Influence of pre-transition elements on structures and properties in Fe-Ni based alloy design
Xiaolong CHEN1,2, Wensheng LI1, Ming LOU2, Kai XU2, Leilei CHEN2, Keke CHANG2,*()
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China 2 Key Laboratory of Marine New Materials and Applied Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
Fe-Ni based alloys have been widely used in nuclear and aerospace industries due to their excellent high temperature strength, preferable combination of hardness and toughness, outstanding corrosion and oxidation resistance. However, with the accelerated development of modern industry, the service environment becomes more severe, thus the traditional Fe-Ni based alloys may hardly meet the requirements of future engineering applications. In this paper, the effects of the addition of pre-transition group elements on the phase structure and properties of Fe-Ni alloys were reviewed. Based on the basic theory of thermodynamics of phase diagram and phase transition, the focus is on the effects of addition of pre-transition group elements (RE, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W, etc.) on the phase structure of the alloy; the relationship between the composition-structure-service properties of Fe-Ni-based alloys were further discussed; and it was pointed out that the current research work on element modified Fe-Ni based alloys tends to focus on the synergistic effect of multiple alloys on Fe-Ni based alloys, and lacks the research on adding a single element and the corresponding thermal and kinetic data support. On this basis, the mechanism of action of different elements was explored; the corresponding thermal and kinetic databases were established to optimize the simulation and calculation solutions of alloys in the oxidation process.
陈小龙, 李文生, 娄明, 徐凯, 陈雷雷, 常可可. Fe-Ni基合金设计中前过渡族元素对结构与性能的影响[J]. 材料工程, 2022, 50(9): 32-42.
Xiaolong CHEN, Wensheng LI, Ming LOU, Kai XU, Leilei CHEN, Keke CHANG. Influence of pre-transition elements on structures and properties in Fe-Ni based alloy design. Journal of Materials Engineering, 2022, 50(9): 32-42.
LUO L , XIAO C B , CHEN J Y , et al. Research and application progress of casting superalloy for turbine blades of industrial gas turbine[J]. Journal of Materials Engineering, 2019, 47 (6): 34- 41.
ZHANG J , LOU L H . Basic research on applications in the deve-lopment of cast high temperature alloys[J]. Acta Metallurgica Sinica, 2018, 54 (11): 1637- 1652.
doi: 10.11900/0412.1961.2018.00371
LI Z Q , SHI X F , WANG Z K , et al. The current situation and prospect of aviation high temperature alloy material cutting research[J]. Manufacturing Technology and Machine Tools, 2018, (12): 55- 60.
6
佚名. 高温合金的分类[J]. 热处理, 2018, 33 (5): 26.
6
YI M . Classification of high temperature alloys[J]. Heat Treatment, 2018, 33 (5): 26.
GAO Y B , DING Y T , MENG B , et al. Research progress in evolution of precipitated phases in Inconel 625 superalloy[J]. Journal of Materials Engineering, 2020, 48 (5): 13- 22.
doi: 10.3969/j.issn.1673-1433.2020.05.004
SU Y J , FU H D , BAI Y , et al. Advances in the research of material genetic engineering in China[J]. Acta Metallurgica Sinica, 2020, 56 (10): 1313- 1323.
doi: 10.11900/0412.1961.2020.00199
CHANG K K , LOU M , XU K , et al. Harsh environmental ser-vice coating phase map, phase change and material development practices[J]. Materials China, 2021, 40 (6): 401- 416.
11
LOU M , XU K , CHEN L , et al. Development of robust surfaces for harsh service environments from the perspective of phase formation and transformation[J]. Mater Inf, 2021, 1, 5.
12
De KEYZER J , CACCIAMANI G , DUPIN N , et al. Thermodynamic modeling and optimization of the Fe-Ni-Ti system[J]. Calphad, 2009, 33, 109- 123.
doi: 10.1016/j.calphad.2008.10.003
13
LV D , GUO C , LI C , et al. Thermodynamic description of Fe-Y and Fe-Ni-Y systems[J]. Physics Procedia, 2013, 50, 383- 387.
doi: 10.1016/j.phpro.2013.11.059
14
MEZBAHUL-ISLAM M , MEDRAJ M . A critical thermodyna-mic assessment of the Mg-Ni, Ni-Y binary and Mg-Ni-Y ternary systems[J]. Calphad, 2009, 33, 478- 486.
doi: 10.1016/j.calphad.2009.01.001
15
DUARTE L I , KLOTZ U E , LEINENBACH C , et al. Experimental study of the Fe-Ni-Ti system[J]. Intermetallics, 2010, 18 (3): 374- 384.
doi: 10.1016/j.intermet.2009.08.008
16
YEN Y W , SU J W , HUANG D P . Phase equilibria of the Fe-Cr-Ni ternary systems and interfacial reactions in Fe-Cr alloys with Ni substrate[J]. Journal of Alloys and Compounds, 2008, 457 (1): 270- 278.
17
ZOU N , LU H J , LIU L L , et al. Experimental investigation of phase equilibria in the Fe-Hf-Zr system at 1173 K and 1373 K[J]. Calphad, 2021, 72, 102240.
doi: 10.1016/j.calphad.2020.102240
18
CACCIAMANI G , RIANI P , VALENZA F . Equilibrium between MB2 (M=Ti, Zr, Hf) UHTC and Ni: a thermodynamic database for the B-Hf-Ni-Ti-Zr system[J]. Calphad, 2011, 35, 601- 619.
doi: 10.1016/j.calphad.2011.10.003
19
ZHAO C C , YANG S Y , LU Y , et al. Experimental investigation and thermodynamic calculation of the phase equilibria in the Fe-Ni-V system[J]. Calphad, 2014, 46, 80- 86.
doi: 10.1016/j.calphad.2014.02.004
20
YANG B , GUO C , LI C , et al. Experimental investigation and ther- modynamic modelling of the Fe-Ni-Ta system[J]. Journal of Phase Equilibria and Diffusion, 2020, 41 (4): 500- 521.
doi: 10.1007/s11669-020-00807-3
21
MATHON M , CONNETABLE D , SUNDMAN B , et al. Calphad-type assessment of the Fe-Nb-Ni ternary system[J]. Calphad, 2009, 33, 136- 161.
doi: 10.1016/j.calphad.2008.10.005
22
GOZLAN E , BAMBERGER M , DIRNFELD S F , et al. Topolo-gically close-packed precipitations and phase diagrams of Ni-Mo-Cr and Ni-Mo-Fe and of Ni-Mo-Fe with constant additions of chromium[J]. Materials Science and Engineering: A, 1991, 141 (1): 85- 95.
doi: 10.1016/0921-5093(91)90712-V
23
GUILLERMET A , ÖSTLUND F . Experimental and theoretical study of the phase equilibria in the Fe-Ni-W system[J]. Meta-llurgical and Materials Transactions A, 1986, 17 (10): 1809- 1823.
doi: 10.1007/BF02817278
24
JUNG S , JO Y H , JEON C , et al. Effects of Mn and Mo addition on high-temperature tensile properties in high-Ni-containing austenitic cast steels used for turbo-charger application[J]. Mate-rials Science and Engineering: A, 2017, 682, 147- 155.
doi: 10.1016/j.msea.2016.11.006
25
OHKUBO N , MIYAKUSU K , UEMATSU Y , et al. Effect of alloying elements on the mechanical properties of the stable austenitic stainless steel[J]. ISIJ Int, 1994, 34 (9): 764- 772.
doi: 10.2355/isijinternational.34.764
26
JUNG S . Effects of tungsten and molybdenum on high-temperature tensile properties of five heatresistant austenitic stainless steels[J]. Materials Science and Engineering: A, 2016, 656, 190- 199.
doi: 10.1016/j.msea.2016.01.022
27
LI D L . Discussion of "effects of Cr reduction on high-temperature strength of high-Ni austenitic cast steels used for high-performance turbo-chargers"[J]. Metallurgical and Materials Transactions A, 2019, 50, 1095- 1097.
doi: 10.1007/s11661-018-5029-x
28
LEE J L . Evaluation of the nucleation potential of intragranular acicular ferrite in steel weldments[J]. Acta Metallurgica et Materialia, 1994, 42 (10): 3291- 3298.
doi: 10.1016/0956-7151(94)90461-8
29
WANG X L , HAO K D , ZHOU Y , et al. Effect of rare-earth on sulfides morphology and abrasive resistance of high sulfur steel[J]. Materials for Mechanical Engineering, 2012, 36 (5): 33- 37.
30
NUNES F C , ALMEIDA L , DILLE J , et al. Microstructural changes caused by yttrium addition to NbTi-modified centrifuga-lly cast HP-type stainless steels[J]. Materials Characterization, 2007, 58 (2): 132- 142.
doi: 10.1016/j.matchar.2006.04.007
31
ZHOU P J , YU J J , SUN X F , et al. Influence of Y on stress rupture property of a Ni-based superalloy[J]. Materials Science and Engineering: A, 2012, 551, 236- 240.
doi: 10.1016/j.msea.2012.04.117
32
XU K D , REN Z M , LI C J . Progress in application of rare me-tals in superalloys[J]. Rare Metals, 2014, (2): 111- 126.
33
GUIMARAES A , SILVEIRA R , ALMEIDA L , et al. Influence of yttrium addition on the microstructural evolution and mecha-nical properties of superalloy 718[J]. Materials Science and Engineering: A, 2020, 776, 139023.
doi: 10.1016/j.msea.2020.139023
34
MENDELEV M I , SROLOVITZ D J . Impurity effects on grain boundary migration[J]. Modelling & Simulation in Materials Science & Engineering, 2002, 10 (6): 79.
35
WANG M . In situ observation of nanoparticle formation in nickel-based mechanical alloyed powders[J]. Journal of Materials Science, 2018, 53 (23): 16110- 16121.
doi: 10.1007/s10853-018-2761-y
36
OH Y , HAN C H , WANG M . Effect of rare earth oxide addition on microstructure and mechanical properties of Ni-based alloy[J]. Journal of Alloys and Compounds, 2021, 853, 156980.
doi: 10.1016/j.jallcom.2020.156980
37
ZHANG L , UKAI S , HOSHINO T , et al. Y2O3 evolution and dispersion refinement in Co-base ODS alloys[J]. Acta Materialia, 2009, 57 (12): 3671- 3682.
doi: 10.1016/j.actamat.2009.04.033
LONG H B , MAO S C , LIU Y N , et al. Microstructural and compositional design of Ni-based single crystalline superalloys-a review[J]. Journal of Alloys & Compounds, 2018, 743, 203- 220.
40
JENA A K , CHATURVEDI M C . The role of alloying elements in the design of nickel-base superalloys[J]. Journal of Materials Science, 1984, 19 (10): 3121- 3139.
doi: 10.1007/BF00549796
41
YOO J , CHOI W M , LEE B J , et al. Carbide formation and matrix strengthening by Nb addition in austenitic stainless cast steels used for turbo-charger-housing materials[J]. Metals and Materials International, 2019, 26 (10): 1506- 1514.
HUANG S , HE Y W , XU G H , et al. Effects of V element on the structure and properties of Fe-Ni-based deformed superalloy GH4061[J]. Chinese Journal of Materials Research, 2019, 33 (6): 419- 426.
43
SUBRAMANIAN G O , JANG C , JI H S , et al. Effect of Ti content on the microstructure and high-temperature creep property of cast Fe-Ni-based alloys with high-Al content[J]. Materials, 2020, 14 (1): 82.
doi: 10.3390/ma14010082
44
BRADY M P , YAMAMOTO Y , SANTELLA M L , et al. Effects of minor alloy additions and oxidation temperature on protective alumina scale formation in creep-resistant austenitic stainless steels[J]. Scripta Materialia, 2007, 57 (12): 1117- 1120.
doi: 10.1016/j.scriptamat.2007.08.032
45
SANO K , OOONO N , UKAI S , et al. γ″-Ni3Nb precipitate in Fe-Ni base alloy[J]. Journal of Nuclear Materials, 2013, 442 (1): 389- 393.
MA F J , YANG J Y , ZHUANG J Y , et al. The effect of molybdenum and niobium on the structure and mechanical properties of a nickel-based deformed turbine disk alloy[J]. Journal of Central Iron and Steel Research Institute, 1984, (4): 26- 32.
47
KANENO Y , SOGA W , SUDA H , et al. Microstructural evolution and mechanical property in dual two-phase intermetallic alloys composed of geometrically close-packed Ni3X (X: Al and V) containing Nb[J]. Journal of Materials Science, 2008, 43 (2): 748- 758.
doi: 10.1007/s10853-007-2192-7
48
SOGA W , Y KANENO , YOSHIDA M , et al. Microstructure and mechanical property in dual two-phase intermetallic alloys composed of geometrically close-packed Ni3X (X: Al and V) containing Nb[J]. Materials Science and Engineering: A, 2008, 473, 180- 188.
doi: 10.1016/j.msea.2007.03.080
49
BI Z , DONG J , LEI Z , et al. Phenomenon and mechanism of high temperature low plasticity in high-Cr nickel-based superalloy-sciencedirect[J]. Journal of Materials Science & Technology, 2013, 29 (2): 187- 192.
50
LIU X G , WANG L , LOU L H , et al. Effect of Mo addition on microstructural characteristics in a Re-containing single crystal superalloy[J]. Journal of Materials Science & Technology, 2015, 31 (2): 143- 147.
51
YI R , LI S , PEI Y , et al. Interdendritic Mo homogenization and sub-solidus melting during solution treatment in the Mo-strengthening single crystal superalloys[J]. Journal of Alloys and Compounds, 2016, 662, 431- 435.
doi: 10.1016/j.jallcom.2015.12.053
52
TANAKA H , MURATA M , ABE F , et al. Microstructural evolution and change in hardness in type 304H stainless steel during long-term creep[J]. Materials Science and Engineering: A, 2001, 319, 788- 791.
53
ZUCATO I , MOREIRA M C , MACHADO I F , et al. Microstructural characterization and the effect of phase transformations on toughness of the UNS S31803 duplex stainless steel aged treated at 850 ℃[J]. Materials Research, 2002, 5 (3): 385- 389.
doi: 10.1590/S1516-14392002000300026
54
TAVARES S S M , MOURA V , DA COSTA V C , et al. Microstructural changes and corrosion resistance of AISI 310S steel exposed to 600-800 ℃[J]. Materials Characterization, 2009, 60 (6): 573- 578.
doi: 10.1016/j.matchar.2008.12.005
55
WANG W F , WU M J . Effect of silicon content and aging time on density, hardness, toughness and corrosion resistance of sintered 303LSC-Si stainless steels[J]. Materials Science and Engineering: A, 2006, 425, 167- 171.
doi: 10.1016/j.msea.2006.03.050
56
PADILHA A F , ESCRIBA D M , MATERNA-MORRIS E , et al. Precipitation in AISI 316L(N) during creep tests at 550 and 600 ℃ up to 10 years[J]. Journal of Nuclear Materials, 2007, 362 (1): 132- 138.
doi: 10.1016/j.jnucmat.2006.12.027
57
AMIRKHIZ B S , XU S . TEM examination of precipitation behaviour of M23C6 and sigma phases and dislocations in SS310S under creep deformation at 800 ℃[J]. Microscopy and Micro-analysis, 2015, 21 (Suppl 3): 585- 596.
58
WEN D H , WANG Q , JIANG B B , et al. Developing fuel cla-dding Fe-25Cr-22Ni stainless steels with high microstructural stabilities via Mo/Nb/Ti/Ta/W alloying[J]. Materials Science and Engineering: A, 2018, 719, 27- 42.
doi: 10.1016/j.msea.2018.02.020
59
WEN D H , LI Z , JIANG B B , et al. Effects of Nb/Ti/V/Ta on phase precipitation and oxidation resistance at 1073 K in alumina-forming austenitic stainless steels[J]. Materials Characterization, 2018, 144, 86- 98.
doi: 10.1016/j.matchar.2018.07.007
60
信鑫. 钨对超级奥氏体不锈钢性能的影响及其机理研究[D]. 昆明: 云南大学, 2017.
60
XIN X. Study on the effect of tungsten on the properties of super austenitic stainless steel and its mechanism[D]. Kunming: Yunnan University, 2017.
LU S Q , HUANG B Y , HE Y H , et al. Physical metallurgical properties of Laves phase alloys[J]. Materials Review, 2003, (1): 11- 13.
doi: 10.3321/j.issn:1005-023X.2003.01.003
62
SUN Z , EDMONDSON P D , YAMAMOTO Y . Effects of laves phase particles on recovery and recrystallization behaviors of Nb-containing FeCrAl alloys[J]. Acta Materialia, 2017, 144, 716- 727.
63
WEI W , GENG S J , CHEN G , et al. Growth mechanism of surface scales on Ni-Fe-Cr alloys at 960 ℃ in air[J]. Corrosion Science, 2020, 173, 108737.
doi: 10.1016/j.corsci.2020.108737
64
YAN J , GAO Y , LONG L , et al. Effect of yttrium on the cyclic oxidation behaviour of HP40 heat-resistant steel at 1373 K[J]. Corrosion Science, 2011, 53 (1): 329- 337.
doi: 10.1016/j.corsci.2010.09.039
LI B , YAN Y X , JIANG L P . Effect of cerium on the composition of iron-chromium alloy surface oxide film[J]. Journal of the Chinese Rare Earth Society, 1986, (4): 64- 69.
66
HOU P Y , STRINGER J . The influence of ion-implanted yttrium on the selective oxidation of chromium in Co-25wt.% Cr[J]. Oxidation of Metals, 1988, 29 (1/2): 45- 73.
YIN Y D , LU M Q , ZHANG W Z . Effect of yttrium on the oxidation properties of M38' alloy at 1000 ℃[J]. Journal of Chinese Society for Corrosion and Protection, 1984, 4 (1): 70- 74.
68
MOON D P . Role of reactive elements in alloy protection[J]. Materials Science and Technology, 1989, 5 (8): 754- 764.
doi: 10.1179/mst.1989.5.8.754
69
SMEGGIL J G , FUNKENBUSCH A W , BORNSTEIN N S . A relationship between indigenous impurity elements and protective oxide scale adherence characteristics[J]. Metallurgical Transactions A, 1986, 17 (6): 923- 932.
doi: 10.1007/BF02661258
70
DEARNALEY G . The role of segregated impurities in scale adhesion[J]. Corrosion Science, 1991, 32 (1): 113- 116.
doi: 10.1016/0010-938X(91)90067-Y
GAO H S , LI P . The effect of cerium on the texture of Fe-Cr alloy oxide film and the effect of oxidation resistance[J]. Science & Technology of Baotou Steel, 1985, (4): 84.
72
LIU T L , ZHENG K H , WANG J , et al. Effect of Ce on oxidation behaviour and microstructure evolution of a nickel-saving austenitic heat-resistant cast steel[J]. Corrosion Science, 2020, 166, 108423.
doi: 10.1016/j.corsci.2019.108423
HUANG R F , GUO J T , ZHANG Y , et al. Effect of Ti on the oxidation resistance of Fe-Cr-Ni alloys[J]. Journal of Chinese Society for Corrosion and Protection, 1988, 8 (3): 247- 252.