Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (9): 52-58    DOI: 10.11868/j.issn.1001-4381.2021.001081
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
碳载体预处理对燃料电池Co-N/C非铂催化剂氧还原性能的影响
孙小卉1,2, 刘淑红2, 卢璐2,*(), 史继诚2, 徐洪峰2,*()
1 大连交通大学 材料科学与工程学院, 辽宁 大连 116028
2 大连交通大学 辽宁省金属空气新能源电池重点实验室, 辽宁 大连 116028
Effect of carbon carrier pretreatment on oxygen reduction performance of Co-N/C non-platinum catalyst for fuel cell
Xiaohui SUN1,2, Shuhong LIU2, Lu LU2,*(), Jicheng SHI2, Hongfeng XU2,*()
1 School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, Liaoning, China
2 Liaoning Key Laboratory of Metal Air New Energy Battery, Dalian Jiaotong University, Dalian 116028, Liaoning, China
全文: PDF(919 KB)   HTML ( 1 )  
输出: BibTeX | EndNote (RIS)      
摘要 

钴(Co)基氧还原催化剂以价格低、储量高、易获得等优势成为代替铂基氧还原催化剂重要选择之一。本工作先对科琴黑进行硝酸酸化预处理,与四水合乙酸钴混合后在氨气气氛下800 ℃热解制备出Co-N/C氧还原催化剂。由红外光谱测试、联碱中和滴定与比表面积测定可知,经硝酸酸化预处理后,科琴黑表面含氧官能团数量增多,科琴黑孔径不变,中孔比例增加。XRD和TEM测试表明科琴黑和四水合乙酸钴经氨气热处理后,生成了分散均匀无团聚的Co5.47-N/C催化剂。电化学测试表明载体经预处理后,制备的Co-N/C催化剂的氧还原反应(ORR)的电催化性能更好,在碱性条件下电流密度达到了预处理前的4.2倍,在催化动力学中属于四电子转移。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙小卉
刘淑红
卢璐
史继诚
徐洪峰
关键词 燃料电池非铂催化剂科琴黑氧还原反应    
Abstract

Cobalt (Co) based oxygen reduction catalysts have become one of the important choices to replace platinum based oxygen reduction catalysts because of their low price, high reserves and easy availability. ECP600 JD was pretreated with nitric acid, mixed with cobalt acetate tetrahydrate, and then pyrolyzed at 800 ℃ in ammonia atmosphere to prepare Co-N/C oxygen reduction catalyst. The infrared spectrum test, alkali neutralization titration and specific surface area measurement show that the number of oxygen-containing functional groups on the surface of ECP600 JD increases, the pore size of ECP600 JD remains unchanged, but the proportion of mesopores increases after nitric acid acidification pretreatment. XRD and TEM tests show that Co5.47N is formed from ECP600 JD and cobalt acetate tetrahydrate after ammonia heat treatment, the Co-N/C catalyst is dispersed evenly without agglomeration. Electrochemical tests show that after pretreatment, the electrocatalytic performance of the prepared Co-N/C catalyst for oxygen reduction reaction (ORR) is better. Under alkaline conditions, the current density reaches 4.2 times that before pretreatment, and belongs to four electron transfer in catalytic kinetics.

Key wordsfuel cell    non-platinum catalyst    ECP600 JD    oxygen reduction reaction
收稿日期: 2021-11-08      出版日期: 2022-09-20
中图分类号:  O643.36  
基金资助:国家自然科学基金项目(22075035);辽宁省自然科学基金项目(2021-MS-296);大连市科技创新基金项目(2021JJ11CQ005)
通讯作者: 卢璐,徐洪峰     E-mail: piao0215@163.com;hfxu@fuelcell.com.cn
作者简介: 徐洪峰(1963—),男,教授,博士,研究方向为质子交换膜燃料电池,联系地址:辽宁省大连市黄河路794号大连交通大学辽宁省金属空气新能源电池重点实验室(116028),E-mail: hfxu@fuelcell.com.cn
卢璐(1983—),女,高级实验师,博士,研究方向为质子交换膜燃料电池,联系地址:辽宁省大连市黄河路794号大连交通大学辽宁省金属空气新能源电池重点实验室(116028),E-mail: piao0215@163.com
引用本文:   
孙小卉, 刘淑红, 卢璐, 史继诚, 徐洪峰. 碳载体预处理对燃料电池Co-N/C非铂催化剂氧还原性能的影响[J]. 材料工程, 2022, 50(9): 52-58.
Xiaohui SUN, Shuhong LIU, Lu LU, Jicheng SHI, Hongfeng XU. Effect of carbon carrier pretreatment on oxygen reduction performance of Co-N/C non-platinum catalyst for fuel cell. Journal of Materials Engineering, 2022, 50(9): 52-58.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.001081      或      http://jme.biam.ac.cn/CN/Y2022/V50/I9/52
Fig.1  ECP600 JD经不同时间硝酸酸化后N2吸附-脱附曲线(a)和孔径分布图(b)
Sample Specific surface area/(m2·g-1) Pore diameter/nm
ECP600 JD 1382.9 3.84
ECP600 JD-24 h 769.9 3.84
ECP600 JD-48 h 254.1 3.37
Table 1  样品硝酸酸化前后比表面积和孔体积
Fig.2  科琴黑预处理前后红外光谱图
Fig.3  不同酸处理时间下碳载体表面酸性基团的碱耗量
Fig.4  0.1 mol·L-1 KOH中经硝酸处理不同时间科琴黑的CV曲线
Fig.5  Co-N/ECP600 JD-X复合催化剂的XRD图
Fig.6  样品的TEM图
(a)科琴黑;(b)~(d)Co-N/ECP600 JD-24 h
Sample Mass fraction/%
N C H S
Co-N/ECP600 JD 0.66 36.10 0.32 0.09
Co-N/ECP600 JD-24 h 2.53 69.09 0.82 0.12
Co-N/ECP600 JD-48 h 1.42 58.29 0.34 0.12
Table 2  Co-N/ECP600 JD-X催化剂元素含量分析
Fig.7  0.1 mol·L-1 KOH中Co-N/ECP600 JD-X的CV曲线
Fig.8  Co-N/ECP600 JD-24 h的ORR性能
(a)LSV曲线;(b)K-L方程拟合曲线;(c)电子转移数
1 SUMBOJA A , LVBKE M , WANG Y , et al. All-solid-state, foldable, and rechargeable Zn-Air batteries based on manganese oxide grown on graphene-coated carbon cloth air cathode[J]. Advanced Energy Materials, 2007, 7 (20): 1700927.
2 CHEN Z W , HIGGINS D , YU A P , et al. A review on non-precious metal electrocatalysts for PEM fuel cells[J]. Energy & Environmental Science, 2011, 4 (9): 3167- 3192.
3 CHEN P Z , XU K , FANG Z W , et al. Metallic Co4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction[J]. Angewandte Chemie, 2015, 127 (49): 14923- 14927.
doi: 10.1002/ange.201506480
4 PAOLA C , SUPRAMANIAM S . Quantum jumps in the PEMFC science and technology from the 1960 s to the year 2000:Part Ⅱ.Engineering, technology development and application aspects[J]. Journal of Power Sources, 2001, 102 (1/2): 253- 269.
5 REN X , ZELENAY P , THOMAS S . Recent advances in direct methanol fuel cells at Los Alamos National Laboratory[J]. Journal of Power Sources, 2000, 86 (1/2): 111- 116.
6 衣宝廉. 燃料电池的原理、技术状态与展望[J]. 电池工业, 2003, 8 (1): 16- 22.
doi: 10.3969/j.issn.1008-7923.2003.01.006
6 YI B L . Fuel cells: fundamental, technology and prospect[J]. Battery Industry, 2003, 8 (1): 16- 22.
doi: 10.3969/j.issn.1008-7923.2003.01.006
7 BANHAM D , YE S . Current status and future development of catalyst materials and catalyst layers for proton exchange membrane fuel cells: an industrial perspective[J]. ACS Energy Letters, 2017, 2 (3): 629- 638.
doi: 10.1021/acsenergylett.6b00644
8 JASINSKI R . A new fuel cell cathode catalyst[J]. Nature, 1964, 201 (4925): 1212- 1213.
doi: 10.1038/2011212a0
9 丁亮, 唐堂, 胡劲松. 基于金属-氮-碳结构催化剂的质子交换膜燃料电池研究进展[J]. 物理化学学报, 2021, 37 (9): 135- 155.
9 DING L , TANG T , HU J S . Recent progress in proton-exchange membrane fuel cells based on metal-nitrogen-carbon catalysts[J]. Acta Phys Chim Sin, 2021, 37 (9): 135- 155.
10 ZHANG L , WILKINSON D P , LIU Y , et al. Progress in nanostructured(Fe or Co)/N/C non-noble metal electrocatalysts for fuel cell oxygen reduction reaction[J]. Electrochimica Acta, 2018, 262 (1): 326- 336.
11 BEZERRA C , ZHANG L , LEE K , et al. A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction[J]. Electrochimica Acta, 2008, 53 (15): 4937- 4951.
doi: 10.1016/j.electacta.2008.02.012
12 SUN T , TIAN B B , LU J , et al. Recent advances of Fe(or Co)/N/C electrocatalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells[J]. Journal of Materials Chemistry A, 2017, 5 (36): 18933- 18950.
doi: 10.1039/C7TA04915C
13 WU G , ZELENAY P . Nanostructured nonprecious metal catalysts for oxygen reduction reaction[J]. Accounts of Chemical Research, 2013, 46 (8): 1878- 1889.
doi: 10.1021/ar400011z
14 ZHANG H G , HWANG S , WANG M Y , et al. Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation[J]. Journal of the American Chemical Society, 2017, 139 (40): 14143- 14149.
doi: 10.1021/jacs.7b06514
15 WU G , MORE K L , JOHNSTON C M , et al. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt[J]. Science, 2011, 332 (6028): 443- 447.
doi: 10.1126/science.1200832
16 ZHANG G X , CHENITZ R , LEFEVRE M , et al. Is iron involved in the lack of stability of Fe/N/C electrocatalysts used to reduce oxygen at the cathode of PEM fuel cells[J]. Nano Energy, 2016, 29, 111- 125.
doi: 10.1016/j.nanoen.2016.02.038
17 HE Y H , HWANG S , CULLEN D A , et al. Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: carbon-shell confinement strategy[J]. Energy & Environmental Science, 2019, 12 (1): 250- 260.
18 WANG R X , ZHANG P Y , WANG Y C , et al. ZIF-derived Co-N-C ORR catalyst with high performance in proton exchange membrane fuel cells[J]. Progress in Natural Science: Materials International, 2020, 30 (6): 855- 860.
doi: 10.1016/j.pnsc.2020.09.010
19 YAHIKOZAWA K , FUJII Y , MATSUDA Y , et al. Electrocatalytic properties of ultrafine platinum particles for oxidation of methanol and formic acid in aqueous solutions[J]. Electrochimica Acta, 1991, 36 (5/6): 973- 978.
20 KINOSHITA K . Particle size effects for oxygen reduction on highly dispersed platinum in acid electrolytes[J]. Journal of the Electrochemical Society, 1990, 137 (3): 845- 848.
doi: 10.1149/1.2086566
21 KABBABI A , GLOAGUEN F , ANDOLFATTO F , et al. Particle size effect for oxygen reduction and methanol oxidation on Pt/C inside a proton exchange membrane[J]. Journal of Electroanalytical Chemistry, 1994, 373 (1/2): 251- 254.
22 GYUTAE N , JOOHYUK P , SUN T K , et al. Metal-free ketjenblack incorporated nitrogen-doped carbon sheets derived from gelatin as oxygen reduction catalysts[J]. Nano Letters, 2014, 14 (4): 1870- 1876.
doi: 10.1021/nl404640n
23 MIYAKE T , OIKE M , YOSHINO S , et al. Biofuel cell anode: NAD+/glucose dehydrogenase-coimmobilized ketjenblack electrode[J]. Chemical Physics Letters, 2009, 480 (1/3): 123- 126.
[1] 潘廷仙, 郑秋燕, 李茂辉, 同鑫, 胡长刚, 田娟. 酸处理对FeN/ZIF-8催化剂氧还原反应催化性能的影响[J]. 材料工程, 2022, 50(5): 122-129.
[2] 李茂辉, 杨智, 潘廷仙, 同鑫, 胡长刚, 田娟. 铁氮掺杂活性炭载体增强碳载铂基催化剂氧还原反应稳定性[J]. 材料工程, 2022, 50(4): 132-138.
[3] 张少威, 蒲秀好, 万艳红, 祝康, 夏长荣. 掺杂对Sr2Fe1.5Mo0.5O6-δ阳极材料电化学性能影响研究进展[J]. 材料工程, 2021, 49(9): 1-13.
[4] 郑秋燕, 杨智, 李茂辉, 潘廷仙, 秦好丽, 田娟. 铁前驱体对FeN/ZIF-8催化剂氧还原活性的影响[J]. 材料工程, 2021, 49(6): 132-139.
[5] 方滔, 陈力, 廉博博, 胡健, 李海龙. 炭化过程施压对气体扩散层用碳纸结构与性能的影响[J]. 材料工程, 2021, 49(5): 98-105.
[6] 孙鹏, 李忠芳, 王传刚, 王燕, 崔伟慧, 裴洪昌, 尹晓燕. 燃料电池用高温质子交换膜的研究进展[J]. 材料工程, 2021, 49(1): 23-34.
[7] 刘媛媛, 李舒婷, 彭军, 安胜利. Gd2O3掺杂量对Ce1-xGdxO2-δ电解质导电性能的影响[J]. 材料工程, 2020, 48(6): 118-124.
[8] 李伟, 李争显, 刘林涛, 耿娟娟, 相远帆, 王凯凯. 多孔金属流场双极板研究进展[J]. 材料工程, 2020, 48(5): 31-40.
[9] 靳宇, 李家峰, 何南, 文陈, 崔庆新, 白晶莹. 纳米多孔Pd-Cu/Pd-Ag催化剂的制备及其电催化性能[J]. 材料工程, 2020, 48(5): 62-67.
[10] 卢璐, 吴磊, 史继诚, 徐洪峰, 丛涛泉. PEMFC用抗溺水性功能化Pt/C催化剂的制备及表征[J]. 材料工程, 2019, 47(6): 63-69.
[11] 王倩倩, 郑俊生, 裴冯来, 戴宁宁, 郑剑平. 质子交换膜燃料电池膜电极的结构优化[J]. 材料工程, 2019, 47(4): 1-14.
[12] 秦振海, 黄昊, 吴爱民, 陈明珠, 杨影影, 姚曼. 立方相碳化钛在锂空电池中的电化学行为[J]. 材料工程, 2019, 47(2): 34-41.
[13] 王松林, 徐向棋, 王东生. 微管SOFC复合支撑体NiO/La0.7Ca0.3CrO3-δ的相转化纺丝法制备与性能[J]. 材料工程, 2019, 47(2): 42-48.
[14] 朱诗尧, 李平, 叶黎城, 郑俊生, 高源. 基于Pt/CNTs催化剂的燃料电池Pt/Buckypaper催化层的制备与表征[J]. 材料工程, 2018, 46(6): 27-35.
[15] 金杰, 韩岁伍, 安腾, 马君杰, 张伟. CrN和CrNiN涂层在模拟质子交换膜燃料电池环境中的电化学性能及疏水性能[J]. 材料工程, 2016, 44(10): 33-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn