Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (9): 32-42    DOI: 10.11868/j.issn.1001-4381.2021.001061
  综述 本期目录 | 过刊浏览 | 高级检索 |
Fe-Ni基合金设计中前过渡族元素对结构与性能的影响
陈小龙1,2, 李文生1, 娄明2, 徐凯2, 陈雷雷2, 常可可2,*()
1 兰州理工大学 有色金属先进加工与再利用国家重点实验室, 兰州 730050
2 中国科学院宁波材料技术与工程研究所海洋新材料与应用技术重点实验室, 浙江 宁波 315201
Influence of pre-transition elements on structures and properties in Fe-Ni based alloy design
Xiaolong CHEN1,2, Wensheng LI1, Ming LOU2, Kai XU2, Leilei CHEN2, Keke CHANG2,*()
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2 Key Laboratory of Marine New Materials and Applied Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
全文: PDF(881 KB)   HTML ( 1 )  
输出: BibTeX | EndNote (RIS)      
摘要 

铁镍(Fe-Ni)基合金具有优异的高温强度、良好的强韧匹配以及耐腐蚀、抗氧化等特性,在核能、航空、航天领域应用广泛。然而,随着现代工业的飞速发展,材料的服役环境愈发苛刻,传统Fe-Ni基合金无法满足未来重大工程的应用需求。添加合金化元素是优化Fe-Ni基合金使役性能的重要手段,已成为当下的研究热点之一。本文综述了前过渡族元素添加对Fe-Ni合金相结构及性能的影响。基于相图、相变的热力学基础理论,重点讨论前过渡族元素(RE,Ti,V,Cr,Zr,Nb,Mo,Hf,Ta,W等)添加对合金物相结构的影响,论述Fe-Ni基合金成分-结构-服役性能的关系,指出当前元素改性Fe-Ni基合金的研究工作偏向于多元合金协同作用于Fe-Ni基合金,缺乏添加单一元素的研究与相应的热、动力学的数据支撑。提出在明确单一元素添加对Fe-Ni基合金结构及性能作用规律的基础上,探索不同元素的作用机理,建立相应的热、动力学数据库,优化合金在氧化过程中的模拟与计算的解决方法。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈小龙
李文生
娄明
徐凯
陈雷雷
常可可
关键词 前过渡族元素Fe-Ni基合金相图结构性能    
Abstract

Fe-Ni based alloys have been widely used in nuclear and aerospace industries due to their excellent high temperature strength, preferable combination of hardness and toughness, outstanding corrosion and oxidation resistance. However, with the accelerated development of modern industry, the service environment becomes more severe, thus the traditional Fe-Ni based alloys may hardly meet the requirements of future engineering applications. In this paper, the effects of the addition of pre-transition group elements on the phase structure and properties of Fe-Ni alloys were reviewed. Based on the basic theory of thermodynamics of phase diagram and phase transition, the focus is on the effects of addition of pre-transition group elements (RE, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W, etc.) on the phase structure of the alloy; the relationship between the composition-structure-service properties of Fe-Ni-based alloys were further discussed; and it was pointed out that the current research work on element modified Fe-Ni based alloys tends to focus on the synergistic effect of multiple alloys on Fe-Ni based alloys, and lacks the research on adding a single element and the corresponding thermal and kinetic data support. On this basis, the mechanism of action of different elements was explored; the corresponding thermal and kinetic databases were established to optimize the simulation and calculation solutions of alloys in the oxidation process.

Key wordspre-transition element    Fe-Ni based alloy    phase diagram    structure    performance
收稿日期: 2021-11-02      出版日期: 2022-09-20
中图分类号:  TG142.1+3  
基金资助:国家自然科学基金资助项目(52101026)
通讯作者: 常可可     E-mail: changkeke@nimte.ac.cn
作者简介: 常可可(1986—),男,研究员,博士,研究方向为先进功能防护材料的相图、相变与设计,联系地址:浙江省宁波市镇海区庄市大道中国科学院宁波材料技术与工程研究所(315201),E-mail: changkeke@nimte.ac.cn
引用本文:   
陈小龙, 李文生, 娄明, 徐凯, 陈雷雷, 常可可. Fe-Ni基合金设计中前过渡族元素对结构与性能的影响[J]. 材料工程, 2022, 50(9): 32-42.
Xiaolong CHEN, Wensheng LI, Ming LOU, Kai XU, Leilei CHEN, Keke CHANG. Influence of pre-transition elements on structures and properties in Fe-Ni based alloy design. Journal of Materials Engineering, 2022, 50(9): 32-42.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.001061      或      http://jme.biam.ac.cn/CN/Y2022/V50/I9/32
Fig.1  Fe-Ni二元(a)[12],Fe-Y二元(b)[13],Ni-Y二元(c)[14],Fe-Ni-Ti三元(d)[15]和Fe-Ni-Cr三元(e)[16]相图
Fig.2  不同Mo,Cr含量对硬度的影响[25-26]
Phase type Constituent Phase Crystal structure Formula
TCP Ti γ FCC(ordered L12) Ni3Al(Ti)
Nb γ BCT(ordered D022) Ni3Nb
Ti η HCP(ordered D024) Ni3Ti
Nb δ Orthorhombic Ni3Nb
GCP Cr, Mo σ Tetragonal FeCr, FeCrMo
Nb, Ti Laves Hexagonal Fe2Nb, Fe2Ti
Mo, W μ Rhombohedral (Fe, Co)7(Mo, W)6
Carbide Ti, Ta, Hf MC Cubic TiC
Mo, W M6C Cubic Mo6C
Cr, Mo, W M23C6 Cubic Cr23C6
Cr M7C3 Hexagonal Cr7C3
Table 1  添加微量元素的Fe-Ni基合金中常见的TCP相、GCP相和碳化物相[38-39]
Fig.3  基于平衡相图数据库添加微量元素对Fe-Ni基合金析出行为的影响[58]
(a)未添加(310S基体);(b)添加Mo;(c)添加MoNbTi;(d)添加MoNbW
Fig.4  600~900 ℃退火温度下1Nb的硬度(a),700 ℃退火条件下0.7Nb,1Nb,2Nb,2Mo的硬度(b),1Nb的工程应力-应变曲线(c)[62]
1 罗亮, 肖程波, 陈晶阳, 等. 工业燃气轮机涡轮叶片用铸造高温合金研究及应用进展[J]. 材料工程, 2019, 47 (6): 34- 41.
1 LUO L , XIAO C B , CHEN J Y , et al. Research and application progress of casting superalloy for turbine blades of industrial gas turbine[J]. Journal of Materials Engineering, 2019, 47 (6): 34- 41.
2 梁爽, 刘智鑫, 李秋鹤. 镍基高温合金的发展综述[J]. 山东工业技术, 2016, (4): 34.
2 LIANG S , LIU Z X , LI Q H . Summary of the development of nickel-based high temperature alloys[J]. Shandong Industrial Technology, 2016, (4): 34.
3 田建军, 李振瑞, 牛永吉, 等. 高温合金应用及市场调研[J]. 金属材料研究, 2018, 44 (1): 13- 28.
3 TIAN J J , LI Z R , NIU Y J , et al. High temperature alloy applications and market research[J]. Metal Materials Research, 2018, 44 (1): 13- 28.
4 张健, 楼琅洪. 铸造高温合金研发中的应用基础研究[J]. 金属学报, 2018, 54 (11): 1637- 1652.
doi: 10.11900/0412.1961.2018.00371
4 ZHANG J , LOU L H . Basic research on applications in the deve-lopment of cast high temperature alloys[J]. Acta Metallurgica Sinica, 2018, 54 (11): 1637- 1652.
doi: 10.11900/0412.1961.2018.00371
5 李忠群, 石晓芳, 王志康, 等. 航空高温合金材料切削加工研究现状与展望[J]. 制造技术与机床, 2018, (12): 55- 60.
5 LI Z Q , SHI X F , WANG Z K , et al. The current situation and prospect of aviation high temperature alloy material cutting research[J]. Manufacturing Technology and Machine Tools, 2018, (12): 55- 60.
6 佚名. 高温合金的分类[J]. 热处理, 2018, 33 (5): 26.
6 YI M . Classification of high temperature alloys[J]. Heat Treatment, 2018, 33 (5): 26.
7 高钰璧, 丁雨田, 孟斌, 等. Inconel 625合金中析出相演变研究进展[J]. 材料工程, 2020, 48 (5): 13- 22.
doi: 10.3969/j.issn.1673-1433.2020.05.004
7 GAO Y B , DING Y T , MENG B , et al. Research progress in evolution of precipitated phases in Inconel 625 superalloy[J]. Journal of Materials Engineering, 2020, 48 (5): 13- 22.
doi: 10.3969/j.issn.1673-1433.2020.05.004
8 李超, 刘佳, 于昂, 等. 铸造高温合金真空感应熔炼过程的研究[J]. 真空, 2016, (2): 37- 41.
8 LI C , LIU J , YU A , et al. Research on vacuum induction melting process of casting superalloy[J]. Vacuum, 2016, (2): 37- 41.
9 宿彦京, 付华栋, 白洋, 等. 中国材料基因工程研究进展[J]. 金属学报, 2020, 56 (10): 1313- 1323.
doi: 10.11900/0412.1961.2020.00199
9 SU Y J , FU H D , BAI Y , et al. Advances in the research of material genetic engineering in China[J]. Acta Metallurgica Sinica, 2020, 56 (10): 1313- 1323.
doi: 10.11900/0412.1961.2020.00199
10 常可可, 娄明, 徐凯, 等. 苛刻环境服役涂层相图、相变与材料研发实践[J]. 中国材料进展, 2021, 40 (6): 401- 416.
10 CHANG K K , LOU M , XU K , et al. Harsh environmental ser-vice coating phase map, phase change and material development practices[J]. Materials China, 2021, 40 (6): 401- 416.
11 LOU M , XU K , CHEN L , et al. Development of robust surfaces for harsh service environments from the perspective of phase formation and transformation[J]. Mater Inf, 2021, 1, 5.
12 De KEYZER J , CACCIAMANI G , DUPIN N , et al. Thermodynamic modeling and optimization of the Fe-Ni-Ti system[J]. Calphad, 2009, 33, 109- 123.
doi: 10.1016/j.calphad.2008.10.003
13 LV D , GUO C , LI C , et al. Thermodynamic description of Fe-Y and Fe-Ni-Y systems[J]. Physics Procedia, 2013, 50, 383- 387.
doi: 10.1016/j.phpro.2013.11.059
14 MEZBAHUL-ISLAM M , MEDRAJ M . A critical thermodyna-mic assessment of the Mg-Ni, Ni-Y binary and Mg-Ni-Y ternary systems[J]. Calphad, 2009, 33, 478- 486.
doi: 10.1016/j.calphad.2009.01.001
15 DUARTE L I , KLOTZ U E , LEINENBACH C , et al. Experimental study of the Fe-Ni-Ti system[J]. Intermetallics, 2010, 18 (3): 374- 384.
doi: 10.1016/j.intermet.2009.08.008
16 YEN Y W , SU J W , HUANG D P . Phase equilibria of the Fe-Cr-Ni ternary systems and interfacial reactions in Fe-Cr alloys with Ni substrate[J]. Journal of Alloys and Compounds, 2008, 457 (1): 270- 278.
17 ZOU N , LU H J , LIU L L , et al. Experimental investigation of phase equilibria in the Fe-Hf-Zr system at 1173 K and 1373 K[J]. Calphad, 2021, 72, 102240.
doi: 10.1016/j.calphad.2020.102240
18 CACCIAMANI G , RIANI P , VALENZA F . Equilibrium between MB2 (M=Ti, Zr, Hf) UHTC and Ni: a thermodynamic database for the B-Hf-Ni-Ti-Zr system[J]. Calphad, 2011, 35, 601- 619.
doi: 10.1016/j.calphad.2011.10.003
19 ZHAO C C , YANG S Y , LU Y , et al. Experimental investigation and thermodynamic calculation of the phase equilibria in the Fe-Ni-V system[J]. Calphad, 2014, 46, 80- 86.
doi: 10.1016/j.calphad.2014.02.004
20 YANG B , GUO C , LI C , et al. Experimental investigation and ther- modynamic modelling of the Fe-Ni-Ta system[J]. Journal of Phase Equilibria and Diffusion, 2020, 41 (4): 500- 521.
doi: 10.1007/s11669-020-00807-3
21 MATHON M , CONNETABLE D , SUNDMAN B , et al. Calphad-type assessment of the Fe-Nb-Ni ternary system[J]. Calphad, 2009, 33, 136- 161.
doi: 10.1016/j.calphad.2008.10.005
22 GOZLAN E , BAMBERGER M , DIRNFELD S F , et al. Topolo-gically close-packed precipitations and phase diagrams of Ni-Mo-Cr and Ni-Mo-Fe and of Ni-Mo-Fe with constant additions of chromium[J]. Materials Science and Engineering: A, 1991, 141 (1): 85- 95.
doi: 10.1016/0921-5093(91)90712-V
23 GUILLERMET A , ÖSTLUND F . Experimental and theoretical study of the phase equilibria in the Fe-Ni-W system[J]. Meta-llurgical and Materials Transactions A, 1986, 17 (10): 1809- 1823.
doi: 10.1007/BF02817278
24 JUNG S , JO Y H , JEON C , et al. Effects of Mn and Mo addition on high-temperature tensile properties in high-Ni-containing austenitic cast steels used for turbo-charger application[J]. Mate-rials Science and Engineering: A, 2017, 682, 147- 155.
doi: 10.1016/j.msea.2016.11.006
25 OHKUBO N , MIYAKUSU K , UEMATSU Y , et al. Effect of alloying elements on the mechanical properties of the stable austenitic stainless steel[J]. ISIJ Int, 1994, 34 (9): 764- 772.
doi: 10.2355/isijinternational.34.764
26 JUNG S . Effects of tungsten and molybdenum on high-temperature tensile properties of five heatresistant austenitic stainless steels[J]. Materials Science and Engineering: A, 2016, 656, 190- 199.
doi: 10.1016/j.msea.2016.01.022
27 LI D L . Discussion of "effects of Cr reduction on high-temperature strength of high-Ni austenitic cast steels used for high-performance turbo-chargers"[J]. Metallurgical and Materials Transactions A, 2019, 50, 1095- 1097.
doi: 10.1007/s11661-018-5029-x
28 LEE J L . Evaluation of the nucleation potential of intragranular acicular ferrite in steel weldments[J]. Acta Metallurgica et Materialia, 1994, 42 (10): 3291- 3298.
doi: 10.1016/0956-7151(94)90461-8
29 WANG X L , HAO K D , ZHOU Y , et al. Effect of rare-earth on sulfides morphology and abrasive resistance of high sulfur steel[J]. Materials for Mechanical Engineering, 2012, 36 (5): 33- 37.
30 NUNES F C , ALMEIDA L , DILLE J , et al. Microstructural changes caused by yttrium addition to NbTi-modified centrifuga-lly cast HP-type stainless steels[J]. Materials Characterization, 2007, 58 (2): 132- 142.
doi: 10.1016/j.matchar.2006.04.007
31 ZHOU P J , YU J J , SUN X F , et al. Influence of Y on stress rupture property of a Ni-based superalloy[J]. Materials Science and Engineering: A, 2012, 551, 236- 240.
doi: 10.1016/j.msea.2012.04.117
32 XU K D , REN Z M , LI C J . Progress in application of rare me-tals in superalloys[J]. Rare Metals, 2014, (2): 111- 126.
33 GUIMARAES A , SILVEIRA R , ALMEIDA L , et al. Influence of yttrium addition on the microstructural evolution and mecha-nical properties of superalloy 718[J]. Materials Science and Engineering: A, 2020, 776, 139023.
doi: 10.1016/j.msea.2020.139023
34 MENDELEV M I , SROLOVITZ D J . Impurity effects on grain boundary migration[J]. Modelling & Simulation in Materials Science & Engineering, 2002, 10 (6): 79.
35 WANG M . In situ observation of nanoparticle formation in nickel-based mechanical alloyed powders[J]. Journal of Materials Science, 2018, 53 (23): 16110- 16121.
doi: 10.1007/s10853-018-2761-y
36 OH Y , HAN C H , WANG M . Effect of rare earth oxide addition on microstructure and mechanical properties of Ni-based alloy[J]. Journal of Alloys and Compounds, 2021, 853, 156980.
doi: 10.1016/j.jallcom.2020.156980
37 ZHANG L , UKAI S , HOSHINO T , et al. Y2O3 evolution and dispersion refinement in Co-base ODS alloys[J]. Acta Materialia, 2009, 57 (12): 3671- 3682.
doi: 10.1016/j.actamat.2009.04.033
38 BELAN J . GCP and TCP phases presented in nickel-base superalloys[J]. Materials Today: Proceedings, 2016, 3 (4): 936- 941.
doi: 10.1016/j.matpr.2016.03.024
39 LONG H B , MAO S C , LIU Y N , et al. Microstructural and compositional design of Ni-based single crystalline superalloys-a review[J]. Journal of Alloys & Compounds, 2018, 743, 203- 220.
40 JENA A K , CHATURVEDI M C . The role of alloying elements in the design of nickel-base superalloys[J]. Journal of Materials Science, 1984, 19 (10): 3121- 3139.
doi: 10.1007/BF00549796
41 YOO J , CHOI W M , LEE B J , et al. Carbide formation and matrix strengthening by Nb addition in austenitic stainless cast steels used for turbo-charger-housing materials[J]. Metals and Materials International, 2019, 26 (10): 1506- 1514.
42 黄烁, 贺玉伟, 胥国华, 等. V元素对铁镍基变形高温合金GH4061组织和性能的影响[J]. 材料研究学报, 2019, 33 (6): 419- 426.
42 HUANG S , HE Y W , XU G H , et al. Effects of V element on the structure and properties of Fe-Ni-based deformed superalloy GH4061[J]. Chinese Journal of Materials Research, 2019, 33 (6): 419- 426.
43 SUBRAMANIAN G O , JANG C , JI H S , et al. Effect of Ti content on the microstructure and high-temperature creep property of cast Fe-Ni-based alloys with high-Al content[J]. Materials, 2020, 14 (1): 82.
doi: 10.3390/ma14010082
44 BRADY M P , YAMAMOTO Y , SANTELLA M L , et al. Effects of minor alloy additions and oxidation temperature on protective alumina scale formation in creep-resistant austenitic stainless steels[J]. Scripta Materialia, 2007, 57 (12): 1117- 1120.
doi: 10.1016/j.scriptamat.2007.08.032
45 SANO K , OOONO N , UKAI S , et al. γ″-Ni3Nb precipitate in Fe-Ni base alloy[J]. Journal of Nuclear Materials, 2013, 442 (1): 389- 393.
46 马福俊, 杨锦炎, 庄景云, 等. 钼、铌对一种镍基变形涡轮盘合金组织结构和力学性能的影响[J]. 钢铁研究总院学报, 1984, (4): 26- 32.
46 MA F J , YANG J Y , ZHUANG J Y , et al. The effect of molybdenum and niobium on the structure and mechanical properties of a nickel-based deformed turbine disk alloy[J]. Journal of Central Iron and Steel Research Institute, 1984, (4): 26- 32.
47 KANENO Y , SOGA W , SUDA H , et al. Microstructural evolution and mechanical property in dual two-phase intermetallic alloys composed of geometrically close-packed Ni3X (X: Al and V) containing Nb[J]. Journal of Materials Science, 2008, 43 (2): 748- 758.
doi: 10.1007/s10853-007-2192-7
48 SOGA W , Y KANENO , YOSHIDA M , et al. Microstructure and mechanical property in dual two-phase intermetallic alloys composed of geometrically close-packed Ni3X (X: Al and V) containing Nb[J]. Materials Science and Engineering: A, 2008, 473, 180- 188.
doi: 10.1016/j.msea.2007.03.080
49 BI Z , DONG J , LEI Z , et al. Phenomenon and mechanism of high temperature low plasticity in high-Cr nickel-based superalloy-sciencedirect[J]. Journal of Materials Science & Technology, 2013, 29 (2): 187- 192.
50 LIU X G , WANG L , LOU L H , et al. Effect of Mo addition on microstructural characteristics in a Re-containing single crystal superalloy[J]. Journal of Materials Science & Technology, 2015, 31 (2): 143- 147.
51 YI R , LI S , PEI Y , et al. Interdendritic Mo homogenization and sub-solidus melting during solution treatment in the Mo-strengthening single crystal superalloys[J]. Journal of Alloys and Compounds, 2016, 662, 431- 435.
doi: 10.1016/j.jallcom.2015.12.053
52 TANAKA H , MURATA M , ABE F , et al. Microstructural evolution and change in hardness in type 304H stainless steel during long-term creep[J]. Materials Science and Engineering: A, 2001, 319, 788- 791.
53 ZUCATO I , MOREIRA M C , MACHADO I F , et al. Microstructural characterization and the effect of phase transformations on toughness of the UNS S31803 duplex stainless steel aged treated at 850 ℃[J]. Materials Research, 2002, 5 (3): 385- 389.
doi: 10.1590/S1516-14392002000300026
54 TAVARES S S M , MOURA V , DA COSTA V C , et al. Microstructural changes and corrosion resistance of AISI 310S steel exposed to 600-800 ℃[J]. Materials Characterization, 2009, 60 (6): 573- 578.
doi: 10.1016/j.matchar.2008.12.005
55 WANG W F , WU M J . Effect of silicon content and aging time on density, hardness, toughness and corrosion resistance of sintered 303LSC-Si stainless steels[J]. Materials Science and Engineering: A, 2006, 425, 167- 171.
doi: 10.1016/j.msea.2006.03.050
56 PADILHA A F , ESCRIBA D M , MATERNA-MORRIS E , et al. Precipitation in AISI 316L(N) during creep tests at 550 and 600 ℃ up to 10 years[J]. Journal of Nuclear Materials, 2007, 362 (1): 132- 138.
doi: 10.1016/j.jnucmat.2006.12.027
57 AMIRKHIZ B S , XU S . TEM examination of precipitation behaviour of M23C6 and sigma phases and dislocations in SS310S under creep deformation at 800 ℃[J]. Microscopy and Micro-analysis, 2015, 21 (Suppl 3): 585- 596.
58 WEN D H , WANG Q , JIANG B B , et al. Developing fuel cla-dding Fe-25Cr-22Ni stainless steels with high microstructural stabilities via Mo/Nb/Ti/Ta/W alloying[J]. Materials Science and Engineering: A, 2018, 719, 27- 42.
doi: 10.1016/j.msea.2018.02.020
59 WEN D H , LI Z , JIANG B B , et al. Effects of Nb/Ti/V/Ta on phase precipitation and oxidation resistance at 1073 K in alumina-forming austenitic stainless steels[J]. Materials Characterization, 2018, 144, 86- 98.
doi: 10.1016/j.matchar.2018.07.007
60 信鑫. 钨对超级奥氏体不锈钢性能的影响及其机理研究[D]. 昆明: 云南大学, 2017.
60 XIN X. Study on the effect of tungsten on the properties of super austenitic stainless steel and its mechanism[D]. Kunming: Yunnan University, 2017.
61 鲁世强, 黄伯云, 贺跃辉, 等. Laves相合金的物理冶金特性[J]. 材料导报, 2003, (1): 11- 13.
doi: 10.3321/j.issn:1005-023X.2003.01.003
61 LU S Q , HUANG B Y , HE Y H , et al. Physical metallurgical properties of Laves phase alloys[J]. Materials Review, 2003, (1): 11- 13.
doi: 10.3321/j.issn:1005-023X.2003.01.003
62 SUN Z , EDMONDSON P D , YAMAMOTO Y . Effects of laves phase particles on recovery and recrystallization behaviors of Nb-containing FeCrAl alloys[J]. Acta Materialia, 2017, 144, 716- 727.
63 WEI W , GENG S J , CHEN G , et al. Growth mechanism of surface scales on Ni-Fe-Cr alloys at 960 ℃ in air[J]. Corrosion Science, 2020, 173, 108737.
doi: 10.1016/j.corsci.2020.108737
64 YAN J , GAO Y , LONG L , et al. Effect of yttrium on the cyclic oxidation behaviour of HP40 heat-resistant steel at 1373 K[J]. Corrosion Science, 2011, 53 (1): 329- 337.
doi: 10.1016/j.corsci.2010.09.039
65 李碚, 颜玉新, 江丽萍. 铈对铁-铬合金表面氧化膜成份的影响[J]. 中国稀土学报, 1986, (4): 64- 69.
65 LI B , YAN Y X , JIANG L P . Effect of cerium on the composition of iron-chromium alloy surface oxide film[J]. Journal of the Chinese Rare Earth Society, 1986, (4): 64- 69.
66 HOU P Y , STRINGER J . The influence of ion-implanted yttrium on the selective oxidation of chromium in Co-25wt.% Cr[J]. Oxidation of Metals, 1988, 29 (1/2): 45- 73.
67 银耀德, 吕曼其, 张万贞. 钇对M38'合金1000 ℃氧化性能的影响[J]. 中国腐蚀与防护学报, 1984, 4 (1): 70- 74.
67 YIN Y D , LU M Q , ZHANG W Z . Effect of yttrium on the oxidation properties of M38' alloy at 1000 ℃[J]. Journal of Chinese Society for Corrosion and Protection, 1984, 4 (1): 70- 74.
68 MOON D P . Role of reactive elements in alloy protection[J]. Materials Science and Technology, 1989, 5 (8): 754- 764.
doi: 10.1179/mst.1989.5.8.754
69 SMEGGIL J G , FUNKENBUSCH A W , BORNSTEIN N S . A relationship between indigenous impurity elements and protective oxide scale adherence characteristics[J]. Metallurgical Transactions A, 1986, 17 (6): 923- 932.
doi: 10.1007/BF02661258
70 DEARNALEY G . The role of segregated impurities in scale adhesion[J]. Corrosion Science, 1991, 32 (1): 113- 116.
doi: 10.1016/0010-938X(91)90067-Y
71 高怀荪, 李培. 铈对Fe-Cr合金氧化膜织构的作用及对抗氧化性能的影响[J]. 包钢科技, 1985, (4): 84.
71 GAO H S , LI P . The effect of cerium on the texture of Fe-Cr alloy oxide film and the effect of oxidation resistance[J]. Science & Technology of Baotou Steel, 1985, (4): 84.
72 LIU T L , ZHENG K H , WANG J , et al. Effect of Ce on oxidation behaviour and microstructure evolution of a nickel-saving austenitic heat-resistant cast steel[J]. Corrosion Science, 2020, 166, 108423.
doi: 10.1016/j.corsci.2019.108423
73 黄荣芳, 郭建亭, 张匀, 等. Ti对Fe-Cr-Ni系合金抗氧化性能的影响[J]. 中国腐蚀与防护学报, 1988, 8 (3): 247- 252.
73 HUANG R F , GUO J T , ZHANG Y , et al. Effect of Ti on the oxidation resistance of Fe-Cr-Ni alloys[J]. Journal of Chinese Society for Corrosion and Protection, 1988, 8 (3): 247- 252.
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 唐婧缘, 龙依婷, 黄旭, 蒲琳钰. 核-双壳BT@TiO2@PDA纳米粒子的制备及其复合薄膜的介电性能[J]. 材料工程, 2022, 50(9): 59-69.
[3] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[4] 米玉洁, 宋明明, 张存瑞, 张贵恩, 王月祥, 常志敏. 羰基铁室温硫化硅橡胶复合材料的吸波性能[J]. 材料工程, 2022, 50(9): 120-126.
[5] 孟倩, 李东阳, 杨江仁, 刘天增. 310S耐热钢的高温氧化行为[J]. 材料工程, 2022, 50(9): 137-149.
[6] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[7] 徐思瑜, 李德, 李佳璐, 申锋, 郑鹏. 锰氧化物的结构分析及其在能源与环境中的典型应用[J]. 材料工程, 2022, 50(8): 82-98.
[8] 周银, 乔畅, 邹家栋, 郭洪锍, 王树奇. 多层石墨烯对钛合金摩擦学性能的影响[J]. 材料工程, 2022, 50(8): 107-114.
[9] 焦晨, 梁绘昕, 叶昀, 张寒旭, 何志静, 杨友文, 沈理达, 侯锋. 光固化生物陶瓷功能化研究进展[J]. 材料工程, 2022, 50(7): 30-39.
[10] 王露, 陈雷雷, 徐凯, 娄明, 杜玉洁, 毛勇, 常可可. 前过渡族元素X对TiAlXN涂层结构与性能的作用[J]. 材料工程, 2022, 50(7): 69-79.
[11] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[12] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[13] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[14] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[15] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn