Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (6): 36-48    DOI: 10.11868/j.issn.1001-4381.2021.001054
  增材制造专栏 本期目录 | 过刊浏览 | 高级检索 |
激光选区熔化颗粒增强钛基复合材料的抗压性能
彭斌意1,2, 刘洋1,2,3,*(), 郑晓董1,2, 李治国3, 李国平1, 胡建波3, 王永刚1,2
1 宁波大学 机械工程与力学学院, 浙江 宁波 315211
2 宁波大学 冲击与安全工程教育部重点实验室, 浙江 宁波 315211
3 中国工程物理研究院 冲击波物理与爆轰物理重点实验室, 四川 绵阳 621999
Compression resistance of particle reinforced titanium matrix composites prepared by selective laser melting
Binyi PENG1,2, Yang LIU1,2,3,*(), Xiaodong ZHENG1,2, Zhiguo LI3, Guoping LI1, Jianbo HU3, Yonggang WANG1,2
1 School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, Zhejiang, China
2 Key Laboratory of Impact and Safety Engineering(Ministry of Education), Ningbo University, Ningbo 315211, Zhejiang, China
3 National Key Laboratory of Shock Wave and Detonation Physics, China Academy of Engineering Physics, Mianyang 621999, Sichuan, China
全文: PDF(41361 KB)   HTML ( 5 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用激光选区熔化(selective laser melting, SLM)制备LaB6颗粒增强钛基复合材料, 研究不同激光能量密度下试样的致密化行为、显微组织、物相及其在准静态和动态冲击条件下的力学性能。结果表明: LaB6颗粒的加入在一定程度上改变了材料的致密化行为, 过高或者过低的激光能量密度均会降低试样的致密度。而增强颗粒的加入细化了基体材料的晶粒, 钛合金的初始β晶粒及针状α晶粒的晶界有一定程度的弱化, 从而导致复合材料的屈服强度和极限强度增加, 但延展性降低, 同时复合材料表现出明显的应变率强化效应。与SLM成型Ti-6Al-4V合金相比, 复合材料在塑性段的应变硬化效应和失稳阶段的脆性断裂特征更显著, 为激光增材制造高性能颗粒增强钛基复合材料的动态抗压性能优化提供理论基础。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭斌意
刘洋
郑晓董
李治国
李国平
胡建波
王永刚
关键词 激光选区熔化钛基复合材料颗粒增强动态压缩性能    
Abstract

Selective laser melting (SLM) was used to prepare LaB6 particle-reinforced titanium matrix composites(PRTMCs), the influence of laser energy on the densification behavior, phase, microstructure and the corresponding mechanical properties under quasi-static and impacting conditions were studied.The results show that the densification behavior of Ti-6Al-4V alloy is changed to some extent by the introduction of LaB6 particles, and the density of PRTMCs is reduced by either too high or too low laser energy input.Significant grain refinement happens after the addition of LaB6 particles, the grain boundary of the initial β and acicular α is weakened.As a consequence, the yield stress and ultimate compressive stress of the PRTMCs are enhanced but the ductility is weakened to some extent, meanwhile, PRTMCs exhibit obvious strain rate strengthening effect.Compared with the SLMed Ti-6Al-4V, the strain strengthening effect in the plastic deformation stage and brittle fracture characteristics in the instability stage of PRTMCs become more notable.Through this study, a theoretical basis for the dynamic compressive performance of laser additive manufactured PRTMCs can be provided.

Key wordsselective laser melting    titanium matrix composite    particle reinforcement    dynamic com-pressive property
收稿日期: 2021-11-02      出版日期: 2022-06-20
中图分类号:  TG146.2+3  
基金资助:国家自然科学基金项目(51905279);国家自然科学基金项目(11972202);科学挑战项目(TZ2018001);国防科技重点实验室稳定支持科研项目(JCKYS2019212009);国防科技重点实验室基金项目(6142A03201002)
通讯作者: 刘洋     E-mail: liuyang1@nbu.edu.cn
作者简介: 刘洋(1987—),男,副教授,博士,主要从事钛合金、铝合金、高温合金、复合材料的增材制造工艺及其在极端载荷作用下的承载能力研究,联系地址:浙江省宁波市江北区风华路818号宁波大学绣山工程楼408(315211),E-mail: liuyang1@nbu.edu.cn
引用本文:   
彭斌意, 刘洋, 郑晓董, 李治国, 李国平, 胡建波, 王永刚. 激光选区熔化颗粒增强钛基复合材料的抗压性能[J]. 材料工程, 2022, 50(6): 36-48.
Binyi PENG, Yang LIU, Xiaodong ZHENG, Zhiguo LI, Guoping LI, Jianbo HU, Yonggang WANG. Compression resistance of particle reinforced titanium matrix composites prepared by selective laser melting. Journal of Materials Engineering, 2022, 50(6): 36-48.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.001054      或      http://jme.biam.ac.cn/CN/Y2022/V50/I6/36
Al V Fe C O H Ti
6.5 4.5 0.25 0.02 0.1 0.002 Bal
Table 1  Ti-6Al-4V合金的化学成分 (质量分数/%)
Fig.1  原始材料及复合材料SEM图和EDS图
(a)Ti-6Al-4V;(b)LaB6;(c)复合材料粉末;(d) La元素的EDS分布图
Fig.2  SLM成形试样图
Fig.3  SLM成形试样相对密度图
Fig.4  Ti-6Al-4V和TMC2试样的XRD谱图
Fig.5  增强颗粒高倍能谱分析
Fig.6  表面微观组织OM图
(a)Ti-6Al-4V;(b)TMC1;(c)TMC2;(d)TMC3;(e)TMC4
Fig.7  微观组织SEM图
(a)Ti-6Al-4V;(b)TMC1;(c)TMC2;(d)TMC4
Fig.8  SLM成形试样的EBSD反极图(IPF)(1)与极图(PF)(2)
(a)Ti-6Al-4V;(b)TMC2;(c)TMC4
Fig.9  SLM成形试样的晶界图(1)及晶粒尺寸图(2)
(a)Ti-6Al-4V;(b)TMC2;(c)TMC4
Fig.10  SLM成形试样维氏硬度图
Fig.11  激光选区熔化成型钛基复合材料的准静态抗压性能
(a)真实应力-应变曲线; (b)屈服强度和极限强度
Sample Processing Yield stress/MPa Ultimate compressive stress/MPa Reference
Ti-6Al-4V SLM 1010 1435 This paper
Ti-6Al-4V+0.5%LaB6 SLM 1159 1520 This paper
Ti-6Al-4V+0.5%B4C SLM - 1535 [27]
Ti-6Al-4V Gas tungsten arc welding 875 1420 [16]
Ti-6Al-4V+0.05%B Gas tungsten arc welding 875 1400 [16]
Ti-6Al-4V+0.13%B Gas tungsten arc welding 850 1350 [16]
Ti-6Al-4V Hot-press sintering 1150 1350 [28]
Ti-6Al-4V+1%Ti3SiC2 Hot-press sintering 1300 1460 [28]
Ti-6Al-4V+2%Ti3SiC2 Hot-press sintering 1310 1600 [28]
Table 2  其他文献中钛基复合材料试样的准静态压缩性能与本文结果对比
Fig.12  压缩试样的断裂形貌
(a)Ti-6Al-4V;(b)TMC2
Fig.13  激光选区熔化钛基复合材料的动态压缩性能
(a)真实应力-应变曲线; (b)屈服强度和极限强度
Fig.14  激光选区熔化钛基复合材料(TMC2)在不同应变率下的动态压缩性能
(a)真实应力-应变曲线; (b)屈服强度和极限强度
Fig.15  高速冲击后试样的断裂形貌
(a) Ti-6Al-4V;(b)TMC2
1 LIU S Y , SHIN Y C . Additive manufacturing of Ti6Al4V alloy: a review[J]. Materials & Design, 2019, 164, 107552.
2 MORSI K . Review: titanium-titanium boride composites[J]. Journal of Materials Science, 2019, 54 (9): 6753- 6771.
doi: 10.1007/s10853-018-03283-w
3 LIU Y , PANG Z C , LI M , et al. Investigation into the dynamic mechanical properties of selective laser melted Ti-6Al-4V alloy at high strain rate tensile loading[J]. Materials Science and Engineering: A, 2019, 745, 440- 449.
doi: 10.1016/j.msea.2019.01.010
4 吕维洁, 郭相龙, 王立强, 等. 原位自生非连续增强钛基复合材料的研究进展[J]. 航空材料学报, 2014, 34 (4): 139- 146.
4 LU W J , GUO X L , WANG L Q , et al. Progress on in-situ discontinuously reinforced titanium matrix composites[J]. Journal of Aeronautical Materials, 2014, 34 (4): 139- 146.
5 GU D D , HAGEDORN Y C , MEINERS W , et al. Nanocrystalline TiC reinforced Ti matrix bulk-form nanocomposites by selective laser melting (SLM): densification, growth mechanism and wear behavior[J]. Composites Science & Technology, 2011, 71 (13): 1612- 1620.
6 张二林, 朱兆军, 曾松岩. 自生颗粒增强钛基复合材料的研究进展[J]. 稀有金属, 1999, 6, 436- 442.
doi: 10.3969/j.issn.0258-7076.1999.06.009
6 ZHANG E L , ZHU Z J , ZENG S Y . Review on in-situ particulate reinforced titanium matrix composites(TMCs)[J]. Chinese Journal of Rare Metals, 1999, 6, 436- 442.
doi: 10.3969/j.issn.0258-7076.1999.06.009
7 李凡, 吴炳尧. 机械合金化——新型的固态合金化方法[J]. 机械工程材料, 1999, 23 (4): 24- 27.
7 LI F , WU B Y . Mechanical alloying—a new technology of alloying in solid state[J]. Materials for Mechanical Engineering, 1999, 1999 (4): 24- 27.
8 张小明, 张廷杰, 毛小南, 等. SHS法制备钛基复合材料用的TiC颗粒[J]. 钛工业进展, 2003, (2): 18- 21.
doi: 10.3969/j.issn.1009-9964.2003.02.005
8 ZHANG X M , ZHANG Y J , MAO X N , et al. TiC particles for Ti matrix composites by SHS method[J]. Titanium Industry Progress, 2003, (2): 18- 21.
doi: 10.3969/j.issn.1009-9964.2003.02.005
9 何波, 兰姣姣, 杨光, 等. 激光原位合成TiB-TiC颗粒增强钛基复合材料的组织与其耐磨性能[J]. 稀有金属材料与工程, 2017, 46 (12): 3805- 3810.
9 HE B , LAN J J , YANG G , et al. Microstructure and wear-resistant properties of the in situ TiB-TiC reinforced titanium matrix composites by laser deposition manufacturing[J]. Rare Metal Materials and Engineering, 2017, 46 (12): 3805- 3810.
10 ATTAR H , BONISCH M , CALIN M , et al. Selective laser melting of in situ titanium-titanium boride composites: processing, microstructure and mechanical properties[J]. Acta Materialia, 2014, 76, 13- 22.
doi: 10.1016/j.actamat.2014.05.022
11 SING S L , HUANG S , GOH G D , et al. Emerging metallic systems for additive manufacturing: in-situ alloying and multi-metal processing in laser powder bed fusion[J]. Progress in Materials Science, 2021, 119, 100795.
doi: 10.1016/j.pmatsci.2021.100795
12 YANG Y F , LUO S D , QIAO M . The effect of lanthanum boride on the sintering, sintered microstructure and mechanical properties of titanium and titanium alloys[J]. Materials Science and Engineering: A, 2014, 618, 447- 455.
doi: 10.1016/j.msea.2014.08.080
13 LIU M , LIU S C , CHEN W , et al. Effect of trace lanthanum hexaboride on the phase, grain structure, and texture of electron beam melted Ti-6Al-4V[J]. Additive Manufacturing, 2019, 30, 100873.
doi: 10.1016/j.addma.2019.100873
14 BARRIOBERO-VILA P , GUSSONE J , STARK A , et al. Peritectic titanium alloys for 3D printing[J]. Nature Communication, 2018, 9, 3426.
doi: 10.1038/s41467-018-05819-9
15 BERMINGHAM M J , MCDONALD S D , DARGUSCH M S . Effect of trace lanthanum hexaboride and boron additions on microstructure, tensile properties and anisotropy of Ti-6Al-4V produced by additive manufacturing[J]. Materials Science and Engineering: A, 2018, 719, 1- 11.
doi: 10.1016/j.msea.2018.02.012
16 BERMINGHAM M J , KENT D , ZHAN H , et al. Controlling the microstructure and properties of wire arc additivemanufactured Ti-6Al-4V with trace boron additions[J]. Acta Materialia, 2015, 91, 289- 303.
doi: 10.1016/j.actamat.2015.03.035
17 MOHAMMADHOSSEINI A , MASOOD S H , FRASER D , et al. Dynamic compressive behavior of Ti-6Al-4V alloy processed by electron beam melting under high strain rate loading[J]. Advanced Manufacturing, 2015, 3, 232- 243.
doi: 10.1007/s40436-015-0119-0
18 LIU Y , XU H Z , ZHU L , et al. Investigation into the microstructure and dynamic compressive properties of selective laser melted Ti-6Al-4V alloy with solution and aging treatments[J]. Materials Science and Engineering: A, 2021, 805, 140561.
doi: 10.1016/j.msea.2020.140561
19 ALAGHMANDFARD R , CHALASANI D , HADADZADEH A , et al. Dynamic compressive response of electron beam melted Ti-6Al-4V under elevated strain rates: microstructure and constitutive models[J]. Additive Manufacturing, 2020, 35, 101347.
doi: 10.1016/j.addma.2020.101347
20 ALAGHMANDFARD R , CHALASANI D , ODESHI A G , et al. Dynamic mechanical properties and failure characteristics of electron beam melted Ti-6Al-4V under high strain rate impact loadings[J]. Materials Science and Engineering: A, 2020, 793, 139794.
doi: 10.1016/j.msea.2020.139794
21 HAN Q Q , GU Y C , HUANG J , et al. Selective laser melting of Hastelloy X nanocomposite: effects of TiC reinforcement on crack elimination and strength improvement[J]. Composites: Part B, 2020, 202, 108442.
doi: 10.1016/j.compositesb.2020.108442
22 ZHUANG J , GU D D , XI L X , et al. Preparation method and underlying mechanism of MWCNTs/Ti-6Al-4V nanocomposite powder for selective laser melting additive manufacturing[J]. Powder Technology, 2020, 368, 59- 69.
doi: 10.1016/j.powtec.2020.04.041
23 TAN Q Y , ZHANG J Q , MO N . A novel method to 3D-print fine-grained AlSi10Mg alloy with isotropic properties via inoculation with LaB6 nanoparticles[J]. Additive Manufacturing, 2020, 32, 101034.
doi: 10.1016/j.addma.2019.101034
24 ROY S , SUWAS S , TAMIRISAKANDALA S , et al. Development of solidification microstructure in boron-modified alloy Ti-6Al-4V-0.1B[J]. Acta Materiali, 2011, 59 (14): 5494- 5510.
doi: 10.1016/j.actamat.2011.05.023
25 蒋佳斌, 谢德巧, 周凯, 等. 激光选区熔化成形LaB6增强316L不锈钢的组织及力学性能[J]. 南京航空航天大学学报, 2021, 53 (1): 85- 92.
25 JIANG J B , XIE D Q , ZHOU K , et al. Microstructure and mechanical properties of 316L stainless steel reinforced by lanthanum hexaboratethrough selective laser melting[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2021, 53 (1): 85- 92.
26 XI L X , GUO S , GUD D , et al. Microstructure development, tribological property and underlyingmechanism of laser additive manufactured submicro-TiB2 reinforced Al-based composites[J]. Journal of Alloys and Compounds, 2020, 819, 152980.
doi: 10.1016/j.jallcom.2019.152980
27 LI H L , YANG Z H , CAI D L , et al. Microstructure evolution and mechanical properties of selective laser melted bulk-form titanium matrix nanocomposites with minor B4C additions[J]. Materials & Design, 2020, 185, 108245.
28 HUANG X Y , GAO Y M , WANG Z P , et al. Microstructure, mechanical properties and strengthening mechanisms of in-situ prepared (Ti5Si3+TiC0.67)/TC4 composites[J]. Journal of Alloys and Compounds, 2019, 792, 907- 917.
doi: 10.1016/j.jallcom.2019.04.056
29 饶项炜, 顾冬冬, 席丽霞. 选区激光熔化成形碳纳米管增强铝基复合材料成形机制及力学性能研究[J]. 机械工程学报, 2019, 55 (15): 1- 9.
29 RAO X W , GU D D , XI L X . Forming mechanism and mechanical properties of carbon nanotube reinforced aluminum matrix composites by selective laser melting[J]. Journal of Mechanical Engineering, 2019, 55 (15): 1- 9.
30 ZHANG C J , KONG F T , XIAO S L , et al. Evolution of microstructure and tensile properties of in situ titanium matrix composites with volume fraction of (TiB+TiC) reinforcements[J]. Materials Science and Engineering: A, 2012, 548, 152- 160.
doi: 10.1016/j.msea.2012.04.004
31 ZHANG T L , HUANG Z H , YANG T , et al. In situ design of advanced titanium alloy with concentration modulations by additive manufacturing[J]. Science, 2021, 374 (6566): 478- 482.
doi: 10.1126/science.abj3770
32 BISWAS N , DING J L , BALLA V K , et al. Deformation and fracture behavior of laser processed dense and porous Ti-6Al-4V alloy under static and dynamic loading[J]. Materials Science and Engineering: A, 2012, 549, 213- 221.
doi: 10.1016/j.msea.2012.04.036
33 傅华, 李涛, 吴廷烈, 等. 冲击作用下PBX炸药预制孔洞塌陷过程的实验探索[J]. 高压物理学报, 2015, 29 (4): 268- 272.
33 FU H , LI T , WU T L , et al. Experiment of cavity collapse process in plastic-bonded explosives under shock loading[J]. Chinese Journal of High Pressure Physics, 2015, 29 (4): 268- 272.
[1] 梁恩泉, 代宇, 白静, 周亚雄, 彭东剑, 王清正, 康楠, 林鑫. 退火态激光选区熔化成形AlSi10Mg合金组织与力学性能[J]. 材料工程, 2022, 50(5): 156-165.
[2] 唐鹏钧, 房立家, 王兴元, 李沛勇, 张学军. 人工时效对激光选区熔化AlMg4.5Sc0.55Mn0.5Zr0.2合金显微组织和力学性能的影响[J]. 材料工程, 2022, 50(2): 84-93.
[3] 詹强坤, 刘允中, 刘小辉, 周志光. 激光选区熔化成形含锆7×××系铝合金的显微组织与力学性能[J]. 材料工程, 2021, 49(6): 85-93.
[4] 杨鑫, 王犇, 谷文萍, 张兆洋, 刘世锋, 武涛. 金属激光3D打印过程数值模拟应用及研究现状[J]. 材料工程, 2021, 49(4): 52-62.
[5] 陈畅, 张如意, 史思涛, 马奋天. 真空退火对原位Al2O3/Fe-Cr-Ni增强复合材料性能的影响[J]. 材料工程, 2021, 49(1): 89-94.
[6] 李虎, 范王腾飞, 王敏涓, 黄旭, 黄浩. SiCf/TC17复合材料界面剪切强度测试与有限元分析[J]. 材料工程, 2021, 49(1): 160-167.
[7] 石磊, 雷力明, 王威, 付鑫, 张广平. 热等静压/热处理工艺对激光选区熔化成形GH4169合金微观组织与拉伸性能的影响[J]. 材料工程, 2020, 48(6): 148-155.
[8] 唐鹏钧, 房立家, 杨斌, 陈冰清, 李沛勇, 张学军. 激光选区熔化AlSi7MgTi合金显微组织与性能[J]. 材料工程, 2020, 48(11): 116-123.
[9] 宋立奇, 史运嘉, 蔡彬, 叶大萌, 李梦佳, 连娟. 激光选区熔化成形制备高强Al-Mg-Sc合金的组织与性能[J]. 材料工程, 2020, 48(11): 124-130.
[10] 徐昀华, 张春华, 张松, 乔瑞庆, 张静波. 激光增材制造24CrNiMo合金钢显微组织特征[J]. 材料工程, 2020, 48(11): 147-154.
[11] 张佳琪, 王敏杰, 刘建业, 牛留辉, 王金海. 扫描策略对激光选区熔化成型18Ni300马氏体时效钢打印质量和性能的影响[J]. 材料工程, 2020, 48(10): 105-113.
[12] 李雅莉, 雷力明, 侯慧鹏, 何艳丽. 热工艺对激光选区熔化Hastelloy X合金组织及拉伸性能的影响[J]. 材料工程, 2019, 47(5): 100-106.
[13] 史思涛, 陈畅, 郭政, 李国新, 伍勇华, 苏明周, 王会萌. 原料配比对多孔MgO/Fe-Cr-Ni复合材料性能的影响[J]. 材料工程, 2019, 47(4): 167-173.
[14] 章媛洁, 张金良, 张磊, 李宁, 宋波, 史玉升. 3D打印非晶合金材料工艺及性能的研究进展[J]. 材料工程, 2018, 46(7): 12-18.
[15] 张亮, 吴文恒, 卢林, 倪晓晴, 何贝贝, 杨启云, 祝国梁, 顾芸仰. 激光选区熔化热输入参数对Inconel 718合金温度场的影响[J]. 材料工程, 2018, 46(7): 29-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn