , et al. Water oxidation by λ-MnO2: catalysis by the cubical Mn4O4 subcluster obtained by delithiation of spinel LiMn2O4[J]. Journal of the American Chemical Society, 2010, 132 (33): 11467- 11469.
doi: 10.1021/ja1055615
45
YUAN C L , ZHANG Y , PAN Y , et al. Investigation of the intercalation of polyvalent cations (Mg2+, Zn2+) into λ-MnO2 for rechargeable aqueous battery[J]. Electrochimica Acta, 2014, 116, 404- 412.
doi: 10.1016/j.electacta.2013.11.090
46
KIM H , VENUGOPAL N , YOON J , et al. A facile and surfactant-free synthesis of porous hollow λ-MnO2 3D nanoarchitectures for lithium ion batteries with superior performance[J]. Journal of Alloys and Compounds, 2019, 778, 37- 46.
doi: 10.1016/j.jallcom.2018.11.107
47
YAN H J , WANG Z Q , XU B , et al. Strain induced enhanced migration of polaron and lithium ion in λ-MnO2[J]. Functional Materials Letters, 2012, 5 (4): 461- 464.
48
SMITH P F , DEIBERT B J , KAUSHIK S , et al. Coordination geometry and oxidation state requirements of corner-sharing MnO6 octahedra for water oxidation catalysis: an investigation of manganite (γ-MnOOH)[J]. ACS Catalysis, 2016, 6 (3): 2089- 2099.
doi: 10.1021/acscatal.6b00099
49
MIAO L , WANG J L , ZHANG P Y . Review on manganese dioxide for catalytic oxidation of airborne formaldehyde[J]. Applied Surface Science, 2019, 466, 441- 453.
doi: 10.1016/j.apsusc.2018.10.031
50
LIN M , CHEN Z L . A facile one-step synthesized epsilon-MnO2 nanoflowers for effective removal of lead ions from wastewater[J]. Chemosphere, 2020, 250, 126329.
doi: 10.1016/j.chemosphere.2020.126329
51
SOHAL N , MAITY B , SHETTI N P , et al. Biosensors based on MnO2 nanostructures: a review[J]. ACS Applied Nano Materials, 2021, 4 (3): 2285- 2302.
doi: 10.1021/acsanm.0c03380
52
ALFARUQI M H , GIM J , KIM S , et al. Enhanced reversible divalent zinc storage in a structurally stable α-MnO2 nanorod electrode[J]. Journal of Power Sources, 2015, 288, 320- 327.
doi: 10.1016/j.jpowsour.2015.04.140
53
YANG X D , REN Z J , PAN F Y , et al. Visible light-induced resistive switching behaviors in single MnOX nanorod: reversing between resistor and memristor[J]. Journal of Alloys and Compounds, 2019, 802, 546- 552.
doi: 10.1016/j.jallcom.2019.06.131
54
HUO G , WANG X W , ZHANG Z B , et al. γ-MnO2 nanorod-assembled hierarchical micro-spheres with oxygen vacancies to enhance electrocatalytic performance toward the oxygen reduction reaction for aluminum-air batteries[J]. Journal of Energy Chemistry, 2020, 51, 81- 89.
doi: 10.1016/j.jechem.2020.03.030
55
LIANG S H , BULGAN F T G , ZONG R L , et al. Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation[J]. Journal of Physical Chemistry C, 2008, 112 (14): 5307- 5315.
doi: 10.1021/jp0774995
56
GUO M X , BIAN S W , SHAO F , et al. Hydrothermal synthesis and electrochemical performance of MnO2/graphene/polyester composite electrode materials for flexible supercapacitors[J]. Electrochimica Acta, 2016, 209, 486- 497.
doi: 10.1016/j.electacta.2016.05.082
57
ZHAO Y C , MISCH J , WANG C A . Facile synthesis and characterization of MnO2 nanomaterials as supercapacitor electrode materials[J]. Journal of Materials Science, 2016, 27 (6): 5533- 5542.
58
LI N , ZHU X H , ZHANG C Y , et al. Controllable synthesis of different microstructured MnO2 by a facile hydrothermal method for supercapacitors[J]. Journal of Alloys and Compounds, 2017, 692, 26- 33.
doi: 10.1016/j.jallcom.2016.08.321
59
LI J J , LI L , WU F , et al. Dispersion-precipitation synthesis of nanorod Mn3O4 with high reducibility and the catalytic complete oxidation of air pollutants[J]. Catalysis Communications, 2013, 31, 52- 56.
doi: 10.1016/j.catcom.2012.11.013
60
SAID M I , HARBRECHT B . Controlled synthesis of Mn5O8 and β-MnO2 nanorods via thermal decomposition of γ-MnOOH precursor: characterization and magnetic properties of Mn5O8[J]. Journal of Alloys and Compounds, 2017, 710, 635- 643.
doi: 10.1016/j.jallcom.2017.03.138
61
ZHANG X , YU P , ZHANG H T , et al. Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type MnO2 nanosheets for supercapacitor applications[J]. Electrochimica Acta, 2013, 89, 523- 529.
doi: 10.1016/j.electacta.2012.11.089
62
MAHAMALLIK P , SAHA S , PAL A . Tetracycline degradation in aquatic environment by highly porous MnO2 nanosheet assembly[J]. Chemical Engineering Journal, 2015, 276, 155- 165.
doi: 10.1016/j.cej.2015.04.064
63
YAN X , SONG Y , WU X L , et al. Oxidase-mimicking activity of ultrathin MnO2 nanosheets in colorimetric assay of acetylcholinesterase activity[J]. Nanoscale, 2017, 9 (6): 2317- 2323.
doi: 10.1039/C6NR08473G
64
MISNON I I , ABD A R , ZAIN N K M , et al. High performance MnO2 nanoflower electrode and the relationship between solvated ion size and specific capacitance in highly conductive electrolytes[J]. Materials Research Bulletin, 2014, 57, 221- 230.
doi: 10.1016/j.materresbull.2014.05.044
65
LAN B B , HUANG S G , YE C J , et al. Enhanced electrochemical performance of Sn-doped MnO2 and study on morphology evolution[J]. Journal of Alloys and Compounds, 2019, 788, 302- 310.
doi: 10.1016/j.jallcom.2019.02.171
66
CHENG Q , TANG J , MA J , et al. Graphene and nanostructured MnO2 composite electrodes for supercapacitors[J]. Carbon, 2011, 49 (9): 2917- 2925.
doi: 10.1016/j.carbon.2011.02.068
67
JI D , ZHOU H , ZHANG J , et al. Facile synthesis of a metal-organic framework-derived Mn2O3 nanowire coated three-dimensional graphene network for high-performance free-standing supercapacitor electrodes[J]. Journal of Materials Chemistry A, 2016, 4 (21): 8283- 8290.
doi: 10.1039/C6TA01377E
68
SWETHA J V , GEETHA A , RAMAMURTHI K . Morphological and structural analysis of manganese oxide nanoflowers prepared under different reaction conditions[J]. Applied Surface Science, 2018, 449, 228- 232.
doi: 10.1016/j.apsusc.2018.02.160
69
WANG L , MA W L , LI Y H , et al. Synthesis of δ-MnO2 with nanoflower-like architecture by a microwave-assisted hydrothermal method[J]. Journal of Sol-Gel Science and Technology, 2017, 82 (1): 85- 91.
doi: 10.1007/s10971-016-4275-x
70
GU W X , LI C Q , QIU J H , et al. Facile fabrication of flower-like MnO2 hollow microspheres as high-performance catalysts for toluene oxidation[J]. Journal of Hazardous Materials, 2021, 408, 124458.
doi: 10.1016/j.jhazmat.2020.124458
71
KIM J M , HUH Y S , HAN Y K , et al. Facile synthesis route to highly crystalline mesoporous γ-MnO2 nanospheres[J]. Electrochemistry Communications, 2012, 14 (1): 32- 35.
doi: 10.1016/j.elecom.2011.10.023
72
ZHENG X H , ZHANG G Q , YAO Z , et al. Engineering of crystal phase over porous MnO2 with 3D morphology for highly efficient elimination of H2S[J]. Journal of Hazardous Materials, 2021, 411, 125180.
doi: 10.1016/j.jhazmat.2021.125180
73
MING B , LI J , KANG F , et al. Microwave-hydrothermal synthesis of birnessite-type MnO2 nanospheres as supercapacitor electrode materials[J]. Journal of Power Sources, 2012, 198, 428- 431.
doi: 10.1016/j.jpowsour.2011.10.003
74
WU J W , MA Q Y , LIAN C , et al. Promoting polythionate intermediates formation by oxygen-deficient manganese oxide hollow nanospheres for high performance lithium-sulfur batteries[J]. Chemical Engineering Journal, 2019, 370, 556- 564.
doi: 10.1016/j.cej.2019.03.078
75
RAJ B G S , ASIRI A M , WU J J , et al. Synthesis of Mn3O4 nanoparticles via chemical precipitation approach for supercapacitor application[J]. Journal of Alloys and Compounds, 2015, 636, 234- 240.
doi: 10.1016/j.jallcom.2015.02.164
76
WU Y S , LU Y , SONG C J , et al. A novel redox-precipitation method for the preparation of α-MnO2 with a high surface Mn4+ concentration and its activity toward complete catalytic oxidation of o-xylene[J]. Catalysis Today, 2013, 201, 32- 39.
doi: 10.1016/j.cattod.2012.04.032
77
ALONSO J M , MUNOZ M P . Evidence of hybrid homogeneous-heterogeneous catalysis in a Pt/Au heterobimetallic system[J]. ChemCatChem, 2018, 10 (12): 2646- 2654.
doi: 10.1002/cctc.201800076
78
ZOU X H , LI Z S , XIE Y X , et al. Phosphorus-doping and addition of V2O5 into Pt/graphene resulting in highly-enhanced electrophoto synergistic catalysis for oxygen reduction and hydrogen evolution reactions[J]. International Journal of Hydrogen Energy, 2020, 45 (55): 30647- 30658.
doi: 10.1016/j.ijhydene.2020.09.165
79
GUI Y G , LI W J , HE X , et al. Adsorption properties of pristine and Co-doped TiO2(101) toward dissolved gas analysis in transformer oil[J]. Applied Surface Science, 2020, 507, 145163.
doi: 10.1016/j.apsusc.2019.145163
80
XU J , WANG Q F , WANG X W , et al. Flexible asymmetric supercapacitors based upon Co9S8 nanorod//Co3O4@RuO2 nanosheet arrays on carbon cloth[J]. ACS Nano, 2013, 7 (6): 5453- 5462.
doi: 10.1021/nn401450s
WANG F. Controlled fabrication and catalytic performance of regularly morphological MnOX[D]. Beijing: Beijing University of Technology, 2012.
82
ASHA K , BADAMALI S K . Highly efficient photocatalytic degradation of lignin by hydrogen peroxide under visible light[J]. Molecular Catalysis, 2020, 497, 111236.
doi: 10.1016/j.mcat.2020.111236
83
DHAR P , TEJA V , VINU R . Sonophotocatalytic degradation of lignin: production of valuable chemicals and kinetic analysis[J]. Journal of Environmental Chemical Engineering, 2020, 8 (5): 104286.
doi: 10.1016/j.jece.2020.104286
84
DAI J H , PATTI A F , STYLES G N , et al. Lignin oxidation by MnO2 under the irradiation of blue light[J]. Green Chemistry, 2019, 21 (8): 2005- 2014.
doi: 10.1039/C8GC03498B
85
LONG J X , SHU S Y , WU Q Y , et al. Selective cyclohexanol production from the renewable lignin derived phenolic chemicals catalyzed by Ni/MgO[J]. Energy Conversion and Management, 2015, 105, 570- 577.
doi: 10.1016/j.enconman.2015.08.016
86
GIANNAKOUDAKIS D A , NAIR V , KHAN A , et al. Additive-free photo-assisted selective partial oxidation at ambient conditions of 5-hydroxymethylfurfural by manganese(Ⅳ) oxide nanorods[J]. Applied Catalysis B: Environmental, 2019, 256, 117803.
doi: 10.1016/j.apcatb.2019.117803
87
HAYASHI E , KOMANOYA T , KAMATA K , et al. Heterogeneously-catalyzed aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid with MnO2[J]. ChemSusChem, 2017, 10 (4): 654- 658.
doi: 10.1002/cssc.201601443
88
BAO L W , SUN F Z , ZHANG G Y , et al. Aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid over holey 2D Mn2O3 nanoflakes from a Mn-based MOF[J]. ChemSusChem, 2020, 13 (3): 548- 555.
doi: 10.1002/cssc.201903018
89
LI J L , SMITH R L , XU S Y , et al. Manganese oxide as an alternative to vanadium-based catalysts for effective conversion of glucose to formic acid in water[J]. Green Chemistry, 2022, 24 (1): 315- 324.
doi: 10.1039/D1GC03637H
90
LIU B , ZHANG Z H , LV K L , et al. Efficient aerobic oxidation of biomass-derived 5-hydroxymethylfurfural to 2, 5-diformylfuran catalyzed by magnetic nanoparticle supported manganese oxide[J]. Applied Catalysis A: General, 2014, 472, 64- 71.
doi: 10.1016/j.apcata.2013.12.014
91
YAMAGUCHI Y , AONO R , HAYASHI E , et al. Template-free synthesis of mesoporous β-MnO2 nanoparticles: structure, formation mechanism, and catalytic properties[J]. ACS Applied Materials & Interfaces, 2020, 12 (32): 36004- 36013.
92
LI L , FENG X H , NIE Y , et al. Insight into the effect of oxygen vacancy concentration on the catalytic performance of MnO2[J]. ACS Catalysis, 2015, 5 (8): 4825- 4832.
doi: 10.1021/acscatal.5b00320
93
BAI Z C , ZHANG Y H , ZHANG Y W , et al. MOFs-derived porous Mn2O3 as high-performance anode material for Li-ion battery[J]. Journal of Materials Chemistry A, 2015, 3 (10): 5266- 5269.
doi: 10.1039/C4TA06292B
94
SU H , XU Y F , FENG S C , et al. Hierarchical Mn2O3 hollow microspheres as anode material of lithium ion battery and its conversion reaction mechanism investigated by XANES[J]. ACS Applied Materials & Interfaces, 2015, 7 (16): 8488- 8494.
95
LI W Y , SHAO J J , LIU Q , et al. Facile synthesis of porous Mn2O3 nanocubics for high-rate supercapacitors[J]. Electrochimica Acta, 2015, 157, 108- 114.
doi: 10.1016/j.electacta.2015.01.056
96
MEHER S K , RAO G R . Enhanced activity of microwave synthesized hierarchical MnO2 for high performance supercapacitor applications[J]. Journal of Power Sources, 2012, 215, 317- 328.
doi: 10.1016/j.jpowsour.2012.04.104
97
JIAN G Q , XU Y H , LAI L C , et al. Mn3O4 hollow spheres for lithium-ion batteries with high rate and capacity[J]. Journal of Materials Chemistry A, 2014, 2 (13): 4627- 4632.
doi: 10.1039/C4TA00207E
98
KOLATHODI M S , RAO S N H , NATARAJAN T S , et al. Beaded manganese oxide (Mn2O3) nanofibers: preparation and application for capacitive energy storage[J]. Journal of Materials Chemistry A, 2016, 4 (20): 7883- 7891.
doi: 10.1039/C6TA01948J
99
QIAO Y Q , SUN Q J , XI J Y , et al. A modified solvothermal synthesis of porous Mn3O4 for supercapacitor with excellent rate capability and long cycle life[J]. Journal of Alloys and Compounds, 2016, 660, 416- 422.
doi: 10.1016/j.jallcom.2015.11.163
100
PIUMETTI M , FINO D , RUSSO N . Mesoporous manganese oxides prepared by solution combustion synthesis as catalysts for the total oxidation of VOCs[J]. Applied Catalysis B: Environmental, 2015, 163, 277- 287.
doi: 10.1016/j.apcatb.2014.08.012
101
LIU Y , ZHOU H , CAO R R , et al. Facile and green synthetic strategy of birnessite-type MnO2 with high efficiency for airborne benzene removal at low temperatures[J]. Applied Catalysis B: Environmental, 2019, 245, 569- 582.
doi: 10.1016/j.apcatb.2019.01.023
102
ZHANG X D , LI H X , HOU F L , et al. Synthesis of highly efficient Mn2O3 catalysts for CO oxidation derived from Mn-MIL-100[J]. Applied Surface Science, 2017, 411, 27- 33.
doi: 10.1016/j.apsusc.2017.03.179
103
FAN J , REN Q M , MO S P , et al. Transient in-situ DRIFTS investigation of catalytic oxidation of toluene over α-, γ- and β-MnO2[J]. ChemCatChem, 2020, 12 (4): 1046- 1054.
doi: 10.1002/cctc.201901839
104
SIHAIB Z , PULEO F , GARCIA-VARGAS J M , et al. Manganese oxide-based catalysts for toluene oxidation[J]. Applied Catalysis B: Environmental, 2017, 209, 689- 700.
doi: 10.1016/j.apcatb.2017.03.042
105
KIM S C , SHIM W G . Catalytic combustion of VOCs over a series of manganese oxide catalysts[J]. Applied Catalysis B: Environmental, 2010, 98 (3/4): 180- 185.
106
GHEJU M , BALCU I , MOSOARCA G . Removal of Cr(Ⅵ) from aqueous solutions by adsorption on MnO2[J]. Journal of Hazardous Materials, 2016, 310, 270- 277.
doi: 10.1016/j.jhazmat.2016.02.042
107
XU H M , QU Z , ZHAO S J , et al. Different crystal-forms of one-dimensional MnO2 nanomaterials for the catalytic oxidation and adsorption of elemental mercury[J]. Journal of Hazardous Materials, 2015, 299, 86- 93.
doi: 10.1016/j.jhazmat.2015.06.012
108
LIU Y X , DENG H , LU Z P , et al. The study of MnO2 with different crystalline structures for U(Ⅵ) elimination from aqueous solution[J]. Journal of Molecular Liquids, 2021, 335, 116296.
doi: 10.1016/j.molliq.2021.116296
109
DINH V P , LE N C , NGUYEN T P T , et al. Synthesis of α-MnO2 nanomaterial from a precursor γ-MnO2: characterization and comparative adsorption of Pb(Ⅱ) and Fe(Ⅲ)[J]. Journal of Chemistry, 2016, 2016, 82857.
110
ZHAO D L , YANG X , ZHANG H , et al. Effect of environmental conditions on Pb(Ⅱ) adsorption on β-MnO2[J]. Chemical Engineering Journal, 2010, 164 (1): 49- 55.
doi: 10.1016/j.cej.2010.08.014
111
ZHANG H P , WU A B , FU H Y , et al. Efficient removal of Pb(Ⅱ) ions using manganese oxides: the role of crystal structure[J]. RSC Advances, 2017, 7 (65): 41228- 41240.
doi: 10.1039/C7RA05955H
112
TAO P , SHAO M H , SONG C W , et al. Preparation of porous and hollow Mn2O3 microspheres and their adsorption studies on heavy metal ions from aqueous solutions[J]. Journal of Industrial and Engineering Chemistry, 2014, 20 (5): 3128- 3133.
doi: 10.1016/j.jiec.2013.11.055
113
CANTU Y , REMES A , REYNA A , et al. Thermodynamics, kinetics, and activation energy studies of the sorption of chromium(Ⅲ) and chromium(Ⅵ) to a Mn3O4 nanomaterial[J]. Chemical Engineering Journal, 2014, 254, 374- 383.
doi: 10.1016/j.cej.2014.05.110
114
FERREIRA A M , COUTINHO J A P , FERNANDES A M , et al. Complete removal of textile dyes from aqueous media using ionic-liquid-based aqueous two-phase systems[J]. Separation and Purification Technology, 2014, 128, 58- 66.
doi: 10.1016/j.seppur.2014.02.036
115
LEI C S , PI M , JIANG C J , et al. Synthesis of hierarchical porous zinc oxide (ZnO) microspheres with highly efficient adsorption of Congo red[J]. Journal of Colloid and Interface Science, 2017, 490, 242- 251.
doi: 10.1016/j.jcis.2016.11.049
116
TARTAJ P . Layered manganates from soft-templates: preparation, characterization and enhanced dye demethylation capabilities[J]. Journal of Materials Chemistry, 2012, 22 (34): 17718- 17723.
doi: 10.1039/c2jm32583g
117
LIU Y , WEI J , TIAN Y X , et al. The structure-property relationship of manganese oxides: highly efficient removal of methyl orange from aqueous solution[J]. Journal of Materials Chemistry A, 2015, 3 (37): 19000- 19010.
doi: 10.1039/C5TA05507E
118
JIANG S B , YU T F , XIA R , et al. Realization of of super high adsorption capability of 2D δ-MnO2/GO through intra-particle diffusion[J]. Materials Chemistry and Physics, 2019, 232, 374- 381.
doi: 10.1016/j.matchemphys.2019.05.004
119
QI G C , HAI C X , SHEN Y , et al. Synthesis of mono-dispersed mesoporous Mn2O3 powders with micro-nanostructure for removing Congo red dye from aqueous solution[J]. Advanced Powder Technology, 2019, 30 (5): 930- 939.
doi: 10.1016/j.apt.2019.02.007
120
ZHANG W X , ZHAO W R , ZHOU Z Y , et al. Facile synthesis of α-MnO2 micronests composed of nanowires and their enhanced adsorption to Congo red[J]. Frontiers of Chemical Science and Engineering, 2014, 8 (1): 64- 72.
doi: 10.1007/s11705-014-1402-5
121
ABRAHAM R , MATHEW S , KURIAN S , et al. Facile synthesis, growth process, characterisation of a nanourchin-structured α-MnO2 and their application on ultrasonic-assisted adsorptive removal of cationic dyes: a half-life and half-capacity concentration approach[J]. Ultrasonics Sonochemistry, 2018, 49, 175- 189.
doi: 10.1016/j.ultsonch.2018.07.045
122
SRIVASTAVA V , CHOUBEY A K . Study of adsorption of anionic dyes over biofabricated crystalline α-MnO2 nanoparticles[J]. Environmental Science and Pollution Research, 2021, 28 (12): 15504- 15518.
doi: 10.1007/s11356-020-11622-1
123
PANG J B , FU F L , DING Z C , et al. Adsorption behaviors of methylene blue from aqueous solution on mesoporous birnessite[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 77, 168- 176.
doi: 10.1016/j.jtice.2017.04.041
124
CHEN R X , YU J G , XIAO W . Hierarchically porous MnO2 microspheres with enhanced adsorption performance[J]. Journal of Materials Chemistry A, 2013, 1 (38): 11682- 11690.
doi: 10.1039/c3ta12589k
125
SHAO Y J , REN B , JIANG H M , et al. Dual-porosity Mn2O3 cubes for highly efficient dye adsorption[J]. Journal of Hazardous Materials, 2017, 333, 222- 231.
doi: 10.1016/j.jhazmat.2017.03.014