Please wait a minute...
 
2222材料工程  2023, Vol. 51 Issue (1): 64-75    DOI: 10.11868/j.issn.1001-4381.2021.001040
  综述 本期目录 | 过刊浏览 | 高级检索 |
碳化硅陶瓷导热性能的研究进展
董博, 余超(), 邓承继, 祝洪喜, 丁军, 唐慧
武汉科技大学 省部共建耐火材料与冶金国家重点实验室, 武汉 430081
Research progress in thermal conductivity of SiC ceramics
Bo DONG, Chao YU(), Chengji DENG, Hongxi ZHU, Jun DING, Hui TANG
The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
全文: PDF(8702 KB)   HTML ( 3 )  
输出: BibTeX | EndNote (RIS)      
摘要 

SiC陶瓷具有优异的力学性能、热学性能、抗热震性能、抗化学侵蚀性能和抗氧化性能,是热交换器设备的常用基体材料。由于原料、成型工艺、烧成工艺和烧结助剂等因素制约,SiC陶瓷含有较多气孔、晶界、杂质和缺陷,导致其常温热导率(≤270 W·m-1·K-1)低于碳化硅单晶材料(6H-SiC,490 W·m-1·K-1),且不同制备工艺下热导率存在较大差异。本文主要分析了温度、气孔、晶体结构和第二相对SiC陶瓷导热性能的影响,归纳了热压烧结法、放电等离子烧结法、无压烧结法、重结晶烧结法和反应烧结法制备高导热SiC陶瓷的特点,对优化烧结助剂种类及含量、高温热处理和添加高导热第二相等改善SiC陶瓷导热性能的主要措施进行阐述,并展望了未来高导热SiC陶瓷的研究方向,为未来制备低成本、高导热SiC质热交换器提供理论参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董博
余超
邓承继
祝洪喜
丁军
唐慧
关键词 SiC陶瓷热导率声子散射晶界第二相烧结助剂热处理    
Abstract

SiC ceramics has been extensively used in heat exchangers because of their excellent mechanical properties, high thermal conductivity, and superior thermal shock, corrosion, and oxidation resistance. However, there is a wide variation in the thermal conductivity of SiC ceramics, depending on the raw materials, molding process, sintering process, and sintering additives. The thermal conductivity of SiC ceramics (≤ 270 W·m-1·K-1) is much lower than that of 6H-SiC single crystals (490 W·m-1·K-1) because of pores, grain boundaries, impurities, and defects in SiC ceramics. In this work, the important factors affecting the thermal conductivity of SiC ceramics were analyzed, including temperature, pore, crystal structure, and second phase. Further, the preparation processes of high conductivity SiC ceramics were systematically compared based on hot-pressed sintering, spark plasma sintering, pressureless sintering, recrystallization sintering, and reaction sintering. The improvement measures of thermal conductivity of SiC ceramics were summarized, including the optimization of the type and content of sintering aids, high-temperature annealing, and adding a high-thermal-conductivity second phase. Finally, the prospects and research directions of low-cost and high-thermal-conductivity SiC ceramics are proposed.

Key wordssilicon carbide ceramic    thermal conductivity    phonon scattering    grain boundary    second phase    sintering additive    heat treatment
收稿日期: 2021-10-29      出版日期: 2023-01-16
中图分类号:  TQ174.75  
基金资助:国家自然科学基金区域创新发展联合基金(U20A20239);湖北省自然科学基金面上项目(2020CFB692)
通讯作者: 余超     E-mail: chaoyu@wust.edu.cn
作者简介: 余超(1986-), 男, 副教授, 博士, 研究方向为耐火材料及高温陶瓷, 联系地址: 湖北省武汉市青山区和平大道947号武汉科技大学青山校区省部共建耐火材料与冶金国家重点实验室(430081), E-mail: chaoyu@wust.edu.cn
引用本文:   
董博, 余超, 邓承继, 祝洪喜, 丁军, 唐慧. 碳化硅陶瓷导热性能的研究进展[J]. 材料工程, 2023, 51(1): 64-75.
Bo DONG, Chao YU, Chengji DENG, Hongxi ZHU, Jun DING, Hui TANG. Research progress in thermal conductivity of SiC ceramics. Journal of Materials Engineering, 2023, 51(1): 64-75.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.001040      或      http://jme.biam.ac.cn/CN/Y2023/V51/I1/64
Fig.1  SiC质板翅式换热器示意图(a)及气流流向示意图(b)[16]
Precursor Porosity/% Thermal conductivity at room temperature/(W·m-1·K-1) Thermal conductivity at 700 ℃/(W·m-1·K-1)
Radial Axial Radial Axial
Ayous 72±2 4.4±0.3 26±3 1.88±0.13 10±1
Pine 57±2 23±2 55±5 7.4±0.5 20±2
MDF 49±4 34±2 43±4 12±0.9 19±2
Iroko 48±3 39±3 74±7 14±1 24±2
Red oak 45±4 60±4 88±9 19±2 29±3
Table 1  SiC陶瓷孔隙率及不同温度和取向时的热导率[23]
Fig.2  含1% (a)和3% (b)GNPs时SiC复合材料的C-SFM的3D表征图[45]
Fig.3  塑料模具(a),石墨型芯(b),去除型芯后SiC陶瓷(c)和表面磨平后SiC陶瓷(d)的宏观形貌[48]
Fig.4  含散热片的散热器件[59]
Preparation process Additive Thermal conductivity at room temperature/(W·m-1·K-1) Ref
Hot-pressed BeO 270 [8]
sintering Gd2O3-Y2O3 224.9 [46]
Y2O3-Sc2O3-MgO 113.9 (Ar) [47]
99.3 (N2)
Spark plasma Al2O3-Er2O3 72 [49]
sintering Al2O3-Y2O3-CaO 115 [50]
Y2O3-Sc2O3 261.5 [51]
Pressureless Al2O3-Y2O3-CaO-SrO 82.2 [52]
sintering Y2O3-Sc2O3-AlN 110.3 [53]
B4C-C 113.8 [54]
B-C 192.17 [55]
Recrystallization sintering 173.7 [57]
Reaction 103 [60]
sintering 211.4 [61]
186 [62]
Table 2  不同制备工艺下SiC的热导率
Fabrication technique Additive Thermal conductivity at room temperature/(W·m-1·K-1) Thermal diffusivity/(mm2·s-1) Heat capacity/(J·g-1·K-1) Ref
HPS/2040 ℃/1 h/20 MPa/Ar BeO 270 [8]
HPS/2000 ℃/12 h/40 MPa/Ar 3%(volume fraction)Y2O3-Gd2O3 224.9 95.9 0.731 [46]
SPS/2050 ℃/6 h/60 MPa/N2 1.11% Y2O3-Sc2O3 261.5 111.6 0.73 [51]
HPS/2000 ℃/2 h/40 MPa/Ar 8.69% Y2O3-La2O3 211 100.78 0.66 [64]
HPS/2000 ℃/3 h/40 MPa/N2 3%(volume fraction)Y2O3-TiN 210.8 96.5 0.674 [65]
2%(volume fraction)Y2O3 178.2 80.9 0.696
3%(volume fraction)Y2O3-AlN 132.8 59.5 0.696
3%(volume fraction)Y2O3-BN 99.2 45.6 0.684
HPS/2000 ℃/3 h/40 MPa/N2 3.825% Y2O3-Sm2O3 198.2 91.2 0.68 [66]
HPS/1900 ℃/3 h/50 MPa/N2 8% YF3-MgO 154.29 71.40 [67]
HPS/1850 ℃/1 h/15 MPa/Ar 3% Al2O3-Y2O3 97.8 45.7 [68]
Table 3  添加不同烧结助剂时SiC陶瓷的热学性能
Sample Before heat annealing/(W·m-1·K-1) After heat annealing/(W·m-1·K-1)
YL1 133.7 152.2
YL2 169.1 200.2
YL3 166.6 202.1
YL4 166.3 205.9
Table 4  试样在高温热处理前后的热导率[40]
Fig.5  室温下Si/SiC(a)和SiC/金刚石(b)界面处计算光谱热通量[37]
Second phase Thermal conductivity/(W·m-1·K-1) Ref
39%(volume fraction)diamond 329 [37]
33.7%(volume fraction)Al 240±1 [38]
5% CNFs 80 [39]
2% graphene 145.14 [40]
19%(volume fraction)HTC graphite film 333.34±10.24(axial direction of the fibers)2.50±0.03(radial direction of the fibers) [42]
Cu 202 [43]
1%GO 238 [72]
5%GNPs 233
Table 5  添加不同第二相时SiC陶瓷的常温热导率
Fig.6  不同错位角时试样热通量分布[43]
(a)0°;(b)15°;(c)45°;(d)75°;(e)90°
1 李新创, 范铁军, 姜晓东, 等. 中国钢铁工业节能低碳发展报告(2020)[R]. 柳州: 中国节能协会冶金工业节能专业委员会, 2020.
1 LI X C, FAN T J, JIANG X D, et al. Energy-saving and low-carbon development report of China's steel industry (2020)[R]. Liuzhou: China Energy Conservation Association, 2020.
2 朱丽娜, 叶原武, 侯斌, 等. 快堆钠-空气热交换器翅片管传热及阻力特性试验研究[J]. 原子能科学技术, 2020, 54 (11): 2031- 2036.
2 ZHU L N , YE Y W , HOU B , et al. Experimental study on heat transfer and resistance characteristics for finned tube of fast reactor sodium-air heat exchanger[J]. Atomic Energy Science and Technology, 2020, 54 (11): 2031- 2036.
3 李科, 文键, 王斯民. 不同热边界条件下板翅式换热器轴向导热对换热的影响[J]. 化工学报, 2021, 72 (4): 1956- 1964.
3 LI K , WEN J , WANG S M . Effect of axial heat conduction on heat transfer performance of plate fin heat exchanger under different thermal boundary condition[J]. CIESC Journal, 2021, 72 (4): 1956- 1964.
4 JAMZAD P , KENNA J , BAHRAMI M . Development of novel plate heat exchanger using natural graphite sheet[J]. International Journal of Heat and Mass Transfer, 2019, 131, 1205- 1210.
doi: 10.1016/j.ijheatmasstransfer.2018.11.129
5 KROULÍKOVÁ T , ASTROUSKI I , RAUDENSKY M , et al. Heat exchanger for air-liquid application with chaotised polymeric hollow fibres[J]. Applied Thermal Engineering, 2021, 197, 117365.
doi: 10.1016/j.applthermaleng.2021.117365
6 WU J F , DING C J , XU X H , et al. Microstructure and performances of corundum-mullite composite ceramics for heat transmission pipelines: effects of Ho2O3 additive content[J]. Ceramics International, 2021, 47 (24): 34794- 34801.
doi: 10.1016/j.ceramint.2021.09.019
7 HAUNSTETTER J , DREIβIGACKER V , ZUNFT S . Ceramic high temperature plate fin heat exchanger: experimental investigation under high temperatures and pressures[J]. Applied Thermal Engineering, 2019, 151, 364- 372.
doi: 10.1016/j.applthermaleng.2019.02.015
8 NAKANO H , WATARI K , KINEMUCHI Y , et al. Microstructural characterization of high-thermal-conductivity SiC ceramics[J]. Journal of the European Ceramic Society, 2004, 24 (14): 3685- 3690.
doi: 10.1016/j.jeurceramsoc.2003.12.019
9 TESSIER-DOYEN N , GRENIER X , HUGER M , et al. Thermal conductivity of alumina inclusion/glass matrix composite materials: local and macroscopic scales[J]. Journal of the European Ceramic Society, 2007, 27 (7): 2635- 2640.
doi: 10.1016/j.jeurceramsoc.2006.09.017
10 SCHNEIDER H , FISCHER R X , SCHREUER J . Mullite: crystal structure and related properties[J]. Journal of the American Ceramic Society, 2015, 98 (10): 2948- 2967.
doi: 10.1111/jace.13817
11 XU M , GIRISH Y R , RAKESH K P , et al. Recent advances and challenges in silicon carbide (SiC) ceramic nanoarchitectures and their applications[J]. Materials Today Communications, 2021, 28, 102533.
doi: 10.1016/j.mtcomm.2021.102533
12 XING G C , DENG C J , DING J , et al. Fabrication and characterisation of AlN-SiC porous composite ceramics by nitridation of Al4SiC4[J]. Ceramics International, 2020, 46 (4): 4959- 4967.
doi: 10.1016/j.ceramint.2019.10.234
13 洪智亮, 张巧君, 李开元, 等. SiC/SiC复合材料在高温空气中的氧化行为[J]. 材料工程, 2021, 49 (5): 144- 150.
13 HONG Z L , ZHANG Q J , LI K Y , et al. Oxidation behavior of SiC/SiC composites in air at high temperature[J]. Journal of Materials Engineering, 2021, 49 (5): 144- 150.
14 WU X X , DENG C J , DI J H , et al. Fabrication of novel AlN-SiC-C refractories by nitrogen gas-pressure sintering of Al4SiC4[J]. Journal of the European Ceramic Society, 2022, 42 (8): 3634- 3643.
doi: 10.1016/j.jeurceramsoc.2022.02.058
15 孟红涛, 郝明选, 王允, 等. 换热式两段焦炉用SiC换热器的研制及应用[J]. 耐火材料, 2019, 53 (5): 380- 383.
doi: 10.3969/j.issn.1001-1935.2019.05.012
15 MENG H T , HAO M X , WANG Y , et al. Development and application of SiC heat exchanger for heat exchanged two-step coke ovens[J]. Refractories, 2019, 53 (5): 380- 383.
doi: 10.3969/j.issn.1001-1935.2019.05.012
16 NGWASHI D K , PHUNG L V . Recent review on failures in silicon carbide power MOSFETs[J]. Microelectronics Reliability, 2021, 123, 114169.
doi: 10.1016/j.microrel.2021.114169
17 SLACK G A . Thermal conductivity of pure and impure silicon, silicon carbide, and diamond[J]. Journal of Applied Physics, 1965, 35 (12): 3460- 3466.
18 KOSTANOVSKIY A V , ZEODINOV M G , KOSTANOVSKAYA M E , et al. Thermal conductivity of silicicated silicon carbide at 1400-2200 K[J]. High Temperature, 2019, 57 (1): 122- 123.
doi: 10.1134/S0018151X19010152
19 VENTURA G , PERFETTI M . Thermal properties of solids at room and cryogenic temperatures[M]. Berlin: Springer Netherlands, 2014: 145- 146.
20 张驰, 梁汉琴, 李寅生, 等. 碳化硅材料热导率计算研究进展[J]. 硅酸盐学报, 2015, 43 (3): 268- 275.
doi: 10.14062/j.issn.0454-5648.2015.03.03
20 ZHANG C , LIANG H Q , LI Y S , et al. Development of calculation of thermal conductivity of silicon carbide[J]. Journal of the Chinese Ceramic Society, 2015, 43 (3): 268- 275.
doi: 10.14062/j.issn.0454-5648.2015.03.03
21 WATARI K , NAKANO H , SATO K , et al. Effect of grain boundaries on thermal conductivity of silicon carbide ceramic at 5 to 1300 K[J]. Journal of the American Ceramic Society, 2003, 86 (10): 1812- 1814.
doi: 10.1111/j.1151-2916.2003.tb03563.x
22 PAPPACENA K E , FABER K T , WANG H , et al. Thermal conductivity of porous silicon carbide derived from wood precursors[J]. Journal of the American Ceramic Society, 2007, 90 (9): 2855- 2862.
doi: 10.1111/j.1551-2916.2007.01777.x
23 GÓMEZ-MARTÍN A , ORIHUELA M P , RAMÍREZ-RICO J , et al. Thermal conductivity of porous biomorphic SiC derived from wood precursors[J]. Ceramics International, 2016, 42 (14): 16220- 16229.
doi: 10.1016/j.ceramint.2016.07.151
24 IWAMI M . Silicon carbide: fundamentals[J]. Nuclear Inst & Methods in Physics Research A, 2001, 466 (2): 406- 411.
25 QIAN X , JIANG P Q , YANG R G . Anisotropic thermal conductivity of 4H and 6H silicon carbide measured using time-domain thermoreflectance[J]. Materials Today Physics, 2017, 3, 70- 75.
doi: 10.1016/j.mtphys.2017.12.005
26 PROTIK N H , KATRE A , LINDSAY L , et al. Phonon thermal transport in 2H, 4H and 6H silicon carbide from first principles[J]. Materials Today Physics, 2017, 1, 31- 38.
doi: 10.1016/j.mtphys.2017.05.004
27 HARRIS G L . Properties of silicon carbide[M]. London: INSPEC, 1995: 282.
28 WANG T S , GUI Z G , JANOTTI A , et al. Strong effect of electron-phonon interaction on the lattice thermal conductivity in 3C-SiC[J]. Physical Review Materials, 2017, 1 (3): 34601.
doi: 10.1103/PhysRevMaterials.1.034601
29 JEPPS N W , PAGE T F . Polytypic transformation in silicon carbide[J]. Progress in Crystal Growth and Characterization, 1983, 7 (1/4): 259- 307.
30 MARSHALL A L , CHHILLAR P , KARANDIKAR P , et al. The effects of Si content and SiC polytype on the microstructure and properties of RBSC[J]. Ceramic Engineering and Science Proceedings, 2009, 29 (2): 115- 126.
31 LIU D M , LIN B W . Thermal conductivity in hot-pressed silicon carbide[J]. Ceramics International, 1996, 22 (5): 407- 414.
doi: 10.1016/0272-8842(95)00125-5
32 RAJPOOT S , HA J H , KIM Y W . Effects of initial particle size on mechanical, thermal, and electrical properties of porous SiC ceramics[J]. Ceramics International, 2021, 47 (6): 8668- 8676.
doi: 10.1016/j.ceramint.2020.11.238
33 KIM K J , CHO T Y , KIM Y W , et al. Electrical and thermal properties of silicon carbide-boron nitride composites prepared without sintering additives[J]. Journal of the European Ceramic Society, 2015, 35 (16): 4423- 4429.
doi: 10.1016/j.jeurceramsoc.2015.08.011
34 YEOM H J , KIM Y W , KIM K J . Electrical, thermal and mechanical properties of silicon carbide-silicon nitride composites sintered with yttria and scandia[J]. Journal of the European Ceramic Society, 2015, 35 (1): 77- 86.
doi: 10.1016/j.jeurceramsoc.2014.08.011
35 ZHANG C , YAO X M , LI Y S , et al. Effect of AlN addition on the thermal conductivity of pressureless sintered SiC ceramics[J]. Ceramics International, 2015, 41 (7): 9107- 9114.
doi: 10.1016/j.ceramint.2015.03.310
36 GALATANU M , POPESCU B , ENCULESCU M , et al. Direct sintering of SiC-W composites with enhanced thermal conductivity[J]. Fusion Engineering & Design, 2013, 88 (9/10): 2598- 2602.
37 ZHANG Y Y , WANG T S , HSU C Y , et al. Thermal transport characteristics in diamond/SiC composites via molten Si infiltration[J]. Ceramics International, 2021, 47 (12): 17084- 17091.
doi: 10.1016/j.ceramint.2021.03.017
38 KAWAI C . Effect of interfacial reaction on the thermal conductivity of Al-SiC composites with SiC dispersions[J]. Journal of the American Ceramic Society, 2001, 84 (4): 896- 898.
doi: 10.1111/j.1151-2916.2001.tb00764.x
39 SHIMODA K , HINOKI T , KOHYAMA A . Effect of carbon nanofibers (CNFs) content on thermal and mechanical properties of CNFs/SiC nanocomposites[J]. Composites Science & Technology, 2010, 70 (2): 387- 392.
40 LI Q S , ZHANG Y J , GONG H Y , et al. Effects of graphene on the thermal conductivity of pressureless-sintered SiC ceramics[J]. Ceramics International, 2015, 41 (10): 13547- 13552.
doi: 10.1016/j.ceramint.2015.07.149
41 POP E , MANN D , WANG Q , et al. Thermal conductance of an individual single-wall carbon nanotube above room temperature[J]. Nano Letters, 2006, 6 (1): 96- 100.
doi: 10.1021/nl052145f
42 ZHAO J J , CAI R , MA Z K , et al. Preparation and properties of C/SiC composites reinforced by high thermal conductivity graphite films[J]. Diamond and Related Materials, 2021, 116, 108376.
doi: 10.1016/j.diamond.2021.108376
43 PAPPACENA K E , JOHNSON M T , WANG H , et al. Thermal properties of wood-derived copper-silicon carbide composites fabricated via electrodeposition[J]. Composites Science & Technology, 2010, 70 (3): 478- 484.
44 KINGERY W D . Thermal conductivity: Ⅹ Ⅳ, conductivity of multicomponent systems[J]. Journal of the American Ceramic Society, 1959, 42 (12): 617- 627.
doi: 10.1111/j.1151-2916.1959.tb13583.x
45 CHEN C , HAN X C , SHEN H H , et al. Preferentially oriented SiC/graphene composites for enhanced mechanical and thermal properties[J]. Ceramics International, 2020, 46 (14): 23173- 23179.
doi: 10.1016/j.ceramint.2020.06.097
46 CHO T Y , KIM Y W . Effect of grain growth on the thermal conductivity of liquid-phase sintered silicon carbide ceramics[J]. Journal of the European Ceramic Society, 2017, 37 (11): 3475- 3481.
doi: 10.1016/j.jeurceramsoc.2017.04.050
47 KIM Y H , KIM Y W , LIM K Y , et al. Mechanical and thermal properties of silicon carbide ceramics with yttria-scandia-magnesia[J]. Journal of the European Ceramic Society, 2019, 39 (2/3): 144- 149.
48 刘秀, 齐龙浩, 贺智勇, 等. 高致密度、复杂形状SiC陶瓷的组合热压烧结技术[J]. 机械工程材料, 2016, 40 (4): 18- 20.
48 LIU X , QI L H , HE Z Y , et al. Combined hot pressing sintering technology for SiC ceramic with high density and complex shape[J]. Materials for Mechanical Engineering, 2016, 40 (4): 18- 20.
49 LIANG H Q , YAO X M , DENG H , et al. High electrical resistivity of spark plasma sintered SiC ceramics with Al2O3 and Er2O3 as sintering additives[J]. Journal of the European Ceramic Society, 2015, 35 (1): 399- 403.
doi: 10.1016/j.jeurceramsoc.2014.08.025
50 ZHAN G D , MITOMO M , MUKHERJEE A K . Effects of heat treatment and sintering additives on thermal conductivity and electrical resistivity in fine-grained SiC ceramics[J]. Journal of Materials Research, 2002, 17 (9): 2327- 2333.
doi: 10.1557/JMR.2002.0341
51 SEO Y K , KIM Y W , NISHIMURA T , et al. High thermal conductivity of spark plasma sintered silicon carbide ceramics with yttria and scandia[J]. Journal of the American Ceramic Society, 2017, 100 (4): 1290- 1294.
doi: 10.1111/jace.14748
52 SEO Y K , EOM J H , KIM Y W . Process-tolerant pressureless-sintered silicon carbide ceramics with alumina-yttria-calcia-strontia[J]. Journal of the European Ceramic Society, 2018, 38 (2): 445- 452.
doi: 10.1016/j.jeurceramsoc.2017.09.011
53 CHO T Y , KIM Y W , KIM K J . Thermal, electrical, and mechanical properties of pressureless sintered silicon carbide ceramics with yttria-scandia-aluminum nitride[J]. Journal of the European Ceramic Society, 2016, 36 (11): 2659- 2665.
doi: 10.1016/j.jeurceramsoc.2016.04.014
54 李其松. 高热导率SiC陶瓷材料制备及应用研究[D]. 济南: 山东大学, 2016.
54 LI Q S. Preparation and application research of high thermal conductivity SiC ceramics[D]. Jinan: Shandong University, 2016.
55 LI Y S , YIN J , WU H B , et al. High thermal conductivity in pressureless densified SiC ceramics with ultra-low contents of additives derived from novel boron-carbon sources[J]. Journal of the European Ceramic Society, 2014, 34 (10): 2591- 2595.
doi: 10.1016/j.jeurceramsoc.2014.02.024
56 YU C , WU Z M , DING J , et al. Effect of Al4SiC4 additive on the fabrication and characterization of recrystallized SiC honeycomb ceramics[J]. Ceramics International, 2019, 45 (13): 16612- 16617.
doi: 10.1016/j.ceramint.2019.05.201
57 张小亮. 基体密度对MoSi2-RSiC复合材料组成、微观结构和性能的影响[D]. 长沙: 湖南大学, 2015.
57 ZHANG X L. Influence of matrix density on the composition, microstructure and properties of the MoSi2-RSiC composites[D]. Changsha: Hunan University, 2015.
58 肖汉宁, 郭文明, 高朋召. 再结晶碳化硅及其复合材料的研究进展与应用[J]. 科学通报, 2015, 60 (3): 267- 275.
58 XIAO H N , GUO W M , GAO P Z . Progress and applications of recrystallized SiC and its composites[J]. Chinese Science Bulletin, 2015, 60 (3): 267- 275.
59 MEYERS S , LEERSNIJDER L D , VLEUGELS J , et al. Direct laser sintering of reaction bonded silicon carbide with low residual silicon content[J]. Journal of the European Ceramic Society, 2018, 38 (11): 3709- 3717.
doi: 10.1016/j.jeurceramsoc.2018.04.055
60 XIA H Y , WANG J P , LING J P , et al. Thermal conductivity of SiC ceramic fabricated by liquid infiltrating molten Si into mesocarbon microbeads-based preform[J]. Materials Characterization, 2013, 82, 1- 8.
doi: 10.1016/j.matchar.2013.04.011
61 ZHANG Y Y , HSU C Y , AUBUCHON S , et al. Microstructural and thermal property evolution of reaction bonded silicon carbide (RBSC)[J]. Journal of Alloys and Compounds, 2018, 764, 107- 111.
doi: 10.1016/j.jallcom.2018.05.321
62 GRINCHUK P S , KIYASHKO M V , ABUHIMD H M , et al. Advanced technology for fabrication of reaction-bonded SiC with controlled composition and properties[J]. Journal of the European Ceramic Society, 2021, 41 (12): 5813- 5824.
doi: 10.1016/j.jeurceramsoc.2021.05.017
63 KIM Y W , KULTAYEVA S , SEDLÁČEK J , et al. Thermal and electrical properties of additive-free rapidly hot-pressed SiC ceramics[J]. Journal of the European Ceramic Society, 2020, 40 (2): 234- 240.
doi: 10.1016/j.jeurceramsoc.2019.10.015
64 ZHOU Y , HIRAO K , YAMAUCHI Y , et al. Effects of rare-earth oxide and alumina additives on thermal conductivity of liquid-phase-sintered silicon carbide[J]. Journal of Materials Research, 2003, 18 (8): 1854- 1862.
doi: 10.1557/JMR.2003.0259
65 KIM K J , LIM K Y , KIM Y W . Electrical and thermal properties of SiC ceramics sintered with yttria and nitrides[J]. Journal of the American Ceramic Society, 2014, 97 (9): 2943- 2949.
doi: 10.1111/jace.13031
66 JANG S H , KIM Y , KIM K J , et al. Effects of Y2O3-RE2O3 (RE=Sm, Gd, Lu) additives on electrical and thermal properties of silicon carbide ceramics[J]. Journal of the American Ceramic Society, 2016, 99 (1): 265- 272.
doi: 10.1111/jace.13958
67 李安, 范桂芬, 史玉升, 等. YF3/氧化物烧结助剂对SiC陶瓷热导率的影响[J]. 人工晶体学报, 2018, 47 (1): 25- 30.
doi: 10.3969/j.issn.1000-985X.2018.01.004
67 LI A , FAN G F , SHI Y S , et al. Effect of YF3/oxide sintering additives on the thermal conductivity of silicon carbon ceramics[J]. Journal of Synthetic Crystals, 2018, 47 (1): 25- 30.
doi: 10.3969/j.issn.1000-985X.2018.01.004
68 LEE H G , KIM D , LEE S J , et al. Thermal conductivity analysis of SiC ceramics and fully ceramic microencapsulated fuel composites[J]. Nuclear Engineering & Design, 2017, 311, 9- 15.
69 TAIROV Y M , KHLEBNIKOV I I , TSVETKOV V F . Investigation of silicon carbide single crystals doped with scandium[J]. Physica Status Solidi, 1974, 25 (1): 349- 357.
doi: 10.1002/pssa.2210250134
70 ZHOU Y , KIYOSHI H , KOJI W , et al. Thermal conductivity of silicon carbide densified with rare-earth oxide additives[J]. Journal of the European Ceramic Society, 2004, 24 (2): 265- 270.
doi: 10.1016/S0955-2219(03)00236-X
71 FENG W , ZHANG L T , LIU Y S , et al. Increasing the thermal conductivity of 2D SiC/SiC composites by heat-treatment[J]. Fusion Engineering & Design, 2015, 90, 110- 118.
72 HANZEL O , LENČÉŠ Z , KIM Y W , et al. Highly electrically and thermally conductive silicon carbide-graphene composites with yttria and scandia additives[J]. Journal of the European Ceramic Society, 2020, 40 (2): 241- 250.
doi: 10.1016/j.jeurceramsoc.2019.10.001
73 ZHANG Y H , LIU Y S , CAO L Y , et al. Effect of well-designed graphene heat conductive channel on the thermal conductivity of C/SiC composites[J]. Ceramics International, 2021, 47 (13): 19115- 19122.
doi: 10.1016/j.ceramint.2021.03.258
74 CAO L Y , LIU Y S , ZHANG Y H , et al. Enhancing thermal conductivity of C/SiC composites containing heat transfer channels[J]. Journal of the European Ceramic Society, 2020, 40 (10): 3520- 3527.
doi: 10.1016/j.jeurceramsoc.2020.04.006
[1] 李淑波, 侯江涛, 孟繁婧, 刘轲, 王朝辉, 杜文博. CNTs/Mg-9Al复合材料微观组织、力学及导热性能[J]. 材料工程, 2023, 51(1): 26-35.
[2] 刘雄飞, 杜文博, 付军健, 王云峰, 李淑波, 朱训明, 王朝辉. Gd对Mg-xGd-1Er-1Zn-0.6Zr合金显微组织和腐蚀行为的影响[J]. 材料工程, 2022, 50(9): 159-168.
[3] 张轶波, 郑亮, 许文勇, 李周, 张国庆. 热处理温度对刚玉基耐火材料组织和微粒脱落的影响[J]. 材料工程, 2022, 50(6): 138-148.
[4] 梁恩泉, 代宇, 白静, 周亚雄, 彭东剑, 王清正, 康楠, 林鑫. 退火态激光选区熔化成形AlSi10Mg合金组织与力学性能[J]. 材料工程, 2022, 50(5): 156-165.
[5] 张小丽, 冯晓伟, 申勇峰. D6A钢在轧制过程中的强韧化机理[J]. 材料工程, 2022, 50(4): 172-180.
[6] 闫永明, 尉文超, 孙挺, 何肖飞, 李晓源. GCr15SiMo钢的动态及高温力学行为[J]. 材料工程, 2022, 50(12): 112-119.
[7] 杨智凯, 柏鉴玲, 张欣悦. 热处理对激光选区熔化成型高速钢组织和力学性能的影响[J]. 材料工程, 2022, 50(12): 135-142.
[8] 张路, 袁芳, 王文清, 董星杰, 何汝杰. 面向一体化热防护的陶瓷基复合材料轻量化结构研究进展与挑战[J]. 材料工程, 2022, 50(10): 15-28.
[9] 阮家苗, 李红, 姚彧敏, 杨敏, 任慕苏, 孙晋良. 热处理温度对高导热3D C/C复合材料性能的影响[J]. 材料工程, 2021, 49(9): 128-134.
[10] 卢国锋, 乔生儒. 具有莫来石界面的C/Si-C-N复合材料热物理性能[J]. 材料工程, 2021, 49(9): 135-141.
[11] 李安庆, 张立华, 蒋日鹏, 李晓谦, 张昀. 冷却速度及超声振动协同作用对7085铝合金凝固组织及力学性能的影响[J]. 材料工程, 2021, 49(8): 63-71.
[12] 于娟, 陆政, 鲁原, 熊艳才, 李国爱, 冯朝辉, 郝时嘉. 中间形变热处理对2A97铝锂合金组织和性能的影响[J]. 材料工程, 2021, 49(5): 130-136.
[13] 蒋浩然, 林硕, 张康飞, 王海燕, 王佳齐, 何秀兰. ZrO2/Al2O3多孔陶瓷的制备与力学性能[J]. 材料工程, 2021, 49(5): 157-162.
[14] 陈枫, 刘佩文, 许贤福, 田兵, 佟运祥, 李莉. Ni-Mn基磁性形状记忆合金第二相的形成及其对相变和性能的影响[J]. 材料工程, 2021, 49(3): 20-30.
[15] 刘艳芬, 张学习, 沈红先, 孙剑飞, 温亚芹, 王欢, 任晓辉, 阴爽. Ni50.1Mn24.1Ga20.3Fe5.5形状记忆合金多晶纤维的双程形状记忆效应[J]. 材料工程, 2021, 49(3): 41-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn