Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (10): 55-62    DOI: 10.11868/j.issn.1001-4381.2021.000919
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
粉末冶金(FeNiMnAlx)50Cu50中熵合金的微观组织与力学性能
陈维平, 陈焕达, 褚晨亮, 付志强()
华南理工大学 广东省金属新材料制备与成形重点实验室, 广州 510641
Microstructure and mechanical properties of (FeNiMnAlx)50Cu50 medium entropy alloy fabricated by powder metallurgy
Weiping CHEN, Huanda CHEN, Chenliang CHU, Zhiqiang FU()
Guangdong Key Laboratory for Advanced Metallic Materials Processing, South China University of Technology, Guangzhou 510641, China
全文: PDF(19294 KB)   HTML ( 7 )  
输出: BibTeX | EndNote (RIS)      
摘要 

对物理法制备的再生铜合金粉末进一步合金化,通过机械合金化(MA)结合放电等离子烧结(SPS)的方法制备了(Fe40Ni40Mn2050Cu50,(Fe38Ni38Mn19Al550Cu50,(Fe36Ni36Mn18Al1050Cu50和(Fe32Ni32Mn16Al2050Cu50四种中熵合金块体,并研究了Al元素的含量对中熵合金微观组织与力学性能的影响。结果表明:在高能球磨60 h之后合金粉末完成合金化,四种中熵合金粉末均形成单一FCC相的过饱和固溶体且有微量WC杂质。经SPS烧结后,(Fe40Ni40Mn2050Cu50,(Fe38Ni38Mn19Al550Cu50和(Fe36Ni36Mn18Al1050Cu50形成了由富Cu的FCC1相和富Fe-Ni的FCC2相组成的双相FCC结构,并具有超细晶+微米晶的多尺度结构;而(Fe32Ni32Mn16Al2050Cu50由富Cu的FCC主相和少量富Fe-Mn的FCC2相及富Ni-Al的BCC相(B2)组成。随着Al含量的提高,四种中熵合金的塑性逐渐降低,而强度和硬度逐渐提高。(Fe40Ni40Mn2050Cu50合金的压缩屈服强度、抗压强度和维氏硬度分别为878 MPa,1257 MPa和248.5HV。与(Fe40Ni40Mn2050Cu50相比,(Fe32Ni32Mn16Al2050Cu50的压缩屈服强度和硬度分别提高了50.1%和50.4%,断裂应变由19.55%下降至8.31%。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈维平
陈焕达
褚晨亮
付志强
关键词 中熵合金再生铜机械合金化放电等离子烧结微观组织力学性能    
Abstract

The recycled copper alloy powders prepared by physical method were further alloyed, and therefore four medium entropy alloys (MEAs), (Fe40Ni40Mn20)50Cu50, (Fe38Ni38Mn19Al5)50Cu50, (Fe36Ni36Mn18Al10)50Cu50 and (Fe32Ni32Mn16Al20)50Cu50were successfully prepared via mechanical alloying (MA) and spark plasma sintering (SPS). The influence of Al content on the microstructure and mechanical properties of the MEAs were systematically studied. Following 60 h of MA, the mechanical alloyed powders of the four MEAs consist of a primary supersaturated FCC solid solution along with a trace amount of WC contaminants. Following SPS, the (Fe40Ni40Mn20)50Cu50, (Fe38Ni38Mn19Al5)50Cu50 and (Fe36Ni36Mn18Al10)50Cu50 show a dual-phase structure consisting of a Cu-rich phase (FCC1) and a Fe-Ni-rich phase (FCC2), displaying a multiscale grain structure of ultrafine grains and micron grains. However, the (Fe32Ni32Mn16Al20)50Cu50 alloy shows a primary Cu-rich phase (FCC1) with a small amount of Fe-Mn rich phase (FCC2) and Ni-Al rich B2 phase. The plasticity of the four MEAs is gradually decreased, while the strength and hardness are gradually increased with the increase of Al content. The compressive yield strength, compressive strength and Vickers hardness of (Fe40Ni40Mn20)50Cu50 MEAs are 878 MPa, 1257 MPa and 248.5HV, respectively. Compared with (Fe40Ni40Mn20)50Cu50, the compressive yield strength and hardness of (Fe32Ni32Mn16Al20)50Cu50 are increased by 50.1% and 50.4%, respectively, whereas the fracture strain is decreased from 19.55% to 8.31%.

Key wordsmedium entropy alloy    recycled copper    mechanical alloying    spark plasma sintering    microstructure    mechanical property
收稿日期: 2021-09-17      出版日期: 2022-10-24
中图分类号:  TG135  
基金资助:广东省基础与应用基础研究基金项目(2020A1515111104)
通讯作者: 付志强     E-mail: zhiqiangfu2019@scut.edu.cn
作者简介: 付志强(1986—), 男, 博导, 博士, 研究方向: 新型合金的设计、成形加工、力学行为与极端环境服役行为, 联系地址: 广州市天河区华南理工大学38号楼(510641), E-mail: zhiqiangfu2019@scut.edu.cn
引用本文:   
陈维平, 陈焕达, 褚晨亮, 付志强. 粉末冶金(FeNiMnAlx)50Cu50中熵合金的微观组织与力学性能[J]. 材料工程, 2022, 50(10): 55-62.
Weiping CHEN, Huanda CHEN, Chenliang CHU, Zhiqiang FU. Microstructure and mechanical properties of (FeNiMnAlx)50Cu50 medium entropy alloy fabricated by powder metallurgy. Journal of Materials Engineering, 2022, 50(10): 55-62.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000919      或      http://jme.biam.ac.cn/CN/Y2022/V50/I10/55
Fig.1  再生铜合金粉末粒径分布
Cu Sn Pb Zn Fe Other metals Non-metal
94.72 2.27 1.76 0.71 0.3 0.13 0.11
Table 1  再生铜合金粉末的成分(质量分数/%)
Fig.2  再生铜合金粉末的SEM照片
Fig.3  四种中熵合金元素粉末不同球磨时间的XRD图谱
(a)MEA1;(b)MEA2;(c)MEA3;(d)MEA4
Fig.4  四种中熵合金块体的XRD图谱
Fig.5  四种中熵合金块体的SEM照片
(a)MEA1;(b)MEA2;(c)MEA3;(d)MEA4
Alloy Area Atom fraction/%
Cu Ni Fe Mn Al
MEA1 Nominal composition 50 20 20 10
A 66.60 27.30 3.81 2.29
B 31.67 23.42 31.71 13.00
MEA2 Nominal composition 50 19 19 9.5 2.5
C 64.41 27.36 4.66 3.23 0.34
D 34.28 20.90 29.42 9.25 6.15
MEA3 Nominal composition 50 18 18 9 5
E 61.40 28.72 5.32 3.54 1.02
F 32.40 21.80 32.34 8.78 4.67
MEA4 Nominal composition 50 16 16 8 10
G 59.72 28.36 4.88 3.97 3.07
H 35.93 41.39 6.10 3.75 12.83
Table 2  四种中熵合金EDS/BSE能谱分析结果
Fig.6  MEA2的TEM明场照片
(a)晶粒1(FCC1)和对应的衍射花样;(b)超细晶区和晶粒2(FCC2)对应的衍射花样
Alloy Area Atom fraction/%
Cu Ni Fe Mn Al Sn Zn Pb
MEA2 Nominal composition 48.75 19 19 9.5 2.5 0.62 0.35 0.28
FCC1(1) 63.24 17.91 10.69 6.98 0 0.01 1.16 0.01
FCC2(2) 16.60 26.71 47.52 6.60 0.82 1.45 0.27 0.03
MEA4 Nominal composition 48.75 16 16 8 10 0.62 0.35 0.28
FCC1(4) 75.65 10.23 5.59 5.99 2.04 - 0.50 -
FCC2(5) 1.50 3.95 79.64 14.63 0.01 0.01 0.25 0.01
BCC(6) 9.16 43.49 9.03 9.86 28.46 - - -
Table 3  两种中熵合金EDS/TEM能谱分析结果
Fig.7  MEA4的TEM明场照片
(a)微米晶区;(b)超细晶区
Fig.8  MEA4的HAADF STEM照片及元素面扫描
Fig.9  图 8中不同相的衍射斑点
(a)区域4;(b)区域5;(c)区域6
Fig.10  四种中熵合金室温压缩应力-应变曲线
Alloy Compressive yield strength/MPa Compressive strength/MPa Fracture strain/% HV
MEA1 878 1257 19.55 248.5
MEA2 915 1244 13.60 278.1
MEA3 1119 1404 11.83 309.9
MEA4 1318 1672 8.31 373.7
Table 4  四种中熵合金室温下的力学性能
1 CHENG P, YANG X D, YU T B. Study on the impact of mineral resources exploitation around cities on resident movement and health monitoring system[C]//4th International Symposium on Resource Exploration and Environmental Science. Ordos: IOP Conference Series: Earth and Environmental Science, 2020: 32005.
2 SVERDRUP H U , RAGNARSDOTTIR K V , KOCA D . An assessment of metal supply sustainability as an input to policy: security of supply extraction rates, stocks-in-use, recycling, and risk of scarcity[J]. Journal of Cleaner Production, 2017, 140, 359- 372.
doi: 10.1016/j.jclepro.2015.06.085
3 SCHAFER P , SCHMIDT M . Discrete-point analysis of the energy demand of primary versus secondary metal production[J]. Environmental Science & Technology, 2020, 54 (1): 507- 516.
4 LIU F F , CHEN W P , WAN B B , et al. Recovery of high-grade copper from metal-rich particles of waste printed circuit boards by ball milling and sieving[J]. Environmental Technology, 2020, 43 (4): 514- 523.
5 YEH J W , CHEN S K , LIN S J , et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6 (5): 299- 303.
doi: 10.1002/adem.200300567
6 MIRACLE D B , SENKOV O N . A critical review of high entropy alloys and related concepts[J]. Acta Materialia, 2017, 122, 448- 511.
doi: 10.1016/j.actamat.2016.08.081
7 FU Z Q , JIANG L , WARDINI J L , et al. A high-entropy alloy with hierarchical nanoprecipitates and ultrahigh strength[J]. Science Advances, 2018, 4 (10): 1- 8.
8 POLETTI M G , FIORE G , GILI F , et al. Development of a new high entropy alloy for wear resistance: FeCoCrNiW0.3 and FeCoCrNiW0.3+5 at.% of C[J]. Materials & Design, 2017, 115, 247- 254.
9 CHEN C , ZHANG H , FAN Y Z , et al. Improvement of corrosion resistance and magnetic properties of FeCoNiAl0.2Si0.2 high entropy alloy via rapid-solidification[J]. Intermetallics, 2020, 122, 106778.
doi: 10.1016/j.intermet.2020.106778
10 ZHAO S J . Defect properties in a VTaCrW equiatomic high entropy alloy (HEA) with the body centered cubic (bcc) structure[J]. Journal of Materials Science & Technology, 2020, 44, 133- 139.
11 GU Z , XI S Q , SUN C F . Microstructure and properties of laser cladding and CoCr2.5FeNi2Tix high-entropy alloy composite coatings[J]. Journal of Alloys and Compounds, 2020, 819, 152986.
doi: 10.1016/j.jallcom.2019.152986
12 NAGASE T , SHIBATA A , MATSUMURO M , et al. Alloy design and fabrication of ingots in Cu-Zn-Mn-Ni-Sn high-entropy and Cu-Zn-Mn-Ni medium-entropy brasses[J]. Materials & Design, 2019, 181, 107900.
13 XU Z J , LI Z T , TONG Y , et al. Microstructural and mechanical behavior of a CoCrFeNiCu4 non-equiatomic high entropy alloy[J]. Journal of Materials Science & Technology, 2021, 60, 35- 43.
14 QIN G , CHEN R R , LIAW P K , et al. A novel face-centered-cubic high-entropy alloy strengthened by nanoscale precipitates[J]. Scripta Materialia, 2019, 172, 51- 55.
doi: 10.1016/j.scriptamat.2019.07.008
15 WU B , XIE Z Y , HUANG J C , et al. Microstructures and thermodynamic properties of high-entropy alloys CoCrCuFeNi[J]. Intermetallics, 2018, 93, 40- 46.
doi: 10.1016/j.intermet.2017.10.018
16 FU Z Q , MACDONALD B E , DUPUY A D , et al. Exceptional combination of soft magnetic and mechanical properties in a heterostructured high-entropy composite[J]. Applied Materials Today, 2019, 15, 590- 598.
doi: 10.1016/j.apmt.2019.04.014
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[3] 朱阳阳, 李晓延, 张伟栋, 张虎, 何溪. 全Cu3Sn焊点在高温时效下的组织及力学性能[J]. 材料工程, 2022, 50(9): 169-176.
[4] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[5] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[6] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[7] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[8] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[9] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[10] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[11] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[12] 张昌青, 王树文, 罗德春, 师文辰, 刘晓, 崔国胜, 陈波阳, 辛舟, 芮执元. 热电耦合对铝/钢连续驱动摩擦焊接头组织的影响机理[J]. 材料工程, 2022, 50(5): 35-42.
[13] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[14] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[15] 安强, 祁文军, 左小刚. TA15钛合金表面原位合成TiC增强钛基激光熔覆层的组织与耐磨性[J]. 材料工程, 2022, 50(4): 139-146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn