Please wait a minute...
 
2222材料工程  2023, Vol. 51 Issue (1): 85-94    DOI: 10.11868/j.issn.1001-4381.2021.000908
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Q&P980镀锌高强钢电阻点焊工艺及液态金属脆化裂纹分布
王恩茂1, 米振莉1, 卫志超1, 侯晓英2, 钟勇3
1. 北京科技大学 工程技术研究院, 北京 100083;
2. 山东钢铁集团日照有限公司 钢铁研究院, 山东 日照 276800;
3. 宝山钢铁股份有限公司 中央研究院, 上海 201900
Resistance spot welding process and liquid metal embrittlement crack distribution of Q&P980 galvanized high-strength steel
WANG Enmao1, MI Zhenli1, WEI Zhichao1, HOU Xiaoying2, ZHONG Yong3
1. Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China;
2. Iron and Steel Research Institute, Shandong Iron & Steel Group Rizhao Co., Ltd., Rizhao 276800, Shandong, China;
3. Research Institute, Baoshan Iron & Steel Co., Ltd., Shanghai 201900, China
全文: PDF(27713 KB)   HTML ( 3 )  
输出: BibTeX | EndNote (RIS)      
摘要 通过设计电阻点焊工艺的正交实验,确定了Q&P980镀锌高强钢的点焊工艺参数范围,并对其焊接接头进行显微组织表征和力学性能分析。结果表明:熔核区组织以交错分布的板条马氏体为主;热影响区组织由板条马氏体、残余奥氏体和铁素体组成,马氏体板条平均宽度在不完全淬火区最大为4.86 μm。显微硬度测试发现,焊接接头硬度值呈"W"形对称分布,硬度峰值出现在细晶区,达到559HV,硬度最低值出现在不完全淬火区,为338HV,呈现明显的软化现象。对焊接接头进行室温拉伸,最大拉剪载荷的峰值为27.92 kN,其断口形貌呈现典型的韧窝状,属于韧性断裂。由于Zn的熔点较钢基体低,镀锌高强钢点焊时易发生Zn层优先熔化并沿晶界向基体渗透,在焊接接头处可观察到明显的液态金属脆化裂纹。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王恩茂
米振莉
卫志超
侯晓英
钟勇
关键词 Q&P980镀锌高强钢电阻点焊工艺参数范围显微组织力学性能液态金属脆化    
Abstract:By designing the orthogonal experiment of resistance spot welding process, the range of spot welding process parameters of Q&P980 galvanized high-strength steel was determined, meanwhile the microstructure characterization and the mechanical properties analysis of the welding joint were carried out. The results show that the microstructure of nugget zone is mainly staggered lath martensite, whereas the microstructure of HAZ is composed of lath martensite, residual austenite and ferrite. The maximum average width of martensite lath in incompletely quenched zone is 4.86 μm.The microhardness test exhibits that the hardness value of the welding joint shows a "W"-shaped symmetrical distribution. The peak hardness appears in the fine-grain zone, which is 559HV, while the minimum hardness appears in the incompletely quenched zone, which is 338HV. The incompletely quenched zone shows obvious softening phenomenon. The room temperature tensile tests of the welding joints are carried out, and the peak value of maximum tension-shear load is 27.92 kN. The fracture morphology shows typical dimples, which belongs to ductile fracture.Since the melting point of zinc is lower than that of the steel matrix, the zinc layer is prior to melting and penetrates downward along the grain boundary of the matrix at the welding joints, and then the liquid metal embrittlement cracks can be observed obviously.
Key wordsQ&P980 galvanized high-strength steel    resistance spot welding    range of process parameters    microstructure    mechanical property    liquid metal embrittlement
收稿日期: 2021-09-15      出版日期: 2023-01-16
中图分类号:  TG453  
基金资助:山东省重点研发计划资助项目(2019TSLH0103)
通讯作者: 米振莉(1971-),女,教授,博士,主要从事钢材品种开发及性能优化、金属材料深加工(成形、焊接、涂镀)技术和汽车用钢轻量化技术及服役性能等方面的研究,联系地址:北京市海淀区学院路30号北京科技大学工程技术研究院(100083),E-mail:zhenli_mi@163.com     E-mail: zhenli_mi@163.com
引用本文:   
王恩茂, 米振莉, 卫志超, 侯晓英, 钟勇. Q&P980镀锌高强钢电阻点焊工艺及液态金属脆化裂纹分布[J]. 材料工程, 2023, 51(1): 85-94.
WANG Enmao, MI Zhenli, WEI Zhichao, HOU Xiaoying, ZHONG Yong. Resistance spot welding process and liquid metal embrittlement crack distribution of Q&P980 galvanized high-strength steel. Journal of Materials Engineering, 2023, 51(1): 85-94.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000908      或      http://jme.biam.ac.cn/CN/Y2023/V51/I1/85
[1] 康永林.汽车轻量化先进高强钢与节能减排[J].钢铁, 2008, 43(6):1-7. KANG Y L.Lightweight vehicle, advanced high strength steel and energy-saving and emission reduction[J].Iron and Steel, 2008, 43(6):1-7.
[2] HU P, LIANG Y, HE B.Hot stamping advanced manufacturing technology of lightweight car body[M].Singapore:Springer, 2017:95-110.
[3] SHOME M, TUMULURU M.Welding and joining of advanced high strength steels (AHSS)[M].Cambridge:Woodhead Publishing, 2015:93-119.
[4] CLARKEA J, SPEER J G, MATLOCKD K, et al.Influence of carbon partitioning kinetics on final austenite fraction during quenching and partitioning[J].Scripta Materialia, 2009, 61(2):149-152.
[5] 唐继宗, 邹丹青, 蒋浩民, 等.Q&P钢电阻点焊工艺和搭接接头疲劳性能试验研究[J].热加工工艺, 2014, 43(15):39-42. TANG J Z, ZOU D Q, JIANG H M, et al. Experimental study on resistance spot welding technology and fatigue property of Q&P steel[J]. Hot Working Technology, 2014, 43(15):39-42.
[6] BHAGAT A N, SINGH A, GOPE N, et al.Development of cold-rolled high-strength formable steel for automotive applications[J].Materials and Manufacturing Processes, 2010, 25(1/3):202-205.
[7] ASHIRI R, MOSTAAN H, PARK Y D.A phenomenological study of weld discontinuities and defects in resistance spot welding of advanced high strength TRIP steel[J].Metallurgical and Materials Transactions A, 2018, 49(12):6161-6172.
[8] POURANVARI M, MARASHI S P H.Critical review of automotive steels spot welding:process, structure and properties[J].Science and Technology of Welding and Joining, 2013, 18(5):361-403.
[9] 徐娟萍, 付豪, 王正, 等.中锰钢的研究进展与前景[J].工程科学学报, 2019, 41(5):557-572. XU J P, FU H, WANG Z, et al.Research progress and prospect of medium manganese steel[J].Chinese Journal of Engineering, 2019, 41(5):557-572.
[10] MILITITSKY M, PAKALNINS E, JIANG C H, et al.On cha-racteristics of DP600 resistance spot welds[J].SAE Transactions, 2003, 112(5):244-251.
[11] KIM Y G, KIM I J, KIM J S, et al.Evaluation of surface crack in resistance spot welds of Zn-coated steel[J].Materials Transactions, 2014, 55(1):171-175.
[12] BHATTACHARYA D.Liquid metal embrittlement during resistance spot welding of Zn-coated high-strength steels[J].Materials Science and Technology, 2018, 34(15):1809-1829.
[13] JUNG G, WOO I S, SUH D W, et al.Liquid Zn assisted embrittlement of advanced high strength steels with different microstructures[J].Metals and Materials International, 2016, 22(2):187-195.
[14] KIM D, KANG J H, KIM S J.Heating rate effect on liquid Zn-assisted embrittlement of high Mn austenitic steel[J].Surface & Coatings Technology, 2018, 347:157-163.
[15] BHATTACHARYA D, CHO L, Van der AA E, et al.Transgranular cracking in a liquid Zn embrittled high strength steel[J].Scripta Materialia, 2020, 175:49-54.
[16] LEE H, JO M C, SOHN S S, et al.Microstructural evolution of liquid metal embrittlement in resistance-spot-welded galvanized twinning-induced plasticity (TWIP) steel sheets[J].Materials Characterization, 2018, 147:233-241.
[17] RONCERY L M, WEBER S, THEISEN W.Welding of twinning-induced plasticity steels[J].Scripta Materialia, 2012, 66(12):997-1001.
[18] KANG H, CHO L, LEE C, et al.Zn penetration in liquid metal embrittled TWIP steel[J].Metallurgical and Materials Transactions A, 2016, 47(6):2885-2905.
[19] LEE C W, CHOI W S, CHO L, et al.Liquid-metal-induced embrittlement related microcrack propagation on Zn-coated press hardening steel[J].ISIJ International, 2015, 55(1):264-271.
[20] SCHAEFFLER D.AHSS application guidelines[J/OL].WorldAutoSteel (2021-06-24)[2021-09-01].https://ahssinsights.org/.
[21] KARAGOULIS M.Rapid LME test procedure for coated sheet steels[J/OL].Auto/Steel Partnership (2020-03-10)[2021-09-01].https://www.steel.org/steel-markets/automotive/liquid-metal-research-webinar.
[1] 常海, 赵聪铭, 王翠菊. 挤压复合AZ91-(SiCP/AZ91)复合板材显微组织和力学性能[J]. 材料工程, 2023, 51(1): 16-25.
[2] 李淑波, 侯江涛, 孟繁婧, 刘轲, 王朝辉, 杜文博. CNTs/Mg-9Al复合材料微观组织、力学及导热性能[J]. 材料工程, 2023, 51(1): 26-35.
[3] 陈刚, 武凯, 孙宇, 贾贺鹏, 朱志雄, 胡峰峰. 搅拌摩擦沉积增材技术研究进展[J]. 材料工程, 2023, 51(1): 52-63.
[4] 程昊, 周炼刚, 刘健, 王宇宁, 仝凌云, 都东. 热输入对Inconel 617镍基高温合金激光焊接接头显微组织与力学性能的影响[J]. 材料工程, 2023, 51(1): 113-121.
[5] 岑耀东, 郭曜珲, 马潇, 陈林, 包喜荣. U75V重轨钢弯曲疲劳裂纹扩展行为[J]. 材料工程, 2023, 51(1): 122-129.
[6] 曾宏伟, 李红, 姚彧敏, 杨敏, 陶银萍, 任慕苏, 孙晋良. 热解碳含量对碳/碳-聚酰亚胺复合材料性能的影响[J]. 材料工程, 2023, 51(1): 148-154.
[7] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[8] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[9] 刘雄飞, 杜文博, 付军健, 王云峰, 李淑波, 朱训明, 王朝辉. Gd对Mg-xGd-1Er-1Zn-0.6Zr合金显微组织和腐蚀行为的影响[J]. 材料工程, 2022, 50(9): 159-168.
[10] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[11] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[12] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[13] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[14] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[15] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn