Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (8): 82-98    DOI: 10.11868/j.issn.1001-4381.2021.000895
  综述 本期目录 | 过刊浏览 | 高级检索 |
锰氧化物的结构分析及其在能源与环境中的典型应用
徐思瑜1, 李德1, 李佳璐1, 申锋1,*(), 郑鹏2,*()
1 农业农村部环境保护科研监测所, 天津 300191
2 华南农业大学 园艺学院, 广州 510642
Structure analysis and typical applications of manganese oxides in energy and environment
Siyu XU1, De LI1, Jialu LI1, Feng SHEN1,*(), Peng ZHENG2,*()
1 Agro-Environmental Protection Institute(Ministry of Agriculture and Rural Affairs), Tianjin 300191, China
2 College of Horticulture, South China Agricultural University, Guangzhou 510642, China
全文: PDF(1257 KB)   HTML ( 1 )  
输出: BibTeX | EndNote (RIS)      
摘要 

锰氧化物作为最常见的过渡金属氧化物之一,是一种极具潜力的材料,可通过改变其晶型、形貌、比表面积和氧空位数量等调节催化活性、吸附能力、稳定性等性能。调控MnOX的晶体结构及形貌以提高其性能,一直是国内外学者极为关注的问题。本文分析了不同晶型二氧化锰(α,β,γ,δ,λ)的结构特点及其与催化/吸附性能之间的构效关系,系统总结了不同形貌MnOX(纳米棒、纳米片、纳米花、纳米球)的制备方法及结构特点,并介绍了锰氧化物近年来在能源(生物质催化转化、电化学)及环境治理(气体污染物分解、重金属吸附、有机污染物降解)中的典型应用。最后,对锰氧化物存在作用机制复杂、稳定性较差等问题进行了分析。尽管锰氧化物在研究过程中还存在问题,但其作为一种重要的金属氧化物,未来在环境、能源等领域中的应用前景十分广阔。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐思瑜
李德
李佳璐
申锋
郑鹏
关键词 锰氧化物晶面工程形貌结构生物质环境修复    
Abstract

As one of the most common transition metal oxides, manganese oxides have many advantages and show great potential in many fields. Its catalytic activity, adsorption capacity, stability, and other properties of manganese oxides can be adjusted by changing its crystal, morphology, pore structure and oxygen vacancies. To improve the MnOX activity performance, various preparation methods have been developed to adjust its crystal structure and morphology structure. In this work, the relationship between the structure of different crystalline manganese dioxides (α, β, γ, δ, λ) and their catalytic activity/adsorption performance activity was studied. The preparation methods on the morphologies structure (nanorods, nanosheets, nanoflowers, nanospheres) of MnOX materials were comprehensively summarized. Then, the typical application performance of manganese oxides materials in the energy file (catalytic conversion of biomass, electrochemistry) and environment (decomposition of gas pollutants, adsorption of heavy metals, degradation of organic pollutants) were summarized. Finally, the problems such as complicated action mechanism and poor stability of MnOX were analyzed.MnOX still has great application potential in the fields of environment and energy in the future.

Key wordsmanganese oxide    crystal face engineering    morphology structure    biomass    environmental remediation
收稿日期: 2021-09-13      出版日期: 2022-08-16
中图分类号:  O614.7  
  TQ137.1  
  X131  
基金资助:国家自然科学基金项目(21706139)
通讯作者: 申锋,郑鹏     E-mail: shenfeng@caas.cn;zhengp@scau.edu.cn
作者简介: 郑鹏(1986—),男,讲师,博士,研究方向为农业废弃物资源化利用,联系地址:广东省广州市天河区五山路483号华南农业大学园艺学院(510642),E-mail:zhengp@scau.edu.cn
申锋(1986—),男,副研究员,博士,研究方向为生物质资源化高值利用,联系地址:天津市南开区复康路31号农业农村部环境保护科研监测所(300191),E-mail:shenfeng@caas.cn
引用本文:   
徐思瑜, 李德, 李佳璐, 申锋, 郑鹏. 锰氧化物的结构分析及其在能源与环境中的典型应用[J]. 材料工程, 2022, 50(8): 82-98.
Siyu XU, De LI, Jialu LI, Feng SHEN, Peng ZHENG. Structure analysis and typical applications of manganese oxides in energy and environment. Journal of Materials Engineering, 2022, 50(8): 82-98.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000895      或      http://jme.biam.ac.cn/CN/Y2022/V50/I8/82
Fig.1  MnOX的优点、典型形貌及应用领域
Crystal type Structure Structure type Structural hole
α-MnO2 Hollandite (2×2)
β-MnO2 Rutile (1×1)
γ-MnO2 Rutile/ramsdellite (1×1) and (1×2)
δ-MnO2 Layer H2O and cation in the layer
λ-MnO2 Spinel 3D network
Table 1  MnO2的晶型分类[6, 10]
Fig.2  δ-MnO2在pH=6时含/不含Cd(Ⅱ)的XRD图[42]
(a)吸附后;(b)共沉淀后
Fig.3  LiMn2O4和λ-MnO2的XRD图[45]
Fig.4  水热法合成多孔δ-MnO2纳米片的示意图[38]
Fig.5  MnO纳米花形成过程示意图[68]
Fig.6  不同条件下MnOX的制备过程示意图(以KMnO4为氧化剂)[16, 43, 56, 68]
Fig.7  HMF在MnO2上的光效应(a)和相关氧化机制(b)的示意图[86]
Catalyst Substrate Solvent Reaction condition Reaction time/h Conversion rate/% Product Mole fraction of yield/% Reference
δ-MnO2 Lignin ACN Room temperature, 470 nm blue light 3 Ethyl acetate 51 [84]
MnOX nanorod Glucose H2O 160 ℃, O2 2.5 99.9 Formic acid 81 [89]
MnO2 nanorod HMF ACN 39 ℃, UV light 4 99 DFF 99 [86]
Mn3O4 nanoparticle HMF DMF 120 ℃, air 4 100 DFF 83.2 [90]
2D Mn2O3 nanoflake HMF NaHCO3 100 ℃, O2 24 100 FDCA 99.5 [88]
β-MnO2 nanosphere HMF NaHCO3 140 ℃, O2 24 FDCA 80 [91]
Table 2  MnOX对生物质的催化氧化
Nanomaterial Specific surface area/(m2·g-1) Electrochemical performance Reference
Porous Mn2O3 15.34 1158 mAh·g-1 [93]
Mn2O3 hollow microsphere 7.83 1210 mAh·g-1 [94]
Mn3O4 hollow sphere 96.14 1066 mAh·g-1 [97]
MnO2 nanosphere 213.60 210 F·g-1 [73]
Beaded Mn2O3 26.00 358 F·g-1 [98]
Porous Mn3O4 138.50 302 F·g-1 [99]
Table 3  不同形貌锰氧化物作为电极材料的性能
Fig.8  H-MnO2上苯氧化的示意图[101]
Catalyst Catalyst mass/g Toluene concentration/10-3 Weight hourly space velocity/(mL·g-1·h-1) Total flow rate/(mL·min-1) T50/℃ T90/℃ Reference
α-MnO2 0.1 1 48000 229 238 [103]
β-MnO2 0.1 1 48000 266 278 [103]
γ-MnO2 0.1 1 48000 243 252 [103]
OMS-2 0.1 1 60000 100 234 272 [104]
Mn2O3 0.1 1 60000 100 266 292 [104]
MnO2 0.4 2 100 340 375 [105]
Mn2O3 0.4 2 100 280 295 [105]
Mn3O4 0.4 2 100 245 270 [105]
Table 4  MnOX对甲苯的催化氧化
Fig.9  U(Ⅵ)在δ-MnO2上的吸附机制图[108]
Nanomaterial Preparation method Specific surface area/(m2·g-1) Metal ion Adsorption capacity/(mg·g-1) Reference
α-MnO2 nanorod Hydrothermal treatment 9.37 Pb(Ⅱ) Fe(Ⅲ) 124.87 30.83 [109]
α-MnO2 nanofiber Hydrothermal method 144 As(Ⅲ) As(Ⅴ) 117.72 60.19 [18]
β-MnO2 nanorod Hydrothermal method 398.55 Pb(Ⅱ) 16.72 [110]
δ-MnO2 nanosheet Redox method 270.80 Pb(Ⅱ) 299.20 [111]
Porous and hollow Mn2O3 microsphere Precipitation method 22.37 Pb(Ⅱ) 21.28 [112]
Spherical Mn3O4 Precipitation method Cr(Ⅲ) Cr(Ⅵ) 54.40 48.60 [113]
Table 5  不同形貌MnOX对重金属的吸附应用
Fig.10  锰氧化物的结构与甲基橙吸附能力的关系图[117]
Nanomaterial Preparation method Specific surface area/(m2·g-1) Organic pollutant Adsorption capacity/(mg·g-1) Reference
α-MnO2 micronest Hydrothermal method 83.83 Congo red 625.0 [120]
α-MnO2 nanourchin Hydrothermal method 51.51 Crystal violet Methylene blue 5882.3 5000.0 [121]
Spherical α-MnO2 Redox method Methyl orange Methyl red 116.1 74.02 [122]
Mesoporous δ-MnO2 Redox method 211.3 Methylene blue 113.0 [123]
Porous MnO2 microsphere Hydrothermal method 236 Methyl blue 259.2 [124]
Dual-porosity Mn2O3 cube Hydrothermal method and template method 37 Congo red 125.6 [125]
Table 6  不同MnOX对水中有机污染物的吸附应用
1 SONG Z G , LIAN F , YU Z H , et al. Synthesis and characterization of a novel MnOX-loaded biochar and its adsorption properties for Cu2+ in aqueous solution[J]. Chemical Engineering Journal, 2014, 242, 36- 42.
doi: 10.1016/j.cej.2013.12.061
2 许乃才, 史丹丹. 不同晶型纳米二氧化锰制备及对亚甲基蓝吸附性能[J]. 无机盐工业, 2021, 53 (3): 44- 47.
2 XU N C , SHI D D . Preparation of manganese dioxide nanomaterials with different crystalline and their adsorption properties to methylene blue[J]. Inorganic Chemicals Industry, 2021, 53 (3): 44- 47.
3 CHENG F Y , ZHANG T R , ZHANG Y , et al. Enhancing electrocatalytic oxygen reduction on MnO2 with vacancies[J]. Angewandte Chemie-International Edition, 2013, 52 (9): 2474- 2477.
doi: 10.1002/anie.201208582
4 YANG Y , ZHANG S Z , WANG S W , et al. Ball milling synthesized MnOX as highly active catalyst for gaseous POPs removal: significance of mechanochemically induced oxygen vacancies[J]. Environmental Science & Technology, 2015, 49 (7): 4473- 4480.
5 ZHU G X , ZHU J G , JIANG W J , et al. Surface oxygen vacancy induced α-MnO2 nanofiber for highly efficient ozone elimination[J]. Applied Catalysis B: Environmental, 2017, 209, 729- 737.
doi: 10.1016/j.apcatb.2017.02.068
6 符志伟. 锰、钴氧化物的制备及其催化燃烧性能研究[D]. 广州: 广东工业大学, 2015.
6 FU Z W. Preparation of manganese, cobalt oxide catalysts and their application in catalytic combustion[D]. Guangzhou: Guangdong University of Technology, 2015.
7 ZHANG L , XIE X Y , WANG H B , et al. Boosting electrocatalytic N2 reduction by MnO2 with oxygen vacancies[J]. Chemical Communications, 2019, 55 (32): 4627- 4630.
doi: 10.1039/C9CC00936A
8 LIU J C , CHEN W P , HU X B , et al. Effects of MnO2 crystal structure on the sorption and oxidative reactivity toward thallium(Ⅰ)[J]. Chemical Engineering Journal, 2020, 416, 127919.
9 ZHANG B , CHEN D , LIU H B , et al. Selective catalytic reduction of NO with NH3 over high purity palygorskite-supported MnO2 with different crystal structures[J]. Aerosol and Air Quality Research, 2020, 20 (5): 1155- 1165.
doi: 10.4209/aaqr.2020.03.0099
10 HAYASHI E , YAMAGUCHI Y , KAMATA K , et al. Effect of MnO2 crystal structure on aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid[J]. Journal of the American Chemical Society, 2019, 141 (2): 890- 900.
doi: 10.1021/jacs.8b09917
11 汤慧利, 任瑜. 纳米MnO2的制备及显微结构和电化学性能[J]. 机械工程材料, 2018, 42 (7): 28- 31.
11 TANG H L , REN Y . Preparation, microstructure and electrochemical performance of nano-sized MnO2[J]. Materials for Mechanical Engineering, 2018, 42 (7): 28- 31.
12 RONG S P , ZHANG P Y , LIU F , et al. Engineering crystal facet of α-MnO2 nanowire for highly efficient catalytic oxidation of carcinogenic airborne formaldehyde[J]. ACS Catalysis, 2018, 8 (4): 3435- 3446.
doi: 10.1021/acscatal.8b00456
13 JI F , MEN Y , WANG J G , et al. Promoting diesel soot combustion efficiency by tailoring the shapes and crystal facets of nanoscale Mn3O4[J]. Applied Catalysis B: Environmental, 2019, 242, 227- 237.
doi: 10.1016/j.apcatb.2018.09.092
14 夏傲, 韩曰朋, 曾啸雄, 等. α-MnO2/SnO2复合电极材料的制备及其电化学性能[J]. 陕西科技大学学报, 2021, 39 (4): 103- 109.
doi: 10.3969/j.issn.1000-5811.2021.04.016
14 XIA A , HAN Y P , ZENG X X , et al. Preparation and electrochemical performance of α-MnO2/SnO2 composites electrode[J]. Journal of Shaanxi University of Science & Technology, 2021, 39 (4): 103- 109.
doi: 10.3969/j.issn.1000-5811.2021.04.016
15 HASHEM A M , ABDEL-GHANY A E , EL-TAWIL R , et al. Urchin-like α-MnO2 formed by nanoneedles for high-performance lithium batteries[J]. Ionics, 2016, 22 (12): 2263- 2271.
doi: 10.1007/s11581-016-1771-5
16 BALAKUMAR V , RYU J W , KIM H , et al. Ultrasonic synthesis of α-MnO2 nanorods: an efficient catalytic conversion of refractory pollutant, methylene blue[J]. Ultrasonics Sonochemistry, 2020, 62, 104870.
doi: 10.1016/j.ultsonch.2019.104870
17 LI W X , CUI X Y , ZENG R , et al. Performance modulation of α-MnO2 nanowires by crystal facet engineering[J]. Scientific Reports, 2015, 5, 8987.
doi: 10.1038/srep08987
18 LUO J M , MENG X Y , CRITTENDEN J , et al. Arsenic adsorption on α-MnO2 nanofibers and the significance of (100) facet as compared with (110)[J]. Chemical Engineering Journal, 2018, 331, 492- 500.
doi: 10.1016/j.cej.2017.08.123
19 ROSENBERG S , HINTENNACH A . In situ formation of α-MnO2 nanowires as catalyst for sodium-air batteries[J]. Journal of Power Sources, 2015, 274, 1043- 1048.
doi: 10.1016/j.jpowsour.2014.10.187
20 王建芳, 杨和平, 王君, 等. β-MnO2纳米棒自组装花球的制备及催化性能研究[J]. 化工新型材料, 2017, 45 (3): 160- 162.
20 WANG J F , YANG H P , WANG J , et al. Preparation and catalytic property of β-MnO2 ball-flower self-assembled by nanorods[J]. New Chemical Materials, 2017, 45 (3): 160- 162.
21 DUAN Y P , PANG H F , ZHANG Y H , et al. Morphology-controlled synthesis and microwave absorption properties of β-MnO2 microncube with rectangular pyramid[J]. Materials Characterization, 2016, 112, 206- 212.
doi: 10.1016/j.matchar.2015.12.024
22 SELIM M S , HAO Z F , JIANG Y , et al. Controlled-synthesis of β-MnO2 nanorods through a γ-manganite precursor route[J]. Materials Chemistry and Physics, 2019, 235, 121733.
doi: 10.1016/j.matchemphys.2019.121733
23 SU D W , AHN H J , WANG G X . β-MnO2 nanorods with exposed tunnel structures as high-performance cathode materials for sodium-ion batteries[J]. NPG Asia Materials, 2013, 5, 70.
doi: 10.1038/am.2013.56
24 CHEN C , XU K , JI X , et al. Promoted electrochemical performance of β-MnO2 through surface engineering[J]. ACS Applied Materials & Interfaces, 2017, 9 (17): 15176- 15181.
25 邓红梅, 王耀龙, 吴宏海, 等. γ-MnO2对Tl(Ⅰ)的吸附性能[J]. 环境科学研究, 2015, 28 (1): 103- 109.
25 DENG H M , WANG Y L , WU H H , et al. Characteristics of Tl(Ⅰ) adsorption on γ-MnO2[J]. Research of Environmental Sciences, 2015, 28 (1): 103- 109.
26 DINH V P , LE N C , NGUYEN N T , et al. Determination of cobalt in seawater using neutron activation analysis after preconcentration by adsorption onto γ-MnO2 nanomaterial[J]. Journal of Chemistry, 2018, 2018, 9126491.
27 ZHAO Z W , GENG C , YANG C , et al. A novel flake-ball-like magnetic Fe3O4/γ-MnO2 meso-porous nano-composite: adsorption of fluorinion and effect of water chemistry[J]. Chemosphere, 2018, 209, 173- 181.
doi: 10.1016/j.chemosphere.2018.06.104
28 ZHAO J Z , TAO Z L , LIANG J , et al. Facile synthesis of nanoporous γ-MnO2 structures and their application in rechargeable Li-ion batteries[J]. Crystal Growth & Design, 2008, 8 (8): 2799- 2805.
29 FU X B , FENG J Y , WANG H , et al. Room temperature synthesis of a novel γ-MnO2 hollow structure for aerobic oxidation of benzyl alcohol[J]. Nanotechnology, 2009, 20 (37): 375601.
doi: 10.1088/0957-4484/20/37/375601
30 ZENG X H , CHENG G , LIU Q , et al. Novel ordered mesoporous γ-MnO2 catalyst for high-performance catalytic oxidation of toluene and o-xylene[J]. Industrial & Engineering Chemistry Research, 2019, 58 (31): 13926- 13934.
31 CHEN L , ZHANG J P , LI Y X , et al. Taming NO oxidation efficiency by γ-MnO2 morphology regulation[J]. Catalysis Science & Technology, 2020, 10 (17): 5996- 6005.
32 CHOU S , CHENG F , CHEN J . Electrodeposition synthesis and electrochemical properties of nanostructured γ-MnO2 films[J]. Journal of Power Sources, 2006, 162 (1): 727- 734.
doi: 10.1016/j.jpowsour.2006.06.033
33 ALFARUQI M H , MATHEW V , GIM J , et al. Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system[J]. Chemistry of Materials, 2015, 27 (10): 3609- 3620.
doi: 10.1021/cm504717p
34 XIE A , TAO F , JIANG C , et al. A coralliform-structured γ-MnO2/polyaniline nanocomposite for high-performance supercapacitors[J]. Journal of Electroanalytical Chemistry, 2017, 789, 29- 37.
doi: 10.1016/j.jelechem.2017.02.032
35 孙梦婷, 黄碧纯, 马杰文, 等. 二氧化锰在低温NH3-SCR催化反应上的形貌效应[J]. 物理化学学报, 2016, 32 (6): 1501- 1510.
35 SUN M T , HUANG B C , MA J W , et al. Morphological effects of manganese dioxide on catalytic reactions for low-temperature NH3-SCR[J]. Acta Physico-Chimica Sinica, 2016, 32 (6): 1501- 1510.
36 董巡, 赵平, 余浪, 等. 低分子量有机酸对δ-MnO2吸附As(Ⅲ)的影响研究[J]. 四川环境, 2021, 40 (3): 19- 23.
36 DONG X , ZHAO P , YU L , et al. Effects of low molecular weight organic acids on As(Ⅲ) adsorption by δ-MnO2[J]. Sichuan Environment, 2021, 40 (3): 19- 23.
37 BEGUM H , AHMED M S , JEON S . A novel δ-MnO2 with carbon nanotubes nanocomposite as an enzyme-free sensor for hydrogen peroxide electrosensing[J]. RSC Advances, 2016, 6 (56): 50572- 50580.
doi: 10.1039/C6RA08738H
38 XIA A , YU W R , YI J , et al. Synthesis of porous δ-MnO2 nanosheets and their supercapacitor performance[J]. Journal of Electroanalytical Chemistry, 2019, 839, 25- 31.
doi: 10.1016/j.jelechem.2019.02.059
39 QIN M G , ZHAO H L , YANG W J , et al. A facile one-pot synthesis of three-dimensional microflower birnessite (δ-MnO2) and its efficient oxidative degradation of rhodamine B[J]. RSC Advances, 2016, 6 (28): 23905- 23912.
doi: 10.1039/C5RA24848E
40 廖若莹. δ-纳米二氧化锰的制备方法及研究应用[J]. 四川化工, 2018, 21 (1): 21- 23.
doi: 10.3969/j.issn.1672-4887.2018.01.006
40 LIAO R Y . Preparation method and application of δ-nanometer manganese dioxide[J]. Sichuan Chemical Industry, 2018, 21 (1): 21- 23.
doi: 10.3969/j.issn.1672-4887.2018.01.006
41 JIA Z , WANG J , WANG Y , et al. Interfacial synthesis of δ-MnO2 nano-sheets with a large surface area and their application in electrochemical capacitors[J]. Journal of Materials Science & Technology, 2016, 32 (2): 147- 152.
42 SUZUKI K , KATO T , FUCHIDA S , et al. Removal mechanisms of cadmium by δ-MnO2 in adsorption and coprecipitation processes at pH 6[J]. Chemical Geology, 2020, 550, 119744.
doi: 10.1016/j.chemgeo.2020.119744
43 YANG W J , ZHU Y F , YOU F , et al. Insights into the surface-defect dependence of molecular oxygen activation over birnessite-type MnO2[J]. Applied Catalysis B: Environmental, 2018, 233, 184- 193.
doi: 10.1016/j.apcatb.2018.03.107
44 ROBINSON D M , GO Y B , GREENBLATT M , et al. Water oxidation by λ-MnO2: catalysis by the cubical Mn4O4 subcluster obtained by delithiation of spinel LiMn2O4[J]. Journal of the American Chemical Society, 2010, 132 (33): 11467- 11469.
doi: 10.1021/ja1055615
45 YUAN C L , ZHANG Y , PAN Y , et al. Investigation of the intercalation of polyvalent cations (Mg2+, Zn2+) into λ-MnO2 for rechargeable aqueous battery[J]. Electrochimica Acta, 2014, 116, 404- 412.
doi: 10.1016/j.electacta.2013.11.090
46 KIM H , VENUGOPAL N , YOON J , et al. A facile and surfactant-free synthesis of porous hollow λ-MnO2 3D nanoarchitectures for lithium ion batteries with superior performance[J]. Journal of Alloys and Compounds, 2019, 778, 37- 46.
doi: 10.1016/j.jallcom.2018.11.107
47 YAN H J , WANG Z Q , XU B , et al. Strain induced enhanced migration of polaron and lithium ion in λ-MnO2[J]. Functional Materials Letters, 2012, 5 (4): 461- 464.
48 SMITH P F , DEIBERT B J , KAUSHIK S , et al. Coordination geometry and oxidation state requirements of corner-sharing MnO6 octahedra for water oxidation catalysis: an investigation of manganite (γ-MnOOH)[J]. ACS Catalysis, 2016, 6 (3): 2089- 2099.
doi: 10.1021/acscatal.6b00099
49 MIAO L , WANG J L , ZHANG P Y . Review on manganese dioxide for catalytic oxidation of airborne formaldehyde[J]. Applied Surface Science, 2019, 466, 441- 453.
doi: 10.1016/j.apsusc.2018.10.031
50 LIN M , CHEN Z L . A facile one-step synthesized epsilon-MnO2 nanoflowers for effective removal of lead ions from wastewater[J]. Chemosphere, 2020, 250, 126329.
doi: 10.1016/j.chemosphere.2020.126329
51 SOHAL N , MAITY B , SHETTI N P , et al. Biosensors based on MnO2 nanostructures: a review[J]. ACS Applied Nano Materials, 2021, 4 (3): 2285- 2302.
doi: 10.1021/acsanm.0c03380
52 ALFARUQI M H , GIM J , KIM S , et al. Enhanced reversible divalent zinc storage in a structurally stable α-MnO2 nanorod electrode[J]. Journal of Power Sources, 2015, 288, 320- 327.
doi: 10.1016/j.jpowsour.2015.04.140
53 YANG X D , REN Z J , PAN F Y , et al. Visible light-induced resistive switching behaviors in single MnOX nanorod: reversing between resistor and memristor[J]. Journal of Alloys and Compounds, 2019, 802, 546- 552.
doi: 10.1016/j.jallcom.2019.06.131
54 HUO G , WANG X W , ZHANG Z B , et al. γ-MnO2 nanorod-assembled hierarchical micro-spheres with oxygen vacancies to enhance electrocatalytic performance toward the oxygen reduction reaction for aluminum-air batteries[J]. Journal of Energy Chemistry, 2020, 51, 81- 89.
doi: 10.1016/j.jechem.2020.03.030
55 LIANG S H , BULGAN F T G , ZONG R L , et al. Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation[J]. Journal of Physical Chemistry C, 2008, 112 (14): 5307- 5315.
doi: 10.1021/jp0774995
56 GUO M X , BIAN S W , SHAO F , et al. Hydrothermal synthesis and electrochemical performance of MnO2/graphene/polyester composite electrode materials for flexible supercapacitors[J]. Electrochimica Acta, 2016, 209, 486- 497.
doi: 10.1016/j.electacta.2016.05.082
57 ZHAO Y C , MISCH J , WANG C A . Facile synthesis and characterization of MnO2 nanomaterials as supercapacitor electrode materials[J]. Journal of Materials Science, 2016, 27 (6): 5533- 5542.
58 LI N , ZHU X H , ZHANG C Y , et al. Controllable synthesis of different microstructured MnO2 by a facile hydrothermal method for supercapacitors[J]. Journal of Alloys and Compounds, 2017, 692, 26- 33.
doi: 10.1016/j.jallcom.2016.08.321
59 LI J J , LI L , WU F , et al. Dispersion-precipitation synthesis of nanorod Mn3O4 with high reducibility and the catalytic complete oxidation of air pollutants[J]. Catalysis Communications, 2013, 31, 52- 56.
doi: 10.1016/j.catcom.2012.11.013
60 SAID M I , HARBRECHT B . Controlled synthesis of Mn5O8 and β-MnO2 nanorods via thermal decomposition of γ-MnOOH precursor: characterization and magnetic properties of Mn5O8[J]. Journal of Alloys and Compounds, 2017, 710, 635- 643.
doi: 10.1016/j.jallcom.2017.03.138
61 ZHANG X , YU P , ZHANG H T , et al. Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type MnO2 nanosheets for supercapacitor applications[J]. Electrochimica Acta, 2013, 89, 523- 529.
doi: 10.1016/j.electacta.2012.11.089
62 MAHAMALLIK P , SAHA S , PAL A . Tetracycline degradation in aquatic environment by highly porous MnO2 nanosheet assembly[J]. Chemical Engineering Journal, 2015, 276, 155- 165.
doi: 10.1016/j.cej.2015.04.064
63 YAN X , SONG Y , WU X L , et al. Oxidase-mimicking activity of ultrathin MnO2 nanosheets in colorimetric assay of acetylcholinesterase activity[J]. Nanoscale, 2017, 9 (6): 2317- 2323.
doi: 10.1039/C6NR08473G
64 MISNON I I , ABD A R , ZAIN N K M , et al. High performance MnO2 nanoflower electrode and the relationship between solvated ion size and specific capacitance in highly conductive electrolytes[J]. Materials Research Bulletin, 2014, 57, 221- 230.
doi: 10.1016/j.materresbull.2014.05.044
65 LAN B B , HUANG S G , YE C J , et al. Enhanced electrochemical performance of Sn-doped MnO2 and study on morphology evolution[J]. Journal of Alloys and Compounds, 2019, 788, 302- 310.
doi: 10.1016/j.jallcom.2019.02.171
66 CHENG Q , TANG J , MA J , et al. Graphene and nanostructured MnO2 composite electrodes for supercapacitors[J]. Carbon, 2011, 49 (9): 2917- 2925.
doi: 10.1016/j.carbon.2011.02.068
67 JI D , ZHOU H , ZHANG J , et al. Facile synthesis of a metal-organic framework-derived Mn2O3 nanowire coated three-dimensional graphene network for high-performance free-standing supercapacitor electrodes[J]. Journal of Materials Chemistry A, 2016, 4 (21): 8283- 8290.
doi: 10.1039/C6TA01377E
68 SWETHA J V , GEETHA A , RAMAMURTHI K . Morphological and structural analysis of manganese oxide nanoflowers prepared under different reaction conditions[J]. Applied Surface Science, 2018, 449, 228- 232.
doi: 10.1016/j.apsusc.2018.02.160
69 WANG L , MA W L , LI Y H , et al. Synthesis of δ-MnO2 with nanoflower-like architecture by a microwave-assisted hydrothermal method[J]. Journal of Sol-Gel Science and Technology, 2017, 82 (1): 85- 91.
doi: 10.1007/s10971-016-4275-x
70 GU W X , LI C Q , QIU J H , et al. Facile fabrication of flower-like MnO2 hollow microspheres as high-performance catalysts for toluene oxidation[J]. Journal of Hazardous Materials, 2021, 408, 124458.
doi: 10.1016/j.jhazmat.2020.124458
71 KIM J M , HUH Y S , HAN Y K , et al. Facile synthesis route to highly crystalline mesoporous γ-MnO2 nanospheres[J]. Electrochemistry Communications, 2012, 14 (1): 32- 35.
doi: 10.1016/j.elecom.2011.10.023
72 ZHENG X H , ZHANG G Q , YAO Z , et al. Engineering of crystal phase over porous MnO2 with 3D morphology for highly efficient elimination of H2S[J]. Journal of Hazardous Materials, 2021, 411, 125180.
doi: 10.1016/j.jhazmat.2021.125180
73 MING B , LI J , KANG F , et al. Microwave-hydrothermal synthesis of birnessite-type MnO2 nanospheres as supercapacitor electrode materials[J]. Journal of Power Sources, 2012, 198, 428- 431.
doi: 10.1016/j.jpowsour.2011.10.003
74 WU J W , MA Q Y , LIAN C , et al. Promoting polythionate intermediates formation by oxygen-deficient manganese oxide hollow nanospheres for high performance lithium-sulfur batteries[J]. Chemical Engineering Journal, 2019, 370, 556- 564.
doi: 10.1016/j.cej.2019.03.078
75 RAJ B G S , ASIRI A M , WU J J , et al. Synthesis of Mn3O4 nanoparticles via chemical precipitation approach for supercapacitor application[J]. Journal of Alloys and Compounds, 2015, 636, 234- 240.
doi: 10.1016/j.jallcom.2015.02.164
76 WU Y S , LU Y , SONG C J , et al. A novel redox-precipitation method for the preparation of α-MnO2 with a high surface Mn4+ concentration and its activity toward complete catalytic oxidation of o-xylene[J]. Catalysis Today, 2013, 201, 32- 39.
doi: 10.1016/j.cattod.2012.04.032
77 ALONSO J M , MUNOZ M P . Evidence of hybrid homogeneous-heterogeneous catalysis in a Pt/Au heterobimetallic system[J]. ChemCatChem, 2018, 10 (12): 2646- 2654.
doi: 10.1002/cctc.201800076
78 ZOU X H , LI Z S , XIE Y X , et al. Phosphorus-doping and addition of V2O5 into Pt/graphene resulting in highly-enhanced electrophoto synergistic catalysis for oxygen reduction and hydrogen evolution reactions[J]. International Journal of Hydrogen Energy, 2020, 45 (55): 30647- 30658.
doi: 10.1016/j.ijhydene.2020.09.165
79 GUI Y G , LI W J , HE X , et al. Adsorption properties of pristine and Co-doped TiO2(101) toward dissolved gas analysis in transformer oil[J]. Applied Surface Science, 2020, 507, 145163.
doi: 10.1016/j.apsusc.2019.145163
80 XU J , WANG Q F , WANG X W , et al. Flexible asymmetric supercapacitors based upon Co9S8 nanorod//Co3O4@RuO2 nanosheet arrays on carbon cloth[J]. ACS Nano, 2013, 7 (6): 5453- 5462.
doi: 10.1021/nn401450s
81 王芳. 规整形貌MnOX的可控合成及其对甲苯氧化的催化性能研究[D]. 北京: 北京工业大学, 2012.
81 WANG F. Controlled fabrication and catalytic performance of regularly morphological MnOX[D]. Beijing: Beijing University of Technology, 2012.
82 ASHA K , BADAMALI S K . Highly efficient photocatalytic degradation of lignin by hydrogen peroxide under visible light[J]. Molecular Catalysis, 2020, 497, 111236.
doi: 10.1016/j.mcat.2020.111236
83 DHAR P , TEJA V , VINU R . Sonophotocatalytic degradation of lignin: production of valuable chemicals and kinetic analysis[J]. Journal of Environmental Chemical Engineering, 2020, 8 (5): 104286.
doi: 10.1016/j.jece.2020.104286
84 DAI J H , PATTI A F , STYLES G N , et al. Lignin oxidation by MnO2 under the irradiation of blue light[J]. Green Chemistry, 2019, 21 (8): 2005- 2014.
doi: 10.1039/C8GC03498B
85 LONG J X , SHU S Y , WU Q Y , et al. Selective cyclohexanol production from the renewable lignin derived phenolic chemicals catalyzed by Ni/MgO[J]. Energy Conversion and Management, 2015, 105, 570- 577.
doi: 10.1016/j.enconman.2015.08.016
86 GIANNAKOUDAKIS D A , NAIR V , KHAN A , et al. Additive-free photo-assisted selective partial oxidation at ambient conditions of 5-hydroxymethylfurfural by manganese(Ⅳ) oxide nanorods[J]. Applied Catalysis B: Environmental, 2019, 256, 117803.
doi: 10.1016/j.apcatb.2019.117803
87 HAYASHI E , KOMANOYA T , KAMATA K , et al. Heterogeneously-catalyzed aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid with MnO2[J]. ChemSusChem, 2017, 10 (4): 654- 658.
doi: 10.1002/cssc.201601443
88 BAO L W , SUN F Z , ZHANG G Y , et al. Aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid over holey 2D Mn2O3 nanoflakes from a Mn-based MOF[J]. ChemSusChem, 2020, 13 (3): 548- 555.
doi: 10.1002/cssc.201903018
89 LI J L , SMITH R L , XU S Y , et al. Manganese oxide as an alternative to vanadium-based catalysts for effective conversion of glucose to formic acid in water[J]. Green Chemistry, 2022, 24 (1): 315- 324.
doi: 10.1039/D1GC03637H
90 LIU B , ZHANG Z H , LV K L , et al. Efficient aerobic oxidation of biomass-derived 5-hydroxymethylfurfural to 2, 5-diformylfuran catalyzed by magnetic nanoparticle supported manganese oxide[J]. Applied Catalysis A: General, 2014, 472, 64- 71.
doi: 10.1016/j.apcata.2013.12.014
91 YAMAGUCHI Y , AONO R , HAYASHI E , et al. Template-free synthesis of mesoporous β-MnO2 nanoparticles: structure, formation mechanism, and catalytic properties[J]. ACS Applied Materials & Interfaces, 2020, 12 (32): 36004- 36013.
92 LI L , FENG X H , NIE Y , et al. Insight into the effect of oxygen vacancy concentration on the catalytic performance of MnO2[J]. ACS Catalysis, 2015, 5 (8): 4825- 4832.
doi: 10.1021/acscatal.5b00320
93 BAI Z C , ZHANG Y H , ZHANG Y W , et al. MOFs-derived porous Mn2O3 as high-performance anode material for Li-ion battery[J]. Journal of Materials Chemistry A, 2015, 3 (10): 5266- 5269.
doi: 10.1039/C4TA06292B
94 SU H , XU Y F , FENG S C , et al. Hierarchical Mn2O3 hollow microspheres as anode material of lithium ion battery and its conversion reaction mechanism investigated by XANES[J]. ACS Applied Materials & Interfaces, 2015, 7 (16): 8488- 8494.
95 LI W Y , SHAO J J , LIU Q , et al. Facile synthesis of porous Mn2O3 nanocubics for high-rate supercapacitors[J]. Electrochimica Acta, 2015, 157, 108- 114.
doi: 10.1016/j.electacta.2015.01.056
96 MEHER S K , RAO G R . Enhanced activity of microwave synthesized hierarchical MnO2 for high performance supercapacitor applications[J]. Journal of Power Sources, 2012, 215, 317- 328.
doi: 10.1016/j.jpowsour.2012.04.104
97 JIAN G Q , XU Y H , LAI L C , et al. Mn3O4 hollow spheres for lithium-ion batteries with high rate and capacity[J]. Journal of Materials Chemistry A, 2014, 2 (13): 4627- 4632.
doi: 10.1039/C4TA00207E
98 KOLATHODI M S , RAO S N H , NATARAJAN T S , et al. Beaded manganese oxide (Mn2O3) nanofibers: preparation and application for capacitive energy storage[J]. Journal of Materials Chemistry A, 2016, 4 (20): 7883- 7891.
doi: 10.1039/C6TA01948J
99 QIAO Y Q , SUN Q J , XI J Y , et al. A modified solvothermal synthesis of porous Mn3O4 for supercapacitor with excellent rate capability and long cycle life[J]. Journal of Alloys and Compounds, 2016, 660, 416- 422.
doi: 10.1016/j.jallcom.2015.11.163
100 PIUMETTI M , FINO D , RUSSO N . Mesoporous manganese oxides prepared by solution combustion synthesis as catalysts for the total oxidation of VOCs[J]. Applied Catalysis B: Environmental, 2015, 163, 277- 287.
doi: 10.1016/j.apcatb.2014.08.012
101 LIU Y , ZHOU H , CAO R R , et al. Facile and green synthetic strategy of birnessite-type MnO2 with high efficiency for airborne benzene removal at low temperatures[J]. Applied Catalysis B: Environmental, 2019, 245, 569- 582.
doi: 10.1016/j.apcatb.2019.01.023
102 ZHANG X D , LI H X , HOU F L , et al. Synthesis of highly efficient Mn2O3 catalysts for CO oxidation derived from Mn-MIL-100[J]. Applied Surface Science, 2017, 411, 27- 33.
doi: 10.1016/j.apsusc.2017.03.179
103 FAN J , REN Q M , MO S P , et al. Transient in-situ DRIFTS investigation of catalytic oxidation of toluene over α-, γ- and β-MnO2[J]. ChemCatChem, 2020, 12 (4): 1046- 1054.
doi: 10.1002/cctc.201901839
104 SIHAIB Z , PULEO F , GARCIA-VARGAS J M , et al. Manganese oxide-based catalysts for toluene oxidation[J]. Applied Catalysis B: Environmental, 2017, 209, 689- 700.
doi: 10.1016/j.apcatb.2017.03.042
105 KIM S C , SHIM W G . Catalytic combustion of VOCs over a series of manganese oxide catalysts[J]. Applied Catalysis B: Environmental, 2010, 98 (3/4): 180- 185.
106 GHEJU M , BALCU I , MOSOARCA G . Removal of Cr(Ⅵ) from aqueous solutions by adsorption on MnO2[J]. Journal of Hazardous Materials, 2016, 310, 270- 277.
doi: 10.1016/j.jhazmat.2016.02.042
107 XU H M , QU Z , ZHAO S J , et al. Different crystal-forms of one-dimensional MnO2 nanomaterials for the catalytic oxidation and adsorption of elemental mercury[J]. Journal of Hazardous Materials, 2015, 299, 86- 93.
doi: 10.1016/j.jhazmat.2015.06.012
108 LIU Y X , DENG H , LU Z P , et al. The study of MnO2 with different crystalline structures for U(Ⅵ) elimination from aqueous solution[J]. Journal of Molecular Liquids, 2021, 335, 116296.
doi: 10.1016/j.molliq.2021.116296
109 DINH V P , LE N C , NGUYEN T P T , et al. Synthesis of α-MnO2 nanomaterial from a precursor γ-MnO2: characterization and comparative adsorption of Pb(Ⅱ) and Fe(Ⅲ)[J]. Journal of Chemistry, 2016, 2016, 82857.
110 ZHAO D L , YANG X , ZHANG H , et al. Effect of environmental conditions on Pb(Ⅱ) adsorption on β-MnO2[J]. Chemical Engineering Journal, 2010, 164 (1): 49- 55.
doi: 10.1016/j.cej.2010.08.014
111 ZHANG H P , WU A B , FU H Y , et al. Efficient removal of Pb(Ⅱ) ions using manganese oxides: the role of crystal structure[J]. RSC Advances, 2017, 7 (65): 41228- 41240.
doi: 10.1039/C7RA05955H
112 TAO P , SHAO M H , SONG C W , et al. Preparation of porous and hollow Mn2O3 microspheres and their adsorption studies on heavy metal ions from aqueous solutions[J]. Journal of Industrial and Engineering Chemistry, 2014, 20 (5): 3128- 3133.
doi: 10.1016/j.jiec.2013.11.055
113 CANTU Y , REMES A , REYNA A , et al. Thermodynamics, kinetics, and activation energy studies of the sorption of chromium(Ⅲ) and chromium(Ⅵ) to a Mn3O4 nanomaterial[J]. Chemical Engineering Journal, 2014, 254, 374- 383.
doi: 10.1016/j.cej.2014.05.110
114 FERREIRA A M , COUTINHO J A P , FERNANDES A M , et al. Complete removal of textile dyes from aqueous media using ionic-liquid-based aqueous two-phase systems[J]. Separation and Purification Technology, 2014, 128, 58- 66.
doi: 10.1016/j.seppur.2014.02.036
115 LEI C S , PI M , JIANG C J , et al. Synthesis of hierarchical porous zinc oxide (ZnO) microspheres with highly efficient adsorption of Congo red[J]. Journal of Colloid and Interface Science, 2017, 490, 242- 251.
doi: 10.1016/j.jcis.2016.11.049
116 TARTAJ P . Layered manganates from soft-templates: preparation, characterization and enhanced dye demethylation capabilities[J]. Journal of Materials Chemistry, 2012, 22 (34): 17718- 17723.
doi: 10.1039/c2jm32583g
117 LIU Y , WEI J , TIAN Y X , et al. The structure-property relationship of manganese oxides: highly efficient removal of methyl orange from aqueous solution[J]. Journal of Materials Chemistry A, 2015, 3 (37): 19000- 19010.
doi: 10.1039/C5TA05507E
118 JIANG S B , YU T F , XIA R , et al. Realization of of super high adsorption capability of 2D δ-MnO2/GO through intra-particle diffusion[J]. Materials Chemistry and Physics, 2019, 232, 374- 381.
doi: 10.1016/j.matchemphys.2019.05.004
119 QI G C , HAI C X , SHEN Y , et al. Synthesis of mono-dispersed mesoporous Mn2O3 powders with micro-nanostructure for removing Congo red dye from aqueous solution[J]. Advanced Powder Technology, 2019, 30 (5): 930- 939.
doi: 10.1016/j.apt.2019.02.007
120 ZHANG W X , ZHAO W R , ZHOU Z Y , et al. Facile synthesis of α-MnO2 micronests composed of nanowires and their enhanced adsorption to Congo red[J]. Frontiers of Chemical Science and Engineering, 2014, 8 (1): 64- 72.
doi: 10.1007/s11705-014-1402-5
121 ABRAHAM R , MATHEW S , KURIAN S , et al. Facile synthesis, growth process, characterisation of a nanourchin-structured α-MnO2 and their application on ultrasonic-assisted adsorptive removal of cationic dyes: a half-life and half-capacity concentration approach[J]. Ultrasonics Sonochemistry, 2018, 49, 175- 189.
doi: 10.1016/j.ultsonch.2018.07.045
122 SRIVASTAVA V , CHOUBEY A K . Study of adsorption of anionic dyes over biofabricated crystalline α-MnO2 nanoparticles[J]. Environmental Science and Pollution Research, 2021, 28 (12): 15504- 15518.
doi: 10.1007/s11356-020-11622-1
123 PANG J B , FU F L , DING Z C , et al. Adsorption behaviors of methylene blue from aqueous solution on mesoporous birnessite[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 77, 168- 176.
doi: 10.1016/j.jtice.2017.04.041
124 CHEN R X , YU J G , XIAO W . Hierarchically porous MnO2 microspheres with enhanced adsorption performance[J]. Journal of Materials Chemistry A, 2013, 1 (38): 11682- 11690.
doi: 10.1039/c3ta12589k
125 SHAO Y J , REN B , JIANG H M , et al. Dual-porosity Mn2O3 cubes for highly efficient dye adsorption[J]. Journal of Hazardous Materials, 2017, 333, 222- 231.
doi: 10.1016/j.jhazmat.2017.03.014
[1] 高岩, 冯文辰, 栾涛, 陈宝明, 张文科, 李诗杰, 迟世丹. 不同锰含量纳米MnO2-Fe2O3-CeO2/Al2O3的制备、表征及其催化还原NO/NO2性能[J]. 材料工程, 2021, 49(3): 115-124.
[2] 崔贺帅, 郑彧, 刘杏娥, 杨淑敏, 田根林, 马建锋. 生物质基SiC陶瓷制备的研究进展[J]. 材料工程, 2017, 45(8): 115-122.
[3] 张浩, 黄新杰, 宗志芳, 刘秀玉. 基于吸附性能的生物质基多孔活性炭制备方案的响应面法优化[J]. 材料工程, 2017, 45(6): 67-72.
[4] 张旭锋, 余金光, 韦家虎, 益小苏. 生物质中温热熔预浸料用环氧树脂体系[J]. 材料工程, 2017, 45(4): 96-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn