Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (7): 156-164    DOI: 10.11868/j.issn.1001-4381.2021.000958
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
电子束选区熔化成形Ti2AlNb合金微观组织与性能
车倩颖1, 贺卫卫1,2,*(), 李会霞1, 程康康1, 王宇1
1 西安赛隆金属材料有限责任公司, 西安 710018
2 西北有色金属研究院 金属多孔材料国家重点实验室, 西安 710016
Microstructure and property of Ti2AlNb alloy by selective electron beam melting
Qianying CHE1, Weiwei HE1,2,*(), Huixia LI1, Kangkang CHENG1, Yu WANG1
1 Xi'an Sailong Metal Materials Co., Ltd., Xi'an 710018, China
2 State Key Laboratory for Porous Metals Materials, Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China
全文: PDF(21361 KB)   HTML ( 4 )  
输出: BibTeX | EndNote (RIS)      
摘要 

Ti2AlNb基合金由于具有优异的高温比强度、高温抗蠕变性能和较高的断裂韧度,因而被认为是替代传统镍基高温合金最具潜力的材料。采用电子束选区熔化(selective electron beam melting,SEBM)技术成形Ti-22Al-25Nb合金,通过工艺优化获得高致密度(5.42~5.43 g/cm3)的成形试样。研究了沉积态和热等静压(hot isostatic pressing,HIP)态试样的显微组织演变、物相演变及其对力学性能的影响。结果表明:沉积态和HIP态组织呈现出沿成形方向的柱状晶结构,且均由B2,O和α2相组成,沉积态试样中的O/α2相自上而下逐渐增加,HIP后组织趋于均匀化,且相对沉积态,析出相的宽度缩小、数量减少。沉积态试样中析出相较多的下部区域具有更高的显微硬度((345.87±5.09)HV),HIP后试样硬度值增加至388.91~390.48HV。沉积态试样室温抗拉强度和伸长率分别为(1061±23.71)MPa和(3.67±1.15)%,HIP后抗拉强度增加至(1101±23.07)MPa,伸长率降低至3.5%。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
车倩颖
贺卫卫
李会霞
程康康
王宇
关键词 Ti2AlNb基合金电子束选区熔化致密度显微组织力学性能    
Abstract

Ti2AlNb based alloys is considered to be the most potential material material to replace the traditional Ni-based superalloys, because of its excellent high-temperature specific strength, creep resistance and high fracture toughness. Ti-22Al-25Nb alloy was fabricated by selective electron beam melting(SEBM), and the density of as-built samples reached 5.42-5.43 g/cm3through process optimization. The microstructure, phase evolution and mechanical property of the as-built and HIPed Ti2AlNb alloy samples were investigated. The results show that the microstructure of the as-built and HIPed samples both show the columnar crystalline structures along the deposition direction, which are all composed of B2, O and α2 phases, and the amount of O/α2 phase gradually increases from top to bottom. After HIP, the width and amount of the O/α2 phase are reduced and relatively uniform when compared with that of the as-built samples. In the bottom area, the microhardness of the as-built sample exhibits higher value of about (345.87±5.09)HV, while the hardness increases to 388.91-390.48HV after HIP. The ultimate tensile strength and elongation of the as-built sample at room temperature are (1061±23.71) MPa and (3.67±1.15)% respectively, and the ultimate tensile strength increases to (1101±23.07) MPa and the elongation reduces to 3.5% after HIP.

Key wordsTi2AlNb based alloy    selective electron beam melting    density    microstructure    mechanical property
收稿日期: 2021-09-28      出版日期: 2022-07-18
中图分类号:  TG113  
基金资助:广东省重点领域研发计划项目(2019B090904001);陕西省科技重大专项(S2020-ZDZX-ZNZC-0003)
通讯作者: 贺卫卫     E-mail: hewi126@126.com
作者简介: 贺卫卫(1980—), 男, 教授, 博士, 主要从事高品质球形金属粉末制备及稀有金属粉床电子束增材制造研究, 联系地址: 西安市经济技术开发区明光路1号出口加工区西安赛隆金属材料有限责任公司(710018), E-mail: hewi126@126.com
引用本文:   
车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
Qianying CHE, Weiwei HE, Huixia LI, Kangkang CHENG, Yu WANG. Microstructure and property of Ti2AlNb alloy by selective electron beam melting. Journal of Materials Engineering, 2022, 50(7): 156-164.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000958      或      http://jme.biam.ac.cn/CN/Y2022/V50/I7/156
MaterialMass fraction/%
Al Fe Nb O C H N Ti
Powder 11.24 0.06 43.80 0.038 0.015 0.0007 0.003 Bal
As-built rods 10.04 0.06 44.08 0.041 0.016 0.0007 0.003 Bal
Table 1  Ti-22Al-25Nb粉末和成形试棒化学成分
Fig.1  Ti-22Al-25Nb合金粉末形貌
Fig.2  SEBM成形Ti2AlNb试样照片(a),不同高度显微组织取样示意图(b)及拉伸试样图(c)
Fig.3  SEBM成形Ti2AlNb合金的加工窗口
Fig.4  线能量密度与试样密度的关系
Fig.5  沉积态(1)和热等静压态(2)Ti2AlNb合金不同高度处显微组织
(a)试样1;(b)试样2;(c)试样3;(d)试样4;(e)试样5
Fig.6  沉积态(a)和HIP态(b)Ti2AlNb合金显微组织SEM照片
Fig.7  沉积态(a)和HIP态(b)试样不同高度处的XRD图谱
Fig.8  沉积态和HIP态试样不同高度处显微硬度
Fig.9  Ti2AlNb合金室温拉伸性能
Fig.10  拉伸断口SEM照片
(a)沉积态;(b)HIP态
1 ZHANG Y L , FENG A H , QUA S J , et al. Microstructure and low cycle fatigue of a Ti2AlNb-based lightweight alloy[J]. Journal of Materials Science & Technology, 2020, 44, 140- 147.
2 ZHANG H Y , ZHANG Y R , LIANG H Y , et al. Effect of the primary O phase on thermal deformation behavior of a Ti2AlNb-based alloy[J]. Journal of Alloys and Compounds, 2020, 846, 156458.
doi: 10.1016/j.jallcom.2020.156458
3 GRIGORIEV A , POLOZOV I , SUFIIAROV V , et al. In-situ synthesis of Ti2AlNb-based intermetallic alloy by selective laser melting[J]. Journal of Alloys and Compounds, 2017, 704, 434- 442.
doi: 10.1016/j.jallcom.2017.02.086
4 REITH M , FRANKE M , SCHLOFFER M , et al. Processing 4th generation titanium aluminides via electron beam based additive manufacturing-characterization of microstructure and mechanical properties[J]. Materialia, 2020, 14, 100902.
doi: 10.1016/j.mtla.2020.100902
5 ZHANG Y R , LIU Y C , YU L M , et al. Microstructure and tensile properties of Ti2AlNb and Mo-modified Ti2AlNb alloys fabricated by hot isostatic pressing[J]. Materials Science and Engineering: A, 2020, 776, 139043.
doi: 10.1016/j.msea.2020.139043
6 周英豪. 选区激光熔化增材制造高性能Ti-22Al-25Nb高温合金[D]. 哈尔滨: 哈尔滨工业大学, 2020.
6 ZHOU Y H. Selective laser melting additive manufacturing of high-performance Ti-22Al-25Nb high-temperature alloy[D]. Harbin: Harbin Institute of Technology, 2020.
7 YOUN S J , KIM Y K , KIM S W , et al. Elevated temperature compressive deformation behaviors of γ-TiAl-based Ti-48Al-2Cr-2Nb alloy additively manufactured by electron beam melting[J]. Intermetallics, 2020, 124, 106859.
doi: 10.1016/j.intermet.2020.106859
8 YUE H Y , PENG H , LI R F , et al. Selective electron beam melting of TiAl alloy: metallurgical defects, tensile property, and determination of process window[J]. Advanced Engineering Materials, 2020, 22 (8): 2000194.
doi: 10.1002/adem.202000194
9 CHO K , KOBAYASHI R , OH J Y , et al. Influence of unique layered microstructure on fatigue properties of Ti-48Al-2Cr-2Nb alloys fabricated by electron beam melting[J]. Intermetallics, 2018, 95, 1- 10.
doi: 10.1016/j.intermet.2018.01.009
10 陈玮, 杨洋, 刘亮亮, 等. 电子束增材制造γ-TiAl显微组织调控与拉伸性能研究[J]. 航空制造技术, 2017, 60 (1/2): 37- 41.
10 CHEN W , YANG Y , LIU L L , et al. Microstructure control and tensile properties of EBM γ-TiAl[J]. Aeronautical Manufacturing Technology, 2017, 60 (1/2): 37- 41.
11 POLOZOV I , VADIM S , ARTAM K , et al. Selective laser melting of Ti2AlNb-based intermetallic alloy using elemental powders: effect of process parameters and post-treatment on microstructure, composition, and properties[J]. Intermetallics, 2019, 112, 106554.
doi: 10.1016/j.intermet.2019.106554
12 POLOZOV I , VADIM S , ANATOLY P , et al. Synthesis of Ti-5Al, Ti-6Al-7Nb, and Ti-22Al-25Nb alloys from elemental powders using powder-bed fusion additive manufacturing[J]. Journal of Alloys and Compounds, 2018, 763, 436- 445.
doi: 10.1016/j.jallcom.2018.05.325
13 唐杨杰, 刘彦涛, 张永忠. 激光增材制造Ti2AlNb基合金的组织与性能[J]. 金属热处理, 2016, 41 (4): 1- 6.
doi: 10.3969/j.issn.1673-4971.2016.04.001
13 TANG Y J , LIU Y T , ZHANG Y Z . Microstructure and properties of laser additive manufacturing Ti2AlNb-based alloy[J]. Heat Treatment of Metals, 2016, 41 (4): 1- 6.
doi: 10.3969/j.issn.1673-4971.2016.04.001
14 ZHOU Y H , LI W P , ZHANG L , et al. Selective laser melting of Ti-22Al-25Nb intermetallic: significant effects of hatch distance on microstructural features and mechanical properties[J]. Journal of Materials Processing Tech, 2020, 276, 116398.
doi: 10.1016/j.jmatprotec.2019.116398
15 ZHOU Y H , LI W P , WANG D W , et al. Selective laser melting enabled additive manufacturing of Ti-22Al-25Nb intermetallic: excellent combination of strength and ductility, and unique microstructural features associated[J]. Acta Materialia, 2019, 173, 117- 129.
doi: 10.1016/j.actamat.2019.05.008
16 王茂松, 杜宇雷. 增材制造钛铝合金研究进展[J]. 航空学报, 2021, 42 (7): 625263.
16 WANG M S , DU Y L . Research progress of additive manufacturing of TiAl alloys[J]. Acta Aeronautica Sinica, 2021, 42 (7): 625263.
17 LIN B C , CHEN W , YANG Y , et al. Anisotropy of microstructure and tensile properties of Ti-48Al-2Cr-2Nb fabricated by electron beam melting[J]. Journal of Alloys and Compounds, 2020, 830, 154684.
doi: 10.1016/j.jallcom.2020.154684
18 李昂, 刘雪峰, 俞波, 等. 金属增材制造技术的关键因素及发展方向[J]. 工程科学学报, 2019, 41 (2): 159- 173.
18 LI A , LIU X F , YU B , et al. Key factors and developmental directions with regard to metal additive manufacturing[J]. Chinese Journal of Engineering, 2019, 41 (2): 159- 173.
19 王虎, 彭云, 赵琳, 等. 选区熔化3D打印TiAl基合金的研究现状及展望[J]. 表面技术, 2021, 50 (1): 173- 186.
19 WANG H , PENG Y , ZHAO L , et al. Research progress and prospection selective melting 3D printing of TiAl-based alloys[J]. Surface Technology, 2021, 50 (1): 173- 186.
20 王林, 沈忱, 张弛, 等. 增材制造TiAl合金的研究现状及展望[J]. 电焊机, 2020, 50 (4): 1- 12.
20 WANG L , SHEN C , ZHANG C , et al. Research progress and prospects of TiAl alloy produced by additive manufacturing technology[J]. Electric Welding Machine, 2020, 50 (4): 1- 12.
21 MA R L , PENG C Q , CAI Z Y , et al. Effect of bimodal microstructure on the tensile properties of selective laser melt Al-Mg-Sc-Zr alloy[J]. Journal of Alloys and Compounds, 2020, 815, 152422.
doi: 10.1016/j.jallcom.2019.152422
22 LIU Z Q , WANG W B , MA R X , et al. Microstructure and properties of γ-TiAl alloy fabricated by laser melting deposition[J]. Transactions of Nonferrous Metals Society of China, 2020, 30, 917- 927.
doi: 10.1016/S1003-6326(20)65265-7
23 TANG Y J , ZHANG Y Z , LIU Y T . Numerical and experimental investigation of laser additive manufactured Ti2AlNb-based alloy[J]. Journal of Alloys and Compounds, 2017, 727, 196- 204.
doi: 10.1016/j.jallcom.2017.08.069
24 ZHANG Y R , CAI Q , MA Z Q , et al. Solution treatment for enhanced hardness in Mo-modified Ti2AlNb-based alloys[J]. Journal of Alloys and Compounds, 2019, 805, 1184- 1190.
doi: 10.1016/j.jallcom.2019.07.149
25 唐杨杰. 激光增材制造Ti-22Al-25Nb合金基础问题研究[D]. 北京: 北京有色金属研究总院, 2018.
25 TANG Y J. Fundamental research on laser additive manufactured Ti-22Al-25Nb alloy[D]. Beijing: General Research Institute for Nonferrous Metals, 2018.
26 骆晨, 张寅, 王新英, 等. 热处理对铸造Ti2AlNb合金组织和力学性能的影响[J]. 航天制造技术, 2020, 4 (2): 18- 20.
26 LUO C , ZHANG Y , WANG X Y , et al. Effect of heat treatment on microstructure and properties of cast Ti-22Al-25Nb alloy[J]. Aerospace Manufacturing Technology, 2020, 4 (2): 18- 20.
[1] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[2] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[3] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[4] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[5] 邓操, 李瑞迪, 袁铁锤, 牛朋达. Al含量对选区激光熔化AlxCoCrFeNi (x=0.3, 0.5, 0.7, 1.0)的显微组织及纳米压痕的影响[J]. 材料工程, 2022, 50(6): 27-35.
[6] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[7] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[8] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[9] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[10] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[11] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
[12] 陈帅, 陶凤和, 贾长治, 孙河洋. 成形角度对选区激光熔化4Cr5MoSiV1钢组织和性能的影响[J]. 材料工程, 2022, 50(3): 122-130.
[13] 唐鹏钧, 房立家, 王兴元, 李沛勇, 张学军. 人工时效对激光选区熔化AlMg4.5Sc0.55Mn0.5Zr0.2合金显微组织和力学性能的影响[J]. 材料工程, 2022, 50(2): 84-93.
[14] 邵震, 崔雷, 王东坡, 陈永亮, 胡正根, 王非凡. 几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响[J]. 材料工程, 2022, 50(1): 25-32.
[15] 吴程浩, 刘涛, 高嵩, 石磊, 刘洪涛. 铝/钢异种金属的超声振动强化搅拌摩擦焊接工艺[J]. 材料工程, 2022, 50(1): 33-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn