SiC ceramics has been extensively used in heat exchangers because of their excellent mechanical properties, high thermal conductivity, and superior thermal shock, corrosion, and oxidation resistance. However, there is a wide variation in the thermal conductivity of SiC ceramics, depending on the raw materials, molding process, sintering process, and sintering additives. The thermal conductivity of SiC ceramics (≤ 270 W·m-1·K-1) is much lower than that of 6H-SiC single crystals (490 W·m-1·K-1) because of pores, grain boundaries, impurities, and defects in SiC ceramics. In this work, the important factors affecting the thermal conductivity of SiC ceramics were analyzed, including temperature, pore, crystal structure, and second phase. Further, the preparation processes of high conductivity SiC ceramics were systematically compared based on hot-pressed sintering, spark plasma sintering, pressureless sintering, recrystallization sintering, and reaction sintering. The improvement measures of thermal conductivity of SiC ceramics were summarized, including the optimization of the type and content of sintering aids, high-temperature annealing, and adding a high-thermal-conductivity second phase. Finally, the prospects and research directions of low-cost and high-thermal-conductivity SiC ceramics are proposed.
LI X C, FAN T J, JIANG X D, et al. Energy-saving and low-carbon development report of China's steel industry (2020)[R]. Liuzhou: China Energy Conservation Association, 2020.
ZHU L N , YE Y W , HOU B , et al. Experimental study on heat transfer and resistance characteristics for finned tube of fast reactor sodium-air heat exchanger[J]. Atomic Energy Science and Technology, 2020, 54 (11): 2031- 2036.
LI K , WEN J , WANG S M . Effect of axial heat conduction on heat transfer performance of plate fin heat exchanger under different thermal boundary condition[J]. CIESC Journal, 2021, 72 (4): 1956- 1964.
4
JAMZAD P , KENNA J , BAHRAMI M . Development of novel plate heat exchanger using natural graphite sheet[J]. International Journal of Heat and Mass Transfer, 2019, 131, 1205- 1210.
doi: 10.1016/j.ijheatmasstransfer.2018.11.129
5
KROULÍKOVÁ T , ASTROUSKI I , RAUDENSKY M , et al. Heat exchanger for air-liquid application with chaotised polymeric hollow fibres[J]. Applied Thermal Engineering, 2021, 197, 117365.
doi: 10.1016/j.applthermaleng.2021.117365
6
WU J F , DING C J , XU X H , et al. Microstructure and performances of corundum-mullite composite ceramics for heat transmission pipelines: effects of Ho2O3 additive content[J]. Ceramics International, 2021, 47 (24): 34794- 34801.
doi: 10.1016/j.ceramint.2021.09.019
7
HAUNSTETTER J , DREIβIGACKER V , ZUNFT S . Ceramic high temperature plate fin heat exchanger: experimental investigation under high temperatures and pressures[J]. Applied Thermal Engineering, 2019, 151, 364- 372.
doi: 10.1016/j.applthermaleng.2019.02.015
8
NAKANO H , WATARI K , KINEMUCHI Y , et al. Microstructural characterization of high-thermal-conductivity SiC ceramics[J]. Journal of the European Ceramic Society, 2004, 24 (14): 3685- 3690.
doi: 10.1016/j.jeurceramsoc.2003.12.019
9
TESSIER-DOYEN N , GRENIER X , HUGER M , et al. Thermal conductivity of alumina inclusion/glass matrix composite materials: local and macroscopic scales[J]. Journal of the European Ceramic Society, 2007, 27 (7): 2635- 2640.
doi: 10.1016/j.jeurceramsoc.2006.09.017
10
SCHNEIDER H , FISCHER R X , SCHREUER J . Mullite: crystal structure and related properties[J]. Journal of the American Ceramic Society, 2015, 98 (10): 2948- 2967.
doi: 10.1111/jace.13817
11
XU M , GIRISH Y R , RAKESH K P , et al. Recent advances and challenges in silicon carbide (SiC) ceramic nanoarchitectures and their applications[J]. Materials Today Communications, 2021, 28, 102533.
doi: 10.1016/j.mtcomm.2021.102533
12
XING G C , DENG C J , DING J , et al. Fabrication and characterisation of AlN-SiC porous composite ceramics by nitridation of Al4SiC4[J]. Ceramics International, 2020, 46 (4): 4959- 4967.
doi: 10.1016/j.ceramint.2019.10.234
HONG Z L , ZHANG Q J , LI K Y , et al. Oxidation behavior of SiC/SiC composites in air at high temperature[J]. Journal of Materials Engineering, 2021, 49 (5): 144- 150.
14
WU X X , DENG C J , DI J H , et al. Fabrication of novel AlN-SiC-C refractories by nitrogen gas-pressure sintering of Al4SiC4[J]. Journal of the European Ceramic Society, 2022, 42 (8): 3634- 3643.
doi: 10.1016/j.jeurceramsoc.2022.02.058
MENG H T , HAO M X , WANG Y , et al. Development and application of SiC heat exchanger for heat exchanged two-step coke ovens[J]. Refractories, 2019, 53 (5): 380- 383.
doi: 10.3969/j.issn.1001-1935.2019.05.012
16
NGWASHI D K , PHUNG L V . Recent review on failures in silicon carbide power MOSFETs[J]. Microelectronics Reliability, 2021, 123, 114169.
doi: 10.1016/j.microrel.2021.114169
17
SLACK G A . Thermal conductivity of pure and impure silicon, silicon carbide, and diamond[J]. Journal of Applied Physics, 1965, 35 (12): 3460- 3466.
18
KOSTANOVSKIY A V , ZEODINOV M G , KOSTANOVSKAYA M E , et al. Thermal conductivity of silicicated silicon carbide at 1400-2200 K[J]. High Temperature, 2019, 57 (1): 122- 123.
doi: 10.1134/S0018151X19010152
19
VENTURA G , PERFETTI M . Thermal properties of solids at room and cryogenic temperatures[M]. Berlin: Springer Netherlands, 2014: 145- 146.
ZHANG C , LIANG H Q , LI Y S , et al. Development of calculation of thermal conductivity of silicon carbide[J]. Journal of the Chinese Ceramic Society, 2015, 43 (3): 268- 275.
doi: 10.14062/j.issn.0454-5648.2015.03.03
21
WATARI K , NAKANO H , SATO K , et al. Effect of grain boundaries on thermal conductivity of silicon carbide ceramic at 5 to 1300 K[J]. Journal of the American Ceramic Society, 2003, 86 (10): 1812- 1814.
doi: 10.1111/j.1151-2916.2003.tb03563.x
22
PAPPACENA K E , FABER K T , WANG H , et al. Thermal conductivity of porous silicon carbide derived from wood precursors[J]. Journal of the American Ceramic Society, 2007, 90 (9): 2855- 2862.
doi: 10.1111/j.1551-2916.2007.01777.x
23
GÓMEZ-MARTÍN A , ORIHUELA M P , RAMÍREZ-RICO J , et al. Thermal conductivity of porous biomorphic SiC derived from wood precursors[J]. Ceramics International, 2016, 42 (14): 16220- 16229.
doi: 10.1016/j.ceramint.2016.07.151
24
IWAMI M . Silicon carbide: fundamentals[J]. Nuclear Inst & Methods in Physics Research A, 2001, 466 (2): 406- 411.
25
QIAN X , JIANG P Q , YANG R G . Anisotropic thermal conductivity of 4H and 6H silicon carbide measured using time-domain thermoreflectance[J]. Materials Today Physics, 2017, 3, 70- 75.
doi: 10.1016/j.mtphys.2017.12.005
26
PROTIK N H , KATRE A , LINDSAY L , et al. Phonon thermal transport in 2H, 4H and 6H silicon carbide from first principles[J]. Materials Today Physics, 2017, 1, 31- 38.
doi: 10.1016/j.mtphys.2017.05.004
27
HARRIS G L . Properties of silicon carbide[M]. London: INSPEC, 1995: 282.
28
WANG T S , GUI Z G , JANOTTI A , et al. Strong effect of electron-phonon interaction on the lattice thermal conductivity in 3C-SiC[J]. Physical Review Materials, 2017, 1 (3): 34601.
doi: 10.1103/PhysRevMaterials.1.034601
29
JEPPS N W , PAGE T F . Polytypic transformation in silicon carbide[J]. Progress in Crystal Growth and Characterization, 1983, 7 (1/4): 259- 307.
30
MARSHALL A L , CHHILLAR P , KARANDIKAR P , et al. The effects of Si content and SiC polytype on the microstructure and properties of RBSC[J]. Ceramic Engineering and Science Proceedings, 2009, 29 (2): 115- 126.
31
LIU D M , LIN B W . Thermal conductivity in hot-pressed silicon carbide[J]. Ceramics International, 1996, 22 (5): 407- 414.
doi: 10.1016/0272-8842(95)00125-5
32
RAJPOOT S , HA J H , KIM Y W . Effects of initial particle size on mechanical, thermal, and electrical properties of porous SiC ceramics[J]. Ceramics International, 2021, 47 (6): 8668- 8676.
doi: 10.1016/j.ceramint.2020.11.238
33
KIM K J , CHO T Y , KIM Y W , et al. Electrical and thermal properties of silicon carbide-boron nitride composites prepared without sintering additives[J]. Journal of the European Ceramic Society, 2015, 35 (16): 4423- 4429.
doi: 10.1016/j.jeurceramsoc.2015.08.011
34
YEOM H J , KIM Y W , KIM K J . Electrical, thermal and mechanical properties of silicon carbide-silicon nitride composites sintered with yttria and scandia[J]. Journal of the European Ceramic Society, 2015, 35 (1): 77- 86.
doi: 10.1016/j.jeurceramsoc.2014.08.011
35
ZHANG C , YAO X M , LI Y S , et al. Effect of AlN addition on the thermal conductivity of pressureless sintered SiC ceramics[J]. Ceramics International, 2015, 41 (7): 9107- 9114.
doi: 10.1016/j.ceramint.2015.03.310
36
GALATANU M , POPESCU B , ENCULESCU M , et al. Direct sintering of SiC-W composites with enhanced thermal conductivity[J]. Fusion Engineering & Design, 2013, 88 (9/10): 2598- 2602.
37
ZHANG Y Y , WANG T S , HSU C Y , et al. Thermal transport characteristics in diamond/SiC composites via molten Si infiltration[J]. Ceramics International, 2021, 47 (12): 17084- 17091.
doi: 10.1016/j.ceramint.2021.03.017
38
KAWAI C . Effect of interfacial reaction on the thermal conductivity of Al-SiC composites with SiC dispersions[J]. Journal of the American Ceramic Society, 2001, 84 (4): 896- 898.
doi: 10.1111/j.1151-2916.2001.tb00764.x
39
SHIMODA K , HINOKI T , KOHYAMA A . Effect of carbon nanofibers (CNFs) content on thermal and mechanical properties of CNFs/SiC nanocomposites[J]. Composites Science & Technology, 2010, 70 (2): 387- 392.
40
LI Q S , ZHANG Y J , GONG H Y , et al. Effects of graphene on the thermal conductivity of pressureless-sintered SiC ceramics[J]. Ceramics International, 2015, 41 (10): 13547- 13552.
doi: 10.1016/j.ceramint.2015.07.149
41
POP E , MANN D , WANG Q , et al. Thermal conductance of an individual single-wall carbon nanotube above room temperature[J]. Nano Letters, 2006, 6 (1): 96- 100.
doi: 10.1021/nl052145f
42
ZHAO J J , CAI R , MA Z K , et al. Preparation and properties of C/SiC composites reinforced by high thermal conductivity graphite films[J]. Diamond and Related Materials, 2021, 116, 108376.
doi: 10.1016/j.diamond.2021.108376
43
PAPPACENA K E , JOHNSON M T , WANG H , et al. Thermal properties of wood-derived copper-silicon carbide composites fabricated via electrodeposition[J]. Composites Science & Technology, 2010, 70 (3): 478- 484.
44
KINGERY W D . Thermal conductivity: Ⅹ Ⅳ, conductivity of multicomponent systems[J]. Journal of the American Ceramic Society, 1959, 42 (12): 617- 627.
doi: 10.1111/j.1151-2916.1959.tb13583.x
45
CHEN C , HAN X C , SHEN H H , et al. Preferentially oriented SiC/graphene composites for enhanced mechanical and thermal properties[J]. Ceramics International, 2020, 46 (14): 23173- 23179.
doi: 10.1016/j.ceramint.2020.06.097
46
CHO T Y , KIM Y W . Effect of grain growth on the thermal conductivity of liquid-phase sintered silicon carbide ceramics[J]. Journal of the European Ceramic Society, 2017, 37 (11): 3475- 3481.
doi: 10.1016/j.jeurceramsoc.2017.04.050
47
KIM Y H , KIM Y W , LIM K Y , et al. Mechanical and thermal properties of silicon carbide ceramics with yttria-scandia-magnesia[J]. Journal of the European Ceramic Society, 2019, 39 (2/3): 144- 149.
LIU X , QI L H , HE Z Y , et al. Combined hot pressing sintering technology for SiC ceramic with high density and complex shape[J]. Materials for Mechanical Engineering, 2016, 40 (4): 18- 20.
49
LIANG H Q , YAO X M , DENG H , et al. High electrical resistivity of spark plasma sintered SiC ceramics with Al2O3 and Er2O3 as sintering additives[J]. Journal of the European Ceramic Society, 2015, 35 (1): 399- 403.
doi: 10.1016/j.jeurceramsoc.2014.08.025
50
ZHAN G D , MITOMO M , MUKHERJEE A K . Effects of heat treatment and sintering additives on thermal conductivity and electrical resistivity in fine-grained SiC ceramics[J]. Journal of Materials Research, 2002, 17 (9): 2327- 2333.
doi: 10.1557/JMR.2002.0341
51
SEO Y K , KIM Y W , NISHIMURA T , et al. High thermal conductivity of spark plasma sintered silicon carbide ceramics with yttria and scandia[J]. Journal of the American Ceramic Society, 2017, 100 (4): 1290- 1294.
doi: 10.1111/jace.14748
52
SEO Y K , EOM J H , KIM Y W . Process-tolerant pressureless-sintered silicon carbide ceramics with alumina-yttria-calcia-strontia[J]. Journal of the European Ceramic Society, 2018, 38 (2): 445- 452.
doi: 10.1016/j.jeurceramsoc.2017.09.011
53
CHO T Y , KIM Y W , KIM K J . Thermal, electrical, and mechanical properties of pressureless sintered silicon carbide ceramics with yttria-scandia-aluminum nitride[J]. Journal of the European Ceramic Society, 2016, 36 (11): 2659- 2665.
doi: 10.1016/j.jeurceramsoc.2016.04.014
54
李其松. 高热导率SiC陶瓷材料制备及应用研究[D]. 济南: 山东大学, 2016.
54
LI Q S. Preparation and application research of high thermal conductivity SiC ceramics[D]. Jinan: Shandong University, 2016.
55
LI Y S , YIN J , WU H B , et al. High thermal conductivity in pressureless densified SiC ceramics with ultra-low contents of additives derived from novel boron-carbon sources[J]. Journal of the European Ceramic Society, 2014, 34 (10): 2591- 2595.
doi: 10.1016/j.jeurceramsoc.2014.02.024
56
YU C , WU Z M , DING J , et al. Effect of Al4SiC4 additive on the fabrication and characterization of recrystallized SiC honeycomb ceramics[J]. Ceramics International, 2019, 45 (13): 16612- 16617.
doi: 10.1016/j.ceramint.2019.05.201
ZHANG X L. Influence of matrix density on the composition, microstructure and properties of the MoSi2-RSiC composites[D]. Changsha: Hunan University, 2015.
XIAO H N , GUO W M , GAO P Z . Progress and applications of recrystallized SiC and its composites[J]. Chinese Science Bulletin, 2015, 60 (3): 267- 275.
59
MEYERS S , LEERSNIJDER L D , VLEUGELS J , et al. Direct laser sintering of reaction bonded silicon carbide with low residual silicon content[J]. Journal of the European Ceramic Society, 2018, 38 (11): 3709- 3717.
doi: 10.1016/j.jeurceramsoc.2018.04.055
60
XIA H Y , WANG J P , LING J P , et al. Thermal conductivity of SiC ceramic fabricated by liquid infiltrating molten Si into mesocarbon microbeads-based preform[J]. Materials Characterization, 2013, 82, 1- 8.
doi: 10.1016/j.matchar.2013.04.011
61
ZHANG Y Y , HSU C Y , AUBUCHON S , et al. Microstructural and thermal property evolution of reaction bonded silicon carbide (RBSC)[J]. Journal of Alloys and Compounds, 2018, 764, 107- 111.
doi: 10.1016/j.jallcom.2018.05.321
62
GRINCHUK P S , KIYASHKO M V , ABUHIMD H M , et al. Advanced technology for fabrication of reaction-bonded SiC with controlled composition and properties[J]. Journal of the European Ceramic Society, 2021, 41 (12): 5813- 5824.
doi: 10.1016/j.jeurceramsoc.2021.05.017
63
KIM Y W , KULTAYEVA S , SEDLÁČEK J , et al. Thermal and electrical properties of additive-free rapidly hot-pressed SiC ceramics[J]. Journal of the European Ceramic Society, 2020, 40 (2): 234- 240.
doi: 10.1016/j.jeurceramsoc.2019.10.015
64
ZHOU Y , HIRAO K , YAMAUCHI Y , et al. Effects of rare-earth oxide and alumina additives on thermal conductivity of liquid-phase-sintered silicon carbide[J]. Journal of Materials Research, 2003, 18 (8): 1854- 1862.
doi: 10.1557/JMR.2003.0259
65
KIM K J , LIM K Y , KIM Y W . Electrical and thermal properties of SiC ceramics sintered with yttria and nitrides[J]. Journal of the American Ceramic Society, 2014, 97 (9): 2943- 2949.
doi: 10.1111/jace.13031
66
JANG S H , KIM Y , KIM K J , et al. Effects of Y2O3-RE2O3 (RE=Sm, Gd, Lu) additives on electrical and thermal properties of silicon carbide ceramics[J]. Journal of the American Ceramic Society, 2016, 99 (1): 265- 272.
doi: 10.1111/jace.13958
LI A , FAN G F , SHI Y S , et al. Effect of YF3/oxide sintering additives on the thermal conductivity of silicon carbon ceramics[J]. Journal of Synthetic Crystals, 2018, 47 (1): 25- 30.
doi: 10.3969/j.issn.1000-985X.2018.01.004
68
LEE H G , KIM D , LEE S J , et al. Thermal conductivity analysis of SiC ceramics and fully ceramic microencapsulated fuel composites[J]. Nuclear Engineering & Design, 2017, 311, 9- 15.
69
TAIROV Y M , KHLEBNIKOV I I , TSVETKOV V F . Investigation of silicon carbide single crystals doped with scandium[J]. Physica Status Solidi, 1974, 25 (1): 349- 357.
doi: 10.1002/pssa.2210250134
70
ZHOU Y , KIYOSHI H , KOJI W , et al. Thermal conductivity of silicon carbide densified with rare-earth oxide additives[J]. Journal of the European Ceramic Society, 2004, 24 (2): 265- 270.
doi: 10.1016/S0955-2219(03)00236-X
71
FENG W , ZHANG L T , LIU Y S , et al. Increasing the thermal conductivity of 2D SiC/SiC composites by heat-treatment[J]. Fusion Engineering & Design, 2015, 90, 110- 118.
72
HANZEL O , LENČÉŠ Z , KIM Y W , et al. Highly electrically and thermally conductive silicon carbide-graphene composites with yttria and scandia additives[J]. Journal of the European Ceramic Society, 2020, 40 (2): 241- 250.
doi: 10.1016/j.jeurceramsoc.2019.10.001
73
ZHANG Y H , LIU Y S , CAO L Y , et al. Effect of well-designed graphene heat conductive channel on the thermal conductivity of C/SiC composites[J]. Ceramics International, 2021, 47 (13): 19115- 19122.
doi: 10.1016/j.ceramint.2021.03.258
74
CAO L Y , LIU Y S , ZHANG Y H , et al. Enhancing thermal conductivity of C/SiC composites containing heat transfer channels[J]. Journal of the European Ceramic Society, 2020, 40 (10): 3520- 3527.
doi: 10.1016/j.jeurceramsoc.2020.04.006