1 Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou 310023, China 2 Engineering Research Center of Process Equipment and Remanufacturing (Ministry of Education), Hangzhou 310023, China 3 College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China 4 Nuclear Power Institute of China, Chengdu 610213, China
The electrically conductive silicon carbide (SiC) ceramics that can be machined by electrical discharge machining, can not only overcome the highlight shortcomings of traditional high resistivity-grade SiC ceramics in machinability, but also maintain its other excellent properties. It has outstanding advantages to replace traditional high resistivity-grade SiC ceramics in the field of structural ceramics. In this paper, the nitrogen doping principle of electrically conductive SiC ceramics was illustrated, and then the powder sintering methods, sintering additives, thermoelectric and mechanical properties were summarized. Meanwhile, in order to provide guidance for the control of electrical properties, the electrical properties-related factors were discussed. In the end, the main challenges of nitrogen-doped electrically conductive SiC ceramics were pointed out, and the future interests were suggested to focus on the development of new sintering technology and additive, as well as clarifying the control mechanism of electrical properties, thereby establishing the technical foundation for fabrication of high-performance conductive SiC ceramics with controllable electrical resistivity.
KOYANAGI T , KATOH Y , HINOKI T , et al. Progress in development of SiC-based joints resistant to neutron irradiation[J]. Journal of the European Ceramic Society, 2020, 40 (4): 1023- 1034.
doi: 10.1016/j.jeurceramsoc.2019.10.055
HONG Z L , ZHANG Q J , LI K Y , et al. Oxidation behavior of SiC/SiC composites in air at high temperature[J]. Journal of Materials Engineering, 2021, 49 (5): 144- 150.
3
KATOH Y , SNEAD L L . Silicon carbide and its composites for nuclear applications-historical overview[J]. Journal of Nuclear Materials, 2019, 526, 151849.
doi: 10.1016/j.jnucmat.2019.151849
LIU Q M , HUANG S Z , HE A J . Application requirements and challenges of CMC-SiC composites on aero-engine[J]. Journal of Materials Engineering, 2019, 47 (2): 1- 10.
5
LV X , YE F , CHENG L , et al. Fabrication of SiC whisker-reinforced SiC ceramic matrix composites based on 3D printing and chemical vapor infiltration technology[J]. Journal of the European Ceramic Society, 2019, 39 (11): 3380- 3386.
doi: 10.1016/j.jeurceramsoc.2019.04.043
6
LI M , ZHOU X , YANG H , et al. The critical issues of SiC materials for future nuclear systems[J]. Scripta Materialia, 2018, 143, 149- 153.
doi: 10.1016/j.scriptamat.2017.03.001
7
HUANG Y , JIANG D , ZHANG X , et al. Enhancing toughness and strength of SiC ceramics with reduced graphene oxide by HP sintering[J]. Journal of the European Ceramic Society, 2018, 38 (13): 4329- 4337.
doi: 10.1016/j.jeurceramsoc.2018.05.033
8
YUE X , LI Q , YANG X . Influence of thermal stress on material removal of Cf_SiC composite in EDM[J]. Ceramics International, 2020, 46 (6): 7998- 8009.
doi: 10.1016/j.ceramint.2019.12.022
9
RAKSHIT R , DAS A K . A review on cutting of industrial ceramic materials[J]. Precision Engineering, 2019, 59, 90- 109.
doi: 10.1016/j.precisioneng.2019.05.009
10
GUO Y , FENG Y , WANG L , et al. Experimental investigation of EDM parameters for ZrB2-SiC ceramics machining[J]. Procedia CIRP, 2018, 68, 46- 51.
doi: 10.1016/j.procir.2017.12.020
11
ZHANG Z , ZHANG Y , LIN L , et al. Study on productivity and aerosol emissions of magnetic field-assisted EDM process of SiCp/Al composite with high volume fractions[J]. Journal of Cleaner Production, 2021, 292, 126018.
doi: 10.1016/j.jclepro.2021.126018
12
CoorsTek Inc. Advanced silicon carbide for critical components[EB/OL]. 2017. https://www.coorstek.com/media/2602/sic-manufacturing-01024.pdf.
CHEN J J. Preparation and properties of SiC based electrical conductive ceramics[D]. Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences, 2018.
LIU E K , ZHU B S , LUO J S . The physics of semiconductors[M]. Beijing: Publishing House of Electronics Industry, 2017: 37- 42.
15
HUA A , WEI F , PAN D , et al. Wide-band microwave absorption by in situ tailoring morphology and optimized N-doping in nano-SiC[J]. Applied Physics Letters, 2017, 111 (22): 223105.
doi: 10.1063/1.5003983
16
HU T , FANG Q , ZHANG X , et al. Enhanced n-doping of epitaxial graphene on SiC by bismuth[J]. Applied Physics Letters, 2018, 113 (1): 011602.
doi: 10.1063/1.5029541
17
KIM Y W , CHO T Y , KIM K J . Effect of grain growth on electrical properties of silicon carbide ceramics sintered with gadolinia and yttria[J]. Journal of the European Ceramic Society, 2015, 35 (15): 4137- 4142.
doi: 10.1016/j.jeurceramsoc.2015.08.006
18
ZHAO T T , GU H , WANG X H , et al. Revealing correlation of core-rim structures, defects and stacking-faults in SiC ceramics by integrated scanning electron microscopy[J]. Journal of the European Ceramic Society, 2021, 41 (1): 204- 212.
doi: 10.1016/j.jeurceramsoc.2020.09.019
19
RAJU K , YOON D H . Sintering additives for SiC based on the reactivity: a review[J]. Ceramics International, 2016, 42 (16): 17947- 17962.
doi: 10.1016/j.ceramint.2016.09.022
XU S X , KOU H M , GUO Y P , et al. Research progress and prospect of sintering techniques for nanoceramics[J]. Journal of the Chinese Ceramic Society, 2019, 47 (12): 1768- 1775.
YANG L , JIANG S W , WANG Z Q , et al. Progress in sintering densification process of special ceramics[J]. Materials Review, 2014, 28 (4): 45- 49.
22
HU Z Y , ZHANG Z H , CHENG X W , et al. A review of multi-physical fields induced phenomena and effects in spark plasma sintering: fundamentals and applications[J]. Materials & Design, 2020, 191, 108662.
FU Z D , ZHAO J , DAI Y J , et al. Sintering aids for silicon carbide ceramics: action mechanisms and research progress[J]. Materials Reports, 2021, 35 (1): 01077- 01081.
24
CHO T Y , KIM Y W , KIM K J . Thermal, electrical, and mechanical properties of pressureless sintered silicon carbide ceramics with yttria-scandia-aluminum nitride[J]. Journal of the European Ceramic Society, 2016, 36 (11): 2659- 2665.
doi: 10.1016/j.jeurceramsoc.2016.04.014
25
KIM Y H , KIM Y W , KIM K J . Electrically conductive SiC ceramics processed by pressureless sintering[J]. International Journal of Applied Ceramic Technology, 2018, 16 (2): 843- 849.
26
CHO T Y , MALIK R , KIM Y W , et al. Electrical and mechanical properties of pressureless sintered SiC-Ti2CN composites[J]. Journal of the European Ceramic Society, 2018, 38 (9): 3064- 3072.
doi: 10.1016/j.jeurceramsoc.2018.03.040
27
YEOM H J , KIM Y W , KIM K J . Electrical, thermal and mechanical properties of silicon carbide-silicon nitride composites sintered with yttria and scandia[J]. Journal of the European Ceramic Society, 2015, 35 (1): 77- 86.
doi: 10.1016/j.jeurceramsoc.2014.08.011
28
JANG S H , KIM Y W , KIM K J , et al. Effects of Y2O3-RE2O3(RE = Sm, Gd, Lu)additives on electrical and thermal properties of silicon carbide ceramics[J]. Journal of the American Ceramic Society, 2016, 99 (1): 265- 272.
doi: 10.1111/jace.13958
29
KIM K J , LIM K Y , KIM Y W . Control of electrical resistivity in silicon carbide ceramics sintered with aluminum nitride and yttria[J]. Journal of the American Ceramic Society, 2013, 96 (11): 3463- 3469.
doi: 10.1111/jace.12498
30
KIM K J , KIM K M , KIM Y W . Highly conductive SiC ceramics containing Ti2CN[J]. Journal of the European Ceramic Society, 2014, 34 (5): 1149- 1154.
doi: 10.1016/j.jeurceramsoc.2013.11.001
31
KIM K J , LIM K Y , KIM Y W . Influence of Y2O3 addition on electrical properties of β-SiC ceramics sintered in nitrogen atmosphere[J]. Journal of the European Ceramic Society, 2012, 32 (16): 4401- 4406.
doi: 10.1016/j.jeurceramsoc.2012.07.001
32
JANG S H , KIM Y W , KIM K J . Effects of Y2O3-RE2O3(RE = Sm, Gd, Lu)additives on electrical and mechanical properties of SiC ceramics containing Ti2CN[J]. Journal of the European Ceramic Society, 2016, 36 (12): 2997- 3003.
doi: 10.1016/j.jeurceramsoc.2015.09.042
33
SEO Y K , KIM Y W , KIM K J , et al. Electrically conductive SiC-BN composites[J]. Journal of the European Ceramic Society, 2016, 36 (16): 3879- 3887.
doi: 10.1016/j.jeurceramsoc.2016.06.040
34
JANG S H , KIM Y W , KIM K J . Electrical and thermal properties of SiC-Zr2CN composites sintered with Y2O3-Sc2O3 additives[J]. Journal of the European Ceramic Society, 2017, 37 (2): 477- 484.
doi: 10.1016/j.jeurceramsoc.2016.09.001
35
KIM K J , LIM K Y , KIM Y W . Effective nitrogen doping for fabricating highly conductive β-SiC ceramics[J]. Journal of the American Ceramic Society, 2011, 94 (10): 3216- 3219.
doi: 10.1111/j.1551-2916.2011.04799.x
36
LIM K Y , KIM Y W , KIM K J . Mechanical properties of electrically conductive silicon carbide ceramics[J]. Ceramics International, 2014, 40 (7): 10577- 10582.
doi: 10.1016/j.ceramint.2014.03.036
37
LIM K Y , KIM Y W , KIM K J . Electrical properties of SiC ceramics sintered with 0.5wt% AlN-RE2O3(RE=Y, Nd, Lu)[J]. Ceramics International, 2014, 40 (6): 8885- 8890.
doi: 10.1016/j.ceramint.2013.12.157
38
KIM K J , MALIK R , PARK J , et al. Effects of M2O3-Y2O3(M= Sc and Al)additives on electrical conductivity of hot-pressed SiC ceramics[J]. Ceramics International, 2020, 46 (4): 5454- 5458.
doi: 10.1016/j.ceramint.2019.10.194
39
KIM K J , LIM K Y , KIM Y W . Electrically and thermally conductive SiC ceramics[J]. Journal of the Ceramic Society of Japan, 2014, 122 (1431): 963- 966.
doi: 10.2109/jcersj2.122.963
40
KIM K J , LIM K Y , KIM Y W . Electrical and thermal properties of SiC ceramics sintered with yttria and nitrides[J]. Journal of the American Ceramic Society, 2014, 97 (9): 2943- 2949.
doi: 10.1111/jace.13031
41
KIM Y W , LIM K Y , KIM K J . Electrical resistivity of silicon carbide ceramics sintered with 1 wt% aluminum nitride and rare earth oxide[J]. Journal of the European Ceramic Society, 2012, 32 (16): 4427- 4434.
doi: 10.1016/j.jeurceramsoc.2012.07.021
42
MALIK R , KIM H M , KIM Y W , et al. Grain-growth-induced high electrical conductivity in SiC-BN composites[J]. Ceramics International, 2018, 44 (14): 16394- 16399.
doi: 10.1016/j.ceramint.2018.06.049
43
KIM K J , JANG S H , KIM Y W , et al. Conductive SiC ceramics fabricated by spark plasma sintering[J]. Ceramics International, 2016, 42 (15): 17892- 17896.
doi: 10.1016/j.ceramint.2016.07.126
44
ALPER A M . Phase diagrams in advanced ceramics[M]. California: Academic Press, 1995: 13- 14.
45
KIM Y W , KIM K J , KIM H C , et al. Electrodischarge-machinable silicon carbide ceramics sintered with yttrium nitrate[J]. Journal of the American Ceramic Society, 2011, 94 (4): 991- 993.
doi: 10.1111/j.1551-2916.2011.04419.x
46
JIN H , CAO M , ZHOU W , et al. Microwave synthesis of Al-doped SiC powders and study of their dielectric properties[J]. Materials Research Bulletin, 2010, 45 (2): 247- 250.
doi: 10.1016/j.materresbull.2009.09.015
47
YANG Z , LI Z , NING T , et al. Microwave dielectric properties of B and N co-doped SiC nanopowders prepared by combustion synthesis[J]. Journal of Alloys and Compounds, 2019, 777, 1039- 1043.
doi: 10.1016/j.jallcom.2018.11.067
48
LU X , DONG C , GUO X , et al. Effect of B, Al, Ga doping on the electronic structure and optical property of 4H-SiC system by the first principles calculation[J]. Modern Physics Letters B, 2021, 35 (5): 2150091.
doi: 10.1142/S0217984921500913
49
CASAMENTO J , WRIGHT J , CHAUDHURI R , et al. Molecular beam epitaxial growth of scandium nitride on hexagonal SiC, GaN, and AlN[J]. Applied Physics Letters, 2019, 115 (17): 172101.
doi: 10.1063/1.5121329
50
CHENG X , WANG L , GAO F , et al. The N and P co-doping-induced giant negative piezoresistance behaviors of SiC nanowires[J]. Journal of Materials Chemistry C, 2019, 7 (11): 3181- 3189.
doi: 10.1039/C8TC06623J
51
KOH D , BANERJEE S K , LOCKE C , et al. Valence and conduction band offsets at beryllium oxide interfaces with silicon carbide and Ⅲ-Ⅴ nitrides[J]. Journal of Vacuum Science & Technology B, 2019, 37 (4): 041206.
52
MATSUDA Y , KING S W , DAUSKARDT R H . Tailored amorphous silicon carbide barrier dielectrics by nitrogen and oxygen doping[J]. Thin Solid Films, 2013, 531, 552- 558.
doi: 10.1016/j.tsf.2012.11.141
53
MURATA K , TAWARA T , YANG A , et al. Wide-ranging control of carrier lifetimes in n-type 4H-SiC epilayer by intentional vanadium doping[J]. Journal of Applied Physics, 2019, 126 (4): 045711.
doi: 10.1063/1.5098101
54
RAJPOOT S , HA J H , KIM Y W . Effects of initial particle size on mechanical, thermal, and electrical properties of porous SiC ceramics[J]. Ceramics International, 2021, 47 (6): 8668- 8676.
doi: 10.1016/j.ceramint.2020.11.238
55
KULTAYEVA S , KIM Y W , SONG I H . Effects of dopants on electrical, thermal, and mechanical properties of porous SiC ceramics[J]. Journal of the European Ceramic Society, 2021, 41 (7): 4006- 4015.
doi: 10.1016/j.jeurceramsoc.2021.01.049
56
LIM K Y , KIM Y W , NISHIMURA T , et al. High temperature strength of silicon carbide sintered with 1 wt% aluminum nitride and lutetium oxide[J]. Journal of the European Ceramic Society, 2013, 33 (2): 345- 350.
doi: 10.1016/j.jeurceramsoc.2012.09.005
57
KIM Y W , JANG S H , NISHIMURA T , et al. Microstructure and high-temperature strength of silicon carbide with 2000 ppm yttria[J]. Journal of the European Ceramic Society, 2017, 37 (15): 4449- 4455.
doi: 10.1016/j.jeurceramsoc.2017.07.002
58
KIM K J , EOM J H , KIM Y W , et al. Highly resistive SiC ceramics sintered with Al2O3-AIN-Y2O3 additions[J]. Ceramics International, 2017, 43 (6): 5343- 5346.
doi: 10.1016/j.ceramint.2017.01.058
59
KIM K J , LIM K Y , KIM Y W , et al. Electrical resistivity of α-SiC ceramics sintered with Al2O3 or AlN additives[J]. Journal of the European Ceramic Society, 2014, 34 (7): 1695- 1701.
doi: 10.1016/j.jeurceramsoc.2014.01.004
60
LIANG H , YAO X , DENG H , et al. High electrical resistivity of spark plasma sintered SiC ceramics with Al2O3 and Er2O3 as sintering additives[J]. Journal of the European Ceramic Society, 2015, 35 (1): 399- 403.
doi: 10.1016/j.jeurceramsoc.2014.08.025
61
KIM Y W , CHUN Y S , NISHIMURA T , et al. High-temperature strength of silicon carbide ceramics sintered with rare-earth oxide and aluminum nitride[J]. Acta Materialia, 2007, 55 (2): 727- 736.
doi: 10.1016/j.actamat.2006.08.059
62
CAN A , MCLACHLAN D S , SAUTI G , et al. Relationships between microstructure and electrical properties of liquid-phase sintered silicon carbide materials using impedance spectroscopy[J]. Journal of the European Ceramic Society, 2007, 27 (2/3): 1361- 1363.
63
SIEGELIN F , KLEEBE H J , SIGL L S . Interface characteristics affecting electrical properties of Y-doped SiC[J]. Journal of Materials Research, 2003, 18 (11): 2608- 2617.
doi: 10.1557/JMR.2003.0365
64
CHEN D , SIXTA M E , ZHANG X F , et al. Role of the grain-boundary phase on the elevated-temperature strength, toughness, fatigue and creep resistance of silicon carbide sintered with Al, B and C[J]. Acta Materialia, 2000, 48 (18/19): 4599- 4608.
65
LIM K Y , KIM Y W , KIM K J , et al. Effect of in situ-synthesized nano-size SiC addition on density and electrical resistivity of liquid-phase sintered silicon carbide ceramics[J]. Journal of the Ceramic Society of Japan, 2011, 119 (1396): 965- 967.
doi: 10.2109/jcersj2.119.965
66
LIM K Y , KIM Y W , KIM K J . Influence of powder characteristics on the electrical resistivity of SiC ceramics[J]. Journal of the Ceramic Society of Japan, 2012, 120 (1402): 251- 255.
doi: 10.2109/jcersj2.120.251
67
ZHAN G D , MITOMO M , XIE R J , et al. Thermal and electrical properties in plasma-activation-sintered silicon carbide with rare-earth-oxide additives[J]. Journal of the American Ceramic Society, 2001, 84 (10): 2448- 2450.
68
KOUMOTO K , SHIMOHIGOSHI M , TAKEDA S , et al. Thermoelectric energy conversion by porous SiC ceramics[J]. Journal of Materials Science Letters, 1987, 6 (12): 1453- 1455.
doi: 10.1007/BF01689320
69
KIM K J , KIM Y W , LIM K Y , et al. Electrical and thermal properties of SiC-AlN ceramics without sintering additives[J]. Journal of the European Ceramic Society, 2015, 35 (10): 2715- 2721.
doi: 10.1016/j.jeurceramsoc.2015.04.010
70
KHODAEI M , YAGHOBIZADEH O , EHSANI N , et al. The effect of TiO2 additive on the electrical resistivity and mechanical properties of pressureless sintered SiC ceramics with Al2O3-Y2O3[J]. International Journal of Refractory Metals and Hard Materials, 2018, 76, 141- 148.
doi: 10.1016/j.ijrmhm.2018.06.005
71
KIM Y W , KIM Y H , KIM K J . Electrical properties of liquid-phase sintered silicon carbide ceramics: a review[J]. Critical Reviews in Solid State and Materials Sciences, 2019, 45 (1): 66- 84.
72
IWATA H P , LINDEFELT U , ÖBERG S , et al. Stacking faults in silicon carbide[J]. Physica B, 2003, 340/342, 165- 170.
doi: 10.1016/j.physb.2003.09.045
73
KIM Y W , MITOMO M , HIROTSURU H . Microstructural development of silicon carbide containing large seed grains[J]. Journal of the American Ceramic Society, 1997, 80 (1): 99- 105.
doi: 10.1111/j.1151-2916.1997.tb02796.x
74
KIM Y W , MITOMO M , EMOTO H , et al. Effect of initial α-phase content on microstructure and mechanical properties of sintered silicon carbide[J]. Journal of the American Ceramic Society, 1998, 81 (12): 3136- 3140.
doi: 10.1111/j.1151-2916.1998.tb02748.x
75
NADER M , ALDINGER F , HOFFMANN M J . Influence of the α/β-SiC phase transformation on microstructural development and mechanical properties of liquid phase sintered silicon carbide[J]. Journal of Materials Science, 1999, 34 (6): 1197- 1204.
doi: 10.1023/A:1004552704872
76
CHO T Y , KIM Y W . Effect of grain growth on the thermal conductivity of liquid-phase sintered silicon carbide ceramics[J]. Journal of the European Ceramic Society, 2017, 37 (11): 3475- 3481.
doi: 10.1016/j.jeurceramsoc.2017.04.050
77
ZENG H , WU Y , ZHANG J , et al. Grain size-dependent electrical resistivity of bulk nanocrystalline Gd metals[J]. Progress in Natural Science: Materials International, 2013, 23 (1): 18- 22.
doi: 10.1016/j.pnsc.2013.01.003
78
ABBAS S F , SEO S J , PARK K T , et al. Effect of grain size on the electrical conductivity of copper-iron alloys[J]. Journal of Alloys and Compounds, 2017, 720, 8- 16.
doi: 10.1016/j.jallcom.2017.05.244
79
DURKAN C , WELLAND M E . Size effects in the electrical resistivity of polycrystalline nanowires[J]. Physical Review B, 2000, 61 (20): 14215- 14218.
doi: 10.1103/PhysRevB.61.14215
80
CHEN S , TSENG K K , TONG Y , et al. Grain growth and Hall-Petch relationship in a refractory HfNbTaZrTi high-entropy alloy[J]. Journal of Alloys and Compounds, 2019, 795, 19- 26.
doi: 10.1016/j.jallcom.2019.04.291
81
LI Y , YIN J , WU H , et al. Microstructure, thermal conductivity, and electrical properties of in situ pressureless densified SiC-BN composites[J]. Journal of the American Ceramic Society, 2015, 98 (3): 879- 887.
doi: 10.1111/jace.13376
82
KIM K J , LIM K Y , KIM Y W , et al. Temperature dependence of electrical resistivity(4-300 K)in aluminum- and boron-doped SiC ceramics[J]. Journal of the American Ceramic Society, 2013, 96 (8): 2525- 2530.
doi: 10.1111/jace.12351
83
MIZUSAKI J , WARAGAI K , TSUCHIYA S , et al. Simple mathematical model for the electrical conductivity of highly porous ceramics[J]. Journal of the American Ceramic Society, 1996, 79 (1): 109- 113.
doi: 10.1111/j.1151-2916.1996.tb07887.x
84
MCLACHLAN D S , BLASZKIEWICZ M , NEWNHAM R E . Electrical resistivity of composites[J]. Journal of the American Ceramic Society, 1990, 73 (8): 2187- 2203.
doi: 10.1111/j.1151-2916.1990.tb07576.x
85
LUX F . Models proposed to explain the electrical conductivity of mixtures made of conductive and insulating materials[J]. Journal of Materials Science, 1993, 28 (2): 285- 301.
doi: 10.1007/BF00357799
86
CAI K F , LIU J , NAN C W , et al. Effect of porosity on the thermal-electric properties of Al-doped SiC ceramics[J]. Journal of Materials Science Letters, 1997, 16 (22): 1876- 1878.
doi: 10.1023/A:1018557827330
87
IHLE J , MARTIN H P , HERRMANN M , et al. The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide[J]. International Journal of Materials Research, 2006, 97 (5): 649- 656.
doi: 10.3139/146.101285
88
KIM G D , KIM Y W , SONG I H , et al. Effects of carbon and silicon on electrical, thermal, and mechanical properties of porous silicon carbide ceramics[J]. Ceramics International, 2020, 46 (10): 15594- 15603.
doi: 10.1016/j.ceramint.2020.03.106
89
KULTAYEVA S , HA J H , MALIK R , et al. Effects of porosity on electrical and thermal conductivities of porous SiC ceramics[J]. Journal of the European Ceramic Society, 2020, 40 (4): 996- 1004.
doi: 10.1016/j.jeurceramsoc.2019.11.045
90
RAJPOOT S , HA J H , KIM Y W , et al. Electrical, thermal, and mechanical properties of porous SiC-nitride composites[J]. Journal of the European Ceramic Society, 2020, 40 (12): 3851- 3862.
doi: 10.1016/j.jeurceramsoc.2020.04.018