Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (9): 18-31    DOI: 10.11868/j.issn.1001-4381.2021.001052
  综述 本期目录 | 过刊浏览 | 高级检索 |
氮掺杂导电碳化硅陶瓷研究进展
杨建国1,2,3, 沈伟健1,2,3, 李华鑫1,2,3,*(), 贺艳明1,2,3,*(), 闾川阳1,2,3, 郑文健1,2,3, 马英鹤1,2,3, 魏连峰4
1 浙江工业大学 化工机械设计研究所, 杭州 310023
2 过程装备及其再制造教育部工程研究中心, 杭州 310023
3 浙江工业大学 机械工程学院, 杭州 310023
4 中国核动力研究设计院, 成都 610213
Research progress in nitrogen-doped electrically conductive silicon carbide ceramics
Jianguo YANG1,2,3, Weijian SHEN1,2,3, Huaxin LI1,2,3,*(), Yanming HE1,2,3,*(), Chuanyang LYU1,2,3, Wenjian ZHENG1,2,3, Yinghe MA1,2,3, Lianfeng WEI4
1 Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou 310023, China
2 Engineering Research Center of Process Equipment and Remanufacturing (Ministry of Education), Hangzhou 310023, China
3 College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
4 Nuclear Power Institute of China, Chengdu 610213, China
全文: PDF(973 KB)   HTML ( 3 )  
输出: BibTeX | EndNote (RIS)      
摘要 

可电火花加工的导电碳化硅(SiC)陶瓷不仅可以克服传统高电阻率SiC陶瓷难加工的突出缺点,而且能够保留传统高电阻率SiC陶瓷的其他优异性能,在结构陶瓷领域取代传统的高电阻率SiC陶瓷具有突出优势。本文阐述了粉末烧结制备氮掺杂导电SiC陶瓷的原理,归纳总结分析了其粉末烧结制备方法、烧结助剂的种类及其所获得SiC陶瓷的热电和力学性能。同时,探讨了SiC陶瓷的电性能影响因素,为调控SiC陶瓷的电性能提供了参考依据。最后,指出了氮掺杂导电SiC陶瓷面临的主要挑战,在未来研究中,应聚焦于发展新烧结技术与烧结添加剂体系以及澄清电性能调控机制,为制备电阻率可控的高性能导电SiC陶瓷奠定技术基础。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨建国
沈伟健
李华鑫
贺艳明
闾川阳
郑文健
马英鹤
魏连峰
关键词 碳化硅导电陶瓷氮掺杂电性能力学性能    
Abstract

The electrically conductive silicon carbide (SiC) ceramics that can be machined by electrical discharge machining, can not only overcome the highlight shortcomings of traditional high resistivity-grade SiC ceramics in machinability, but also maintain its other excellent properties. It has outstanding advantages to replace traditional high resistivity-grade SiC ceramics in the field of structural ceramics. In this paper, the nitrogen doping principle of electrically conductive SiC ceramics was illustrated, and then the powder sintering methods, sintering additives, thermoelectric and mechanical properties were summarized. Meanwhile, in order to provide guidance for the control of electrical properties, the electrical properties-related factors were discussed. In the end, the main challenges of nitrogen-doped electrically conductive SiC ceramics were pointed out, and the future interests were suggested to focus on the development of new sintering technology and additive, as well as clarifying the control mechanism of electrical properties, thereby establishing the technical foundation for fabrication of high-performance conductive SiC ceramics with controllable electrical resistivity.

Key wordssilicon carbide    electrically conductive ceramics    nitrogen doping    electrical property    mechanical property
收稿日期: 2021-11-02      出版日期: 2022-09-20
中图分类号:  TB321  
基金资助:国家自然科学基金(52005445);国家自然科学基金(51975530);浙江省自然科学基金(LQ21E050018);国家磁约束核聚变能发展研究专项(2019YFE03100400)
通讯作者: 李华鑫,贺艳明     E-mail: hxli2019@zjut.edu.cn;heyanming@zjut.edu.cn
作者简介: 贺艳明(1984—),男,副研究员,博士,研究方向:面向四代核电的新材料及异种材料连接、三代/四代核电材料高温力学行为评价(蠕变,疲劳等)、全固态锂离子电池界面构筑与内应力控制,联系地址:浙江省杭州市西湖区留和路288号浙江工业大学机械工程学院(310023),E-mail: heyanming@zjut.edu.cn
李华鑫(1990—),男,副研究员,博士,研究方向:金属、陶瓷结构材料的制备及其先进连接技术,联系地址:浙江省杭州市西湖区留和路288号浙江工业大学机械工程学院(310023),E-mail: hxli2019@zjut.edu.cn
引用本文:   
杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
Jianguo YANG, Weijian SHEN, Huaxin LI, Yanming HE, Chuanyang LYU, Wenjian ZHENG, Yinghe MA, Lianfeng WEI. Research progress in nitrogen-doped electrically conductive silicon carbide ceramics. Journal of Materials Engineering, 2022, 50(9): 18-31.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.001052      或      http://jme.biam.ac.cn/CN/Y2022/V50/I9/18
Type Density/(g·cm-3) Flexural strength/MPa Elastic modulus/GPa Poisson’s ratio Hardness/GPa Fracture toughness/(MPa·m1/2) Thermal conductivity/(W·m-1·K-1) Coefficient of thermal expansion/(10-6-1) Specific heat/(J·kg-1·K-1) Electrical resistivity/(Ω·cm)
High resistivity CVD-SiC 3.21 468 462 0.21 27 3.5 140 4.6 665 >105
Low resistivity CVD-SiC 3.21 517 434 0.21 27 3.5 140 4.6 665 <0.1
Table 1  不同电阻率的CVD-SiC的性能参数[12]
Fig.1  氮掺杂原理示意图
(a)3C-SiC晶体结构;(b)N掺杂的3C-SiC晶体结构
Fig.2  N掺杂导电SiC陶瓷制备过程示意图
Processing condition Sintering additive Polytype Electrical resistivity/(Ω·cm) Thermal conductivity/(W·m-1·K-1) Relative density/% Hardness/GPa Fracture toughness/(MPa·m1/2) Flexural strength/MPa Reference
PS,1950 ℃/6 h/N2 5% Y2O3-Sc2O3+1.5% AlN α and β 6.7× 10-1-5.4 91.9-110.3 96.7-98.6 25.0-27.2 4.1-5.1 509.0-520.0 [24]
PS,1900-2050 ℃/2 h/N2 10% Y2O3-AlN β 1.9×10-2-6.5×101 98.4-99.9 [25]
PS,1950 ℃/6 h/N2 10% Y2O3-AlN+0-25% TiN β 8.6×10-4-8.2×10-1 98.3-99.8 23.1-26.7 4.0-5.7 430.0-497.0 [26]
HP,1850 ℃/40 MPa/2 h/N2 2% Y2O3-Sc2O3+10%-35% Si3N4 β 9.0×10-2-1.4 57.0-83.0 95.7-96.1 19.0-20.5 6.8-7.1 550.0-719.0 [27]
HP,2000 ℃/40 MPa/2 h/N2 2% Y2O3-Re2O3(Re= Sm, Gd, Lu) β 1.5×10-2-5.6×10-2 97.2-99.9 [28]
HP,2050 ℃/20 MPa/6 h/N2 *1%-6.3% AlN-Y2O3 β 7.0×10-3-4.0×10-2 93.2-93.4 [29]
HP,2000 ℃/40 MPa/3 h/N2 2% Y2O3-Sc2O3+0-20% TiN β 3.5×10-4-1.0×10-1 98.9-99.8 [30]
HP,2050 ℃/40 MPa/6 h/N2 *3.14%-12.58% Y2O3 β 7.0×10-3-7.5×10-2 92.3-98.7 [31]
HP,2000 ℃/40 MPa/3 h/N2 2% Y2O3-Re2O3(Re= Sm, Gd, Lu)+4% TiN β 2.2×10-2-7.0×10-2 99.9 23.5-25.0 4.4-4.6 697.0-786.0 [32]
HP,2000 ℃/40 MPa/(1-12) h/N2 3% Gd2O3-Y2O3 β 8.9×10-3-5.2×10-2 97.9-99.9 [17]
HP,2000 ℃/40 MPa/3 h/N2 2% Y2O3+0-35% BN β 3.7×10-2-6.8 55.1-188.6 96.3-99.7 3.4-6.0 310.0-586.0 [33]
HP,2000 ℃/40 MPa/3 h/N2 2% Y2O3-Sc2O3+0-35% ZrN β 4.4×10-4-2.6×10-2 81.3-199.6 98.5-99.5 [34]
HP,2050 ℃/40 MPa/6 h/N2 *3.1%-33.8% Y(NO3)3·4H2O β 3.0×10-3-1.0×10-1 98.4-99.9 [35]
HP,2000 ℃/40 MPa/6 h/N2 *2% Y2O3+0-20% PCS β 1.8×10-2-7.8×10-2 98.9-99.7 26.5-30.0 4.5-5.2 484.0-678.0 [36]
HP,2050 ℃/40 MPa/6 h/N2 *0.5% AlN-Re2O3(Re= Y, Nd, Lu) β 4.3×10-2-1.5×10-1 95.1-99.9 [37]
HP,2050 ℃/40 MPa/6 h/N2 *1.108%-1.887% Sc2O3-Y2O3 β 4.3×10-3-1.9×10-1 99.9 [38]
HP,1900 ℃/40 MPa/6 h/N2 *1.186%-1.841% Al2O3-Y2O3 β 8.3×10-1-8.3 99.9 [38]
HP,2000 ℃/40 MPa/3 h/N2 2% Y2O3+2%-4% TiN β 2.4×10-3-1.8×10-4 99.9 [39]
HP,2000 ℃/40 MPa/3 h/N2 2% Y2O3+1% ReN(Re= B, Al, Ti) β 1.6×10-2-3.8×101 99.2-210.8 99.1-99.9 [40]
HP,2050 ℃/20 MPa/12 h/N2 *1% AlN-Re2O3(Re= Sc, Nd, Eu, Gd, Ho, Er, Lu) β 1.5×10-2-2.9 95.1-97.8 [41]
HP,2000 ℃/40 MPa/3 h/N2 2% Y2O3+0-35% BN β 8.1×10-3-8.3×10-1 63.0-182.9 96.7-97.6 [42]
SPS,1950 ℃/60 MPa/10 min/N2 *0-15.366% Y(NO3)3·4H2O β 1.5×10-2-9.7×10-2 73.6-86.5 [43]
Table 2  粉末烧结制备的导电SiC陶瓷的电学、热学性能和力学性能
Fig.3  影响SiC陶瓷电性能因素汇总
Fig.4  不同SiC晶型初始粉末制备的SiC电阻率随烧结助剂含量的变化
(a)α-SiC;(b)β-SiC
Fig.5  晶粒尺寸对SiC陶瓷电阻率的影响
Fig.6  孔隙率对SiC陶瓷电阻率的影响
Sample Holding time/h N-doping concentration/(μg·L-1) Carrier concentration/cm-3 Carrier mobility/(cm2·V-1·s-1) Electrical resistivity/(Ω·cm) Reference
SY 3 880 5.2×1019 0.90 1.3×10-1 [28]
SYSm 3 1280 2.0×1020 0.79 4.0×10-2 [28]
SYGd 3 1020 1.0×1020 1.10 5.6×10-2 [28]
SYLu 3 1180 1.1×1020 3.80 1.5×10-2 [28]
SC1 6 10±4 3.0×1019 1.70 1.0×10-1 [35]
SC2 6 296±84 9.2×1019 2.90 7.0×10-3 [35]
SC3 6 1215±386 3.6×1020 6.90 3.0×10-3 [35]
SC4 6 77±7 7.2×1019 3.50 3.0×10-2 [35]
Table 3  不同SiC陶瓷的N掺杂量、载流子浓度、载流子迁移率和电阻率
1 KOYANAGI T , KATOH Y , HINOKI T , et al. Progress in development of SiC-based joints resistant to neutron irradiation[J]. Journal of the European Ceramic Society, 2020, 40 (4): 1023- 1034.
doi: 10.1016/j.jeurceramsoc.2019.10.055
2 洪智亮, 张巧君, 李开元, 等. SiC/SiC复合材料在高温空气中的氧化行为[J]. 材料工程, 2021, 49 (5): 144- 150.
2 HONG Z L , ZHANG Q J , LI K Y , et al. Oxidation behavior of SiC/SiC composites in air at high temperature[J]. Journal of Materials Engineering, 2021, 49 (5): 144- 150.
3 KATOH Y , SNEAD L L . Silicon carbide and its composites for nuclear applications-historical overview[J]. Journal of Nuclear Materials, 2019, 526, 151849.
doi: 10.1016/j.jnucmat.2019.151849
4 刘巧沐, 黄顺洲, 何爱杰. 碳化硅陶瓷基复合材料在航空发动机上的应用需求及挑战[J]. 材料工程, 2019, 47 (2): 1- 10.
4 LIU Q M , HUANG S Z , HE A J . Application requirements and challenges of CMC-SiC composites on aero-engine[J]. Journal of Materials Engineering, 2019, 47 (2): 1- 10.
5 LV X , YE F , CHENG L , et al. Fabrication of SiC whisker-reinforced SiC ceramic matrix composites based on 3D printing and chemical vapor infiltration technology[J]. Journal of the European Ceramic Society, 2019, 39 (11): 3380- 3386.
doi: 10.1016/j.jeurceramsoc.2019.04.043
6 LI M , ZHOU X , YANG H , et al. The critical issues of SiC materials for future nuclear systems[J]. Scripta Materialia, 2018, 143, 149- 153.
doi: 10.1016/j.scriptamat.2017.03.001
7 HUANG Y , JIANG D , ZHANG X , et al. Enhancing toughness and strength of SiC ceramics with reduced graphene oxide by HP sintering[J]. Journal of the European Ceramic Society, 2018, 38 (13): 4329- 4337.
doi: 10.1016/j.jeurceramsoc.2018.05.033
8 YUE X , LI Q , YANG X . Influence of thermal stress on material removal of Cf_SiC composite in EDM[J]. Ceramics International, 2020, 46 (6): 7998- 8009.
doi: 10.1016/j.ceramint.2019.12.022
9 RAKSHIT R , DAS A K . A review on cutting of industrial ceramic materials[J]. Precision Engineering, 2019, 59, 90- 109.
doi: 10.1016/j.precisioneng.2019.05.009
10 GUO Y , FENG Y , WANG L , et al. Experimental investigation of EDM parameters for ZrB2-SiC ceramics machining[J]. Procedia CIRP, 2018, 68, 46- 51.
doi: 10.1016/j.procir.2017.12.020
11 ZHANG Z , ZHANG Y , LIN L , et al. Study on productivity and aerosol emissions of magnetic field-assisted EDM process of SiCp/Al composite with high volume fractions[J]. Journal of Cleaner Production, 2021, 292, 126018.
doi: 10.1016/j.jclepro.2021.126018
12 CoorsTek Inc. Advanced silicon carbide for critical components[EB/OL]. 2017. https://www.coorstek.com/media/2602/sic-manufacturing-01024.pdf.
13 陈军军. SiC基复相导电陶瓷的制备与性能研究[D]. 上海: 中国科学院上海硅酸盐研究所, 2018.
13 CHEN J J. Preparation and properties of SiC based electrical conductive ceramics[D]. Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences, 2018.
14 刘恩科, 朱秉升, 罗晋生. 半导体物理学[M]. 北京: 电子工业出版社, 2017: 37- 42.
14 LIU E K , ZHU B S , LUO J S . The physics of semiconductors[M]. Beijing: Publishing House of Electronics Industry, 2017: 37- 42.
15 HUA A , WEI F , PAN D , et al. Wide-band microwave absorption by in situ tailoring morphology and optimized N-doping in nano-SiC[J]. Applied Physics Letters, 2017, 111 (22): 223105.
doi: 10.1063/1.5003983
16 HU T , FANG Q , ZHANG X , et al. Enhanced n-doping of epitaxial graphene on SiC by bismuth[J]. Applied Physics Letters, 2018, 113 (1): 011602.
doi: 10.1063/1.5029541
17 KIM Y W , CHO T Y , KIM K J . Effect of grain growth on electrical properties of silicon carbide ceramics sintered with gadolinia and yttria[J]. Journal of the European Ceramic Society, 2015, 35 (15): 4137- 4142.
doi: 10.1016/j.jeurceramsoc.2015.08.006
18 ZHAO T T , GU H , WANG X H , et al. Revealing correlation of core-rim structures, defects and stacking-faults in SiC ceramics by integrated scanning electron microscopy[J]. Journal of the European Ceramic Society, 2021, 41 (1): 204- 212.
doi: 10.1016/j.jeurceramsoc.2020.09.019
19 RAJU K , YOON D H . Sintering additives for SiC based on the reactivity: a review[J]. Ceramics International, 2016, 42 (16): 17947- 17962.
doi: 10.1016/j.ceramint.2016.09.022
20 许顺祥, 寇华敏, 郭亚平, 等. 纳米陶瓷烧结技术研究进展与展望[J]. 硅酸盐学报, 2019, 47 (12): 1768- 1775.
20 XU S X , KOU H M , GUO Y P , et al. Research progress and prospect of sintering techniques for nanoceramics[J]. Journal of the Chinese Ceramic Society, 2019, 47 (12): 1768- 1775.
21 杨路, 姜淑文, 王志强, 等. 特种陶瓷烧结致密化工艺研究进展[J]. 材料导报, 2014, 28 (4): 45- 49.
21 YANG L , JIANG S W , WANG Z Q , et al. Progress in sintering densification process of special ceramics[J]. Materials Review, 2014, 28 (4): 45- 49.
22 HU Z Y , ZHANG Z H , CHENG X W , et al. A review of multi-physical fields induced phenomena and effects in spark plasma sintering: fundamentals and applications[J]. Materials & Design, 2020, 191, 108662.
23 付振东, 赵健, 戴叶婧, 等. 碳化硅陶瓷烧结助剂的作用机制与研究进展[J]. 材料导报, 2021, 35 (1): 01077- 01081.
23 FU Z D , ZHAO J , DAI Y J , et al. Sintering aids for silicon carbide ceramics: action mechanisms and research progress[J]. Materials Reports, 2021, 35 (1): 01077- 01081.
24 CHO T Y , KIM Y W , KIM K J . Thermal, electrical, and mechanical properties of pressureless sintered silicon carbide ceramics with yttria-scandia-aluminum nitride[J]. Journal of the European Ceramic Society, 2016, 36 (11): 2659- 2665.
doi: 10.1016/j.jeurceramsoc.2016.04.014
25 KIM Y H , KIM Y W , KIM K J . Electrically conductive SiC ceramics processed by pressureless sintering[J]. International Journal of Applied Ceramic Technology, 2018, 16 (2): 843- 849.
26 CHO T Y , MALIK R , KIM Y W , et al. Electrical and mechanical properties of pressureless sintered SiC-Ti2CN composites[J]. Journal of the European Ceramic Society, 2018, 38 (9): 3064- 3072.
doi: 10.1016/j.jeurceramsoc.2018.03.040
27 YEOM H J , KIM Y W , KIM K J . Electrical, thermal and mechanical properties of silicon carbide-silicon nitride composites sintered with yttria and scandia[J]. Journal of the European Ceramic Society, 2015, 35 (1): 77- 86.
doi: 10.1016/j.jeurceramsoc.2014.08.011
28 JANG S H , KIM Y W , KIM K J , et al. Effects of Y2O3-RE2O3(RE = Sm, Gd, Lu)additives on electrical and thermal properties of silicon carbide ceramics[J]. Journal of the American Ceramic Society, 2016, 99 (1): 265- 272.
doi: 10.1111/jace.13958
29 KIM K J , LIM K Y , KIM Y W . Control of electrical resistivity in silicon carbide ceramics sintered with aluminum nitride and yttria[J]. Journal of the American Ceramic Society, 2013, 96 (11): 3463- 3469.
doi: 10.1111/jace.12498
30 KIM K J , KIM K M , KIM Y W . Highly conductive SiC ceramics containing Ti2CN[J]. Journal of the European Ceramic Society, 2014, 34 (5): 1149- 1154.
doi: 10.1016/j.jeurceramsoc.2013.11.001
31 KIM K J , LIM K Y , KIM Y W . Influence of Y2O3 addition on electrical properties of β-SiC ceramics sintered in nitrogen atmosphere[J]. Journal of the European Ceramic Society, 2012, 32 (16): 4401- 4406.
doi: 10.1016/j.jeurceramsoc.2012.07.001
32 JANG S H , KIM Y W , KIM K J . Effects of Y2O3-RE2O3(RE = Sm, Gd, Lu)additives on electrical and mechanical properties of SiC ceramics containing Ti2CN[J]. Journal of the European Ceramic Society, 2016, 36 (12): 2997- 3003.
doi: 10.1016/j.jeurceramsoc.2015.09.042
33 SEO Y K , KIM Y W , KIM K J , et al. Electrically conductive SiC-BN composites[J]. Journal of the European Ceramic Society, 2016, 36 (16): 3879- 3887.
doi: 10.1016/j.jeurceramsoc.2016.06.040
34 JANG S H , KIM Y W , KIM K J . Electrical and thermal properties of SiC-Zr2CN composites sintered with Y2O3-Sc2O3 additives[J]. Journal of the European Ceramic Society, 2017, 37 (2): 477- 484.
doi: 10.1016/j.jeurceramsoc.2016.09.001
35 KIM K J , LIM K Y , KIM Y W . Effective nitrogen doping for fabricating highly conductive β-SiC ceramics[J]. Journal of the American Ceramic Society, 2011, 94 (10): 3216- 3219.
doi: 10.1111/j.1551-2916.2011.04799.x
36 LIM K Y , KIM Y W , KIM K J . Mechanical properties of electrically conductive silicon carbide ceramics[J]. Ceramics International, 2014, 40 (7): 10577- 10582.
doi: 10.1016/j.ceramint.2014.03.036
37 LIM K Y , KIM Y W , KIM K J . Electrical properties of SiC ceramics sintered with 0.5wt% AlN-RE2O3(RE=Y, Nd, Lu)[J]. Ceramics International, 2014, 40 (6): 8885- 8890.
doi: 10.1016/j.ceramint.2013.12.157
38 KIM K J , MALIK R , PARK J , et al. Effects of M2O3-Y2O3(M= Sc and Al)additives on electrical conductivity of hot-pressed SiC ceramics[J]. Ceramics International, 2020, 46 (4): 5454- 5458.
doi: 10.1016/j.ceramint.2019.10.194
39 KIM K J , LIM K Y , KIM Y W . Electrically and thermally conductive SiC ceramics[J]. Journal of the Ceramic Society of Japan, 2014, 122 (1431): 963- 966.
doi: 10.2109/jcersj2.122.963
40 KIM K J , LIM K Y , KIM Y W . Electrical and thermal properties of SiC ceramics sintered with yttria and nitrides[J]. Journal of the American Ceramic Society, 2014, 97 (9): 2943- 2949.
doi: 10.1111/jace.13031
41 KIM Y W , LIM K Y , KIM K J . Electrical resistivity of silicon carbide ceramics sintered with 1 wt% aluminum nitride and rare earth oxide[J]. Journal of the European Ceramic Society, 2012, 32 (16): 4427- 4434.
doi: 10.1016/j.jeurceramsoc.2012.07.021
42 MALIK R , KIM H M , KIM Y W , et al. Grain-growth-induced high electrical conductivity in SiC-BN composites[J]. Ceramics International, 2018, 44 (14): 16394- 16399.
doi: 10.1016/j.ceramint.2018.06.049
43 KIM K J , JANG S H , KIM Y W , et al. Conductive SiC ceramics fabricated by spark plasma sintering[J]. Ceramics International, 2016, 42 (15): 17892- 17896.
doi: 10.1016/j.ceramint.2016.07.126
44 ALPER A M . Phase diagrams in advanced ceramics[M]. California: Academic Press, 1995: 13- 14.
45 KIM Y W , KIM K J , KIM H C , et al. Electrodischarge-machinable silicon carbide ceramics sintered with yttrium nitrate[J]. Journal of the American Ceramic Society, 2011, 94 (4): 991- 993.
doi: 10.1111/j.1551-2916.2011.04419.x
46 JIN H , CAO M , ZHOU W , et al. Microwave synthesis of Al-doped SiC powders and study of their dielectric properties[J]. Materials Research Bulletin, 2010, 45 (2): 247- 250.
doi: 10.1016/j.materresbull.2009.09.015
47 YANG Z , LI Z , NING T , et al. Microwave dielectric properties of B and N co-doped SiC nanopowders prepared by combustion synthesis[J]. Journal of Alloys and Compounds, 2019, 777, 1039- 1043.
doi: 10.1016/j.jallcom.2018.11.067
48 LU X , DONG C , GUO X , et al. Effect of B, Al, Ga doping on the electronic structure and optical property of 4H-SiC system by the first principles calculation[J]. Modern Physics Letters B, 2021, 35 (5): 2150091.
doi: 10.1142/S0217984921500913
49 CASAMENTO J , WRIGHT J , CHAUDHURI R , et al. Molecular beam epitaxial growth of scandium nitride on hexagonal SiC, GaN, and AlN[J]. Applied Physics Letters, 2019, 115 (17): 172101.
doi: 10.1063/1.5121329
50 CHENG X , WANG L , GAO F , et al. The N and P co-doping-induced giant negative piezoresistance behaviors of SiC nanowires[J]. Journal of Materials Chemistry C, 2019, 7 (11): 3181- 3189.
doi: 10.1039/C8TC06623J
51 KOH D , BANERJEE S K , LOCKE C , et al. Valence and conduction band offsets at beryllium oxide interfaces with silicon carbide and Ⅲ-Ⅴ nitrides[J]. Journal of Vacuum Science & Technology B, 2019, 37 (4): 041206.
52 MATSUDA Y , KING S W , DAUSKARDT R H . Tailored amorphous silicon carbide barrier dielectrics by nitrogen and oxygen doping[J]. Thin Solid Films, 2013, 531, 552- 558.
doi: 10.1016/j.tsf.2012.11.141
53 MURATA K , TAWARA T , YANG A , et al. Wide-ranging control of carrier lifetimes in n-type 4H-SiC epilayer by intentional vanadium doping[J]. Journal of Applied Physics, 2019, 126 (4): 045711.
doi: 10.1063/1.5098101
54 RAJPOOT S , HA J H , KIM Y W . Effects of initial particle size on mechanical, thermal, and electrical properties of porous SiC ceramics[J]. Ceramics International, 2021, 47 (6): 8668- 8676.
doi: 10.1016/j.ceramint.2020.11.238
55 KULTAYEVA S , KIM Y W , SONG I H . Effects of dopants on electrical, thermal, and mechanical properties of porous SiC ceramics[J]. Journal of the European Ceramic Society, 2021, 41 (7): 4006- 4015.
doi: 10.1016/j.jeurceramsoc.2021.01.049
56 LIM K Y , KIM Y W , NISHIMURA T , et al. High temperature strength of silicon carbide sintered with 1 wt% aluminum nitride and lutetium oxide[J]. Journal of the European Ceramic Society, 2013, 33 (2): 345- 350.
doi: 10.1016/j.jeurceramsoc.2012.09.005
57 KIM Y W , JANG S H , NISHIMURA T , et al. Microstructure and high-temperature strength of silicon carbide with 2000 ppm yttria[J]. Journal of the European Ceramic Society, 2017, 37 (15): 4449- 4455.
doi: 10.1016/j.jeurceramsoc.2017.07.002
58 KIM K J , EOM J H , KIM Y W , et al. Highly resistive SiC ceramics sintered with Al2O3-AIN-Y2O3 additions[J]. Ceramics International, 2017, 43 (6): 5343- 5346.
doi: 10.1016/j.ceramint.2017.01.058
59 KIM K J , LIM K Y , KIM Y W , et al. Electrical resistivity of α-SiC ceramics sintered with Al2O3 or AlN additives[J]. Journal of the European Ceramic Society, 2014, 34 (7): 1695- 1701.
doi: 10.1016/j.jeurceramsoc.2014.01.004
60 LIANG H , YAO X , DENG H , et al. High electrical resistivity of spark plasma sintered SiC ceramics with Al2O3 and Er2O3 as sintering additives[J]. Journal of the European Ceramic Society, 2015, 35 (1): 399- 403.
doi: 10.1016/j.jeurceramsoc.2014.08.025
61 KIM Y W , CHUN Y S , NISHIMURA T , et al. High-temperature strength of silicon carbide ceramics sintered with rare-earth oxide and aluminum nitride[J]. Acta Materialia, 2007, 55 (2): 727- 736.
doi: 10.1016/j.actamat.2006.08.059
62 CAN A , MCLACHLAN D S , SAUTI G , et al. Relationships between microstructure and electrical properties of liquid-phase sintered silicon carbide materials using impedance spectroscopy[J]. Journal of the European Ceramic Society, 2007, 27 (2/3): 1361- 1363.
63 SIEGELIN F , KLEEBE H J , SIGL L S . Interface characteristics affecting electrical properties of Y-doped SiC[J]. Journal of Materials Research, 2003, 18 (11): 2608- 2617.
doi: 10.1557/JMR.2003.0365
64 CHEN D , SIXTA M E , ZHANG X F , et al. Role of the grain-boundary phase on the elevated-temperature strength, toughness, fatigue and creep resistance of silicon carbide sintered with Al, B and C[J]. Acta Materialia, 2000, 48 (18/19): 4599- 4608.
65 LIM K Y , KIM Y W , KIM K J , et al. Effect of in situ-synthesized nano-size SiC addition on density and electrical resistivity of liquid-phase sintered silicon carbide ceramics[J]. Journal of the Ceramic Society of Japan, 2011, 119 (1396): 965- 967.
doi: 10.2109/jcersj2.119.965
66 LIM K Y , KIM Y W , KIM K J . Influence of powder characteristics on the electrical resistivity of SiC ceramics[J]. Journal of the Ceramic Society of Japan, 2012, 120 (1402): 251- 255.
doi: 10.2109/jcersj2.120.251
67 ZHAN G D , MITOMO M , XIE R J , et al. Thermal and electrical properties in plasma-activation-sintered silicon carbide with rare-earth-oxide additives[J]. Journal of the American Ceramic Society, 2001, 84 (10): 2448- 2450.
68 KOUMOTO K , SHIMOHIGOSHI M , TAKEDA S , et al. Thermoelectric energy conversion by porous SiC ceramics[J]. Journal of Materials Science Letters, 1987, 6 (12): 1453- 1455.
doi: 10.1007/BF01689320
69 KIM K J , KIM Y W , LIM K Y , et al. Electrical and thermal properties of SiC-AlN ceramics without sintering additives[J]. Journal of the European Ceramic Society, 2015, 35 (10): 2715- 2721.
doi: 10.1016/j.jeurceramsoc.2015.04.010
70 KHODAEI M , YAGHOBIZADEH O , EHSANI N , et al. The effect of TiO2 additive on the electrical resistivity and mechanical properties of pressureless sintered SiC ceramics with Al2O3-Y2O3[J]. International Journal of Refractory Metals and Hard Materials, 2018, 76, 141- 148.
doi: 10.1016/j.ijrmhm.2018.06.005
71 KIM Y W , KIM Y H , KIM K J . Electrical properties of liquid-phase sintered silicon carbide ceramics: a review[J]. Critical Reviews in Solid State and Materials Sciences, 2019, 45 (1): 66- 84.
72 IWATA H P , LINDEFELT U , ÖBERG S , et al. Stacking faults in silicon carbide[J]. Physica B, 2003, 340/342, 165- 170.
doi: 10.1016/j.physb.2003.09.045
73 KIM Y W , MITOMO M , HIROTSURU H . Microstructural development of silicon carbide containing large seed grains[J]. Journal of the American Ceramic Society, 1997, 80 (1): 99- 105.
doi: 10.1111/j.1151-2916.1997.tb02796.x
74 KIM Y W , MITOMO M , EMOTO H , et al. Effect of initial α-phase content on microstructure and mechanical properties of sintered silicon carbide[J]. Journal of the American Ceramic Society, 1998, 81 (12): 3136- 3140.
doi: 10.1111/j.1151-2916.1998.tb02748.x
75 NADER M , ALDINGER F , HOFFMANN M J . Influence of the α/β-SiC phase transformation on microstructural development and mechanical properties of liquid phase sintered silicon carbide[J]. Journal of Materials Science, 1999, 34 (6): 1197- 1204.
doi: 10.1023/A:1004552704872
76 CHO T Y , KIM Y W . Effect of grain growth on the thermal conductivity of liquid-phase sintered silicon carbide ceramics[J]. Journal of the European Ceramic Society, 2017, 37 (11): 3475- 3481.
doi: 10.1016/j.jeurceramsoc.2017.04.050
77 ZENG H , WU Y , ZHANG J , et al. Grain size-dependent electrical resistivity of bulk nanocrystalline Gd metals[J]. Progress in Natural Science: Materials International, 2013, 23 (1): 18- 22.
doi: 10.1016/j.pnsc.2013.01.003
78 ABBAS S F , SEO S J , PARK K T , et al. Effect of grain size on the electrical conductivity of copper-iron alloys[J]. Journal of Alloys and Compounds, 2017, 720, 8- 16.
doi: 10.1016/j.jallcom.2017.05.244
79 DURKAN C , WELLAND M E . Size effects in the electrical resistivity of polycrystalline nanowires[J]. Physical Review B, 2000, 61 (20): 14215- 14218.
doi: 10.1103/PhysRevB.61.14215
80 CHEN S , TSENG K K , TONG Y , et al. Grain growth and Hall-Petch relationship in a refractory HfNbTaZrTi high-entropy alloy[J]. Journal of Alloys and Compounds, 2019, 795, 19- 26.
doi: 10.1016/j.jallcom.2019.04.291
81 LI Y , YIN J , WU H , et al. Microstructure, thermal conductivity, and electrical properties of in situ pressureless densified SiC-BN composites[J]. Journal of the American Ceramic Society, 2015, 98 (3): 879- 887.
doi: 10.1111/jace.13376
82 KIM K J , LIM K Y , KIM Y W , et al. Temperature dependence of electrical resistivity(4-300 K)in aluminum- and boron-doped SiC ceramics[J]. Journal of the American Ceramic Society, 2013, 96 (8): 2525- 2530.
doi: 10.1111/jace.12351
83 MIZUSAKI J , WARAGAI K , TSUCHIYA S , et al. Simple mathematical model for the electrical conductivity of highly porous ceramics[J]. Journal of the American Ceramic Society, 1996, 79 (1): 109- 113.
doi: 10.1111/j.1151-2916.1996.tb07887.x
84 MCLACHLAN D S , BLASZKIEWICZ M , NEWNHAM R E . Electrical resistivity of composites[J]. Journal of the American Ceramic Society, 1990, 73 (8): 2187- 2203.
doi: 10.1111/j.1151-2916.1990.tb07576.x
85 LUX F . Models proposed to explain the electrical conductivity of mixtures made of conductive and insulating materials[J]. Journal of Materials Science, 1993, 28 (2): 285- 301.
doi: 10.1007/BF00357799
86 CAI K F , LIU J , NAN C W , et al. Effect of porosity on the thermal-electric properties of Al-doped SiC ceramics[J]. Journal of Materials Science Letters, 1997, 16 (22): 1876- 1878.
doi: 10.1023/A:1018557827330
87 IHLE J , MARTIN H P , HERRMANN M , et al. The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide[J]. International Journal of Materials Research, 2006, 97 (5): 649- 656.
doi: 10.3139/146.101285
88 KIM G D , KIM Y W , SONG I H , et al. Effects of carbon and silicon on electrical, thermal, and mechanical properties of porous silicon carbide ceramics[J]. Ceramics International, 2020, 46 (10): 15594- 15603.
doi: 10.1016/j.ceramint.2020.03.106
89 KULTAYEVA S , HA J H , MALIK R , et al. Effects of porosity on electrical and thermal conductivities of porous SiC ceramics[J]. Journal of the European Ceramic Society, 2020, 40 (4): 996- 1004.
doi: 10.1016/j.jeurceramsoc.2019.11.045
90 RAJPOOT S , HA J H , KIM Y W , et al. Electrical, thermal, and mechanical properties of porous SiC-nitride composites[J]. Journal of the European Ceramic Society, 2020, 40 (12): 3851- 3862.
doi: 10.1016/j.jeurceramsoc.2020.04.018
[1] 唐婧缘, 龙依婷, 黄旭, 蒲琳钰. 核-双壳BT@TiO2@PDA纳米粒子的制备及其复合薄膜的介电性能[J]. 材料工程, 2022, 50(9): 59-69.
[2] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[3] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[4] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[5] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[6] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[7] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[8] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[9] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[10] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[11] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[12] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[13] 任美娟, 王淼, 吴芳辉, 贾虎, 叶明富, 文国强. 氮掺杂多孔碳负载铜钴纳米复合材料的制备及其电催化性能[J]. 材料工程, 2022, 50(4): 104-111.
[14] 李茂辉, 杨智, 潘廷仙, 同鑫, 胡长刚, 田娟. 铁氮掺杂活性炭载体增强碳载铂基催化剂氧还原反应稳定性[J]. 材料工程, 2022, 50(4): 132-138.
[15] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn